信号调节蛋白α在树突状细胞活化中的调节作用和射频消融术联合热休克DC疫苗抑制肿瘤复发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、信号调节蛋白α在树突状细胞活化中的调节作用研究背景和目的
     信号调节蛋白α(SIRPα)是SIRP家族中最主要的成员。一方面,SIRPα可被多种有丝分裂原活化而发生磷酸化,通过其ITIM结构域与SHP-1和SHP-2结合,传递抑制性信号。另一方面,SIRPα还可通过与CD47配体相互作用抑制下游通路活化,传递负向信号。SIRPα在天然免疫的调节中发挥着重要作用,在巨噬细胞中LPS可通过转录抑制和蛋白降解途径诱导SIRPα表达下调,SIRPα通过屏蔽SHP-2作用抑制MAPK、IKKs、NF-κB和IRF3激活,减少炎性因子和IFNβ释放。有研究显示树突状细胞(DC)中的SIRPα还能通过与T细胞表面的CD47结合,双向负调控DC和T细胞的功能,一方面抑制T细胞表达IL-12R,并使成体CD4+和CD8+T细胞对IL-12反应性降低;另一方面,抑制不成熟DC的表型和功能成熟,并抑制其细胞因子的释放。
     DC是目前发现的功能最强的专职性抗原递呈细胞(antigen-presenting cells,APC),能摄取和加工递呈抗原,具有强大的激活CD8+、CTL及CD4+T辅助细胞的能力,控制着体内免疫反应的过程,在免疫应答中处于中心地位,因而成为肿瘤免疫反应的中心环节。目前普遍认为,免疫逃逸是肿瘤产生的重要因素。由于SIRPα对DC的功能成熟有着很大影响,并可通过结合CD47直接抑制T细胞功能,因此在肿瘤免疫逃逸中可能起重要作用。本研究旨在通过对DC中的SIRPα进行miRNA干扰,阻断SIRPα负向信号通路,进一步揭示SIRPα对DC和T细胞功能的影响,明确其在肿瘤免疫治疗中的作用并分析其可能的分子机制。
     实验方法
     1.构建慢病毒质粒:LV-microRNA-SIRPα、LV -GFP、LV-SIRPα;慢病毒包装和滴度检测。
     2.骨髓来源DC分离培养。
     3.体外观察慢病毒干扰SIRPα的DC(a)成熟和迁移表型的改变—PE标记的MHCⅡ、CD80、CD86、CCR7、CCR5流式细胞计数;(b)生存能力的改变—PI染色流式细胞计数;(c)分泌细胞因子功能的改变—IL12、IL-6、TNFαELISA检测。
     4.体外观察干扰SIRPα的DC对T细胞功能调节:(a)T细胞的增殖能力的改变—H3增殖实验;(b)T细胞分泌IFN-γ水平的改变—ELISA检测。
     5.体内观察干扰SIRPα的DC迁移和增殖能力的改变—CFSE标记,流式检测代谢。
     6.体内观察干扰SIRPα的DC对T细胞功能调节(a)T细胞增殖能力的改变—CFSE标记,流式检测代谢;(b)T细胞杀伤功能的改变—非放射性乳酸脱氢酶检测;(c)T细胞分泌IFN-γ水平的改变—ELISPOT。
     7.体内观察干扰SIRPα的DC的肿瘤免疫功能的改变—在治疗和预防模型中应用SIRPα干扰的DC疫苗,观察对肿瘤大小和小鼠生存时间的影响。
     8.讨论SIRPα对DC功能调节的机制:(a)生存能力相关PI3K-AKT通路的改变—Western-blot;(b)分泌功能相关JAK-STAT通路的改变—Western-blot;(c)成熟迁移相关NF-κB通路的改变—Western-blot。
     9.讨论SIRPα的上、下游信号蛋白在DC功能调节中的作用:TLR-4、SHP-1、SHP-2、P85—免疫共沉淀IP、Western-blot。
     实验结果
     1. LPS诱导DC活化过程中,SIRPα表达下调,细胞生存相关的AKT磷酸化水平升高、Bcl-2表达增高。SIRPα-silened DC在加入polybrene(8ug/ml)条件下培养12hr后,抗凋亡能力显著强于对照组。
     2. SIRPα-silenced DC成熟表型:MHCⅡ、CD80和CD86表达增强,迁移相关表型CCR7表达增强、CCR5表达降低。
     3. SIRPα-silenced DC分泌细胞因子IL-12、IL-6增强。
     4. SIRPα-silenced DC体外刺激T细胞增殖和分泌IFNγ能力增强。
     5. SIRPα-silenced DC体内刺激T细胞分泌IFNγ能力增强。
     6.降低SIRPα表达的DC免疫na?ve C57小鼠,对免疫原性强的5×105 EG7细胞皮下种植有100%免疫预防能力,肿瘤注射两周后能观察的小鼠脾CD8+T分泌IFNγ能力增强。
     7.降低SIRPα表达的DC免疫na?ve C57小鼠,对免疫原性弱的1×105 B16F10皮下种植有>50%免疫预防能力。
     结论
     本实验通过慢病毒干扰技术有效抑制DC中SIRPα的表达,并通过体内体外实验证实SIRPα在DC生存、成熟和抗原递呈中起着重要的抑制作用。此外,我们还通过小鼠肿瘤预防模型进一步证实SIRPα在肿瘤免疫中发挥抑制性调节作用。以上提示我们,干扰DC中SIRPα制备的DC疫苗可能成为肿瘤免疫治疗中重要的组成部分。
     二、射频消融术联合热休克DC疫苗抑制肿瘤复发
     研究背景和目的
     射频消融(RFA)是肝脏肿瘤获得根治的微创治疗方法之一,其原理主要是通过射频产生的热量,使局部肿瘤消融。但治疗后常见消融灶内部或边缘活性肿瘤细胞残留或局部复发,所以,射频消融术联合其它治疗方案势在必行。
     射频消融后肿瘤细胞坏死释放大量肿瘤抗原,可在射频区域能检测到微弱的免疫反应,这可能与消融区外周肿瘤组织产生的大量热休克蛋白对DC识别、摄取和加工肿瘤抗原的激活效应相关。如果联合治疗方案能使射频术后产生强大而持久的特异性肿瘤免疫反应,将对肿瘤射频消融术预后有很大改善。
     DC是目前发现的功能最强的专职性抗原递呈细胞(antigen-presenting cells,APC),能摄取和加工递呈抗原,具有强大的激活CD8+、CTL及CD4+T辅助细胞的能力,控制着体内免疫反应的过程,在免疫应答中处于中心地位,因而成为肿瘤免疫反应的中心环节。目前,DC疫苗已成为临床免疫治疗的重要手段,联合DC疫苗免疫治疗增强射频消融术后局部和全身特异性肿瘤免疫,是改善射频术预后的可行方案。
     本研究设计采用体外热休克肿瘤细胞制备肿瘤抗原,模拟体内射频术后肿瘤组织释放的抗原,负载DC制备热休克DC疫苗。通过热休克DC疫苗注射使荷瘤鼠产生初次免疫和免疫记忆,当接受射频术时,大量原位肿瘤抗原引发强烈持久的再次特异性肿瘤免疫应答,有效防止射频术后复发。本研究旨在探索物理治疗联合生物治疗肝脏肿瘤的应用价值和可行性,并为建立新的肿瘤综合治疗模式提供有价值的线索和理论支持。
     实验方法
     1. DEN诱导C57原发性肝癌—DEN喂饮8个月。
     2.皮下C57 B16F10肿瘤模型的建立。
     3.观察小鼠原发性肝癌和皮下B16F10肿瘤射频后组织热休克反应(a)HSP-70、gp96的表达—免疫组化;(b)HMGB1的表达—免疫组化。
     4.观察体外肿瘤细胞43度热休克是否能模拟体内射频后热休克状态:(a)HSP-70、gp96的表达—Western-blot;(b)HMGB1的表达—免疫组化—细胞免疫荧光。
     5.利用体外肿瘤热休克制备热休克抗原,DC负载热休克抗原制备DC疫苗。
     6.热休克DC疫苗联合射频消融治疗,观察其对皮下B16F10肿瘤复发的影响:设立实验组:43度培养的B16F10肿瘤抗原制备DC疫苗联合射频消融治疗对照组(a)37度培养的B16F10肿瘤抗原制备DC疫苗联合射频消融治疗;(b)负载PBS的DC疫苗联合射频消融治疗;(c)43度培养的EL4肿瘤抗原制备DC疫苗联合射频消融治疗。
     7.探讨热休克DC疫苗联合射频消融治疗抑制肿瘤复发的机制:(a)诱导特异性T细胞增生;(b)诱导特异性T细胞分泌IFNγ;(c)诱导特异性T细胞对肿瘤细胞杀伤。
     实验结果
     1.射频后肿瘤组织(原发性肝癌和皮下B16F10肿瘤)HSP70、gp96表达升高,HMGB1出现核转位。
     2. 43度加热后细胞HSP70、gp96表达升高,HMGB1出现核转位,且对DC成熟和活化能力增强。
     3. 43度B16F10加热制备肿瘤抗原,用其负载DC制备的疫苗能有效防止肿瘤射频术后复发。
     4.实验组引流淋巴结T细胞增殖能力高于对照组。同时T细胞分泌IFNγ水平高于对照组。
     5.实验组引流淋巴结T细胞对肿瘤细胞特异性杀伤能力高于对照组。
     6.实验组联合治疗后肿瘤局部淋巴细胞浸润增加,肿瘤细胞凋亡增多。实验组全脾淋巴细胞移联合植射频术治疗能有效抑制射频后肿瘤复发,该效应主要由特异性CD8+T细胞介导。
     结论
     体外肿瘤细胞热休克(43度热休克)制备的肿瘤抗原能很好模拟体内射频消融术后释放的热休克抗原,以此制备的DC疫苗联合射频治疗能有效降低射频术后肿瘤复发。RFA联合免疫疗法治疗HCC可能代表了一种诱发原位强力免疫应答的相对简单的治疗模式,也是一种新颖、有效、可行的肿瘤综合治疗策略,具有潜在的应用价值和临床意义。
Part I Signal Regulatory ProteinαSets a Threshold for Dendritic Cell Activation
     Purpose: Signal regulatory protein (SIRP)a, also known as SHPS-1 or SIRPα, is a transmembrane protein that binds to the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region. Due to its high expression in dendritic cells and macrophages, SIRPαwas often thought to have an important role in the immune system. In innate immune responses, SIRPαhad been proved to play a critically negative role in macrophage activation. However, whether or how SIRPαregulate the adaptive immune response is not very clear. Here we firstly purposed to delineate potential regulations of SIRPαin DCs, and then discussed its potential functions in adaptive immunity against tumor.
     Experimental Design: To examine SIRPαregulation of the adaptive immune responses, lentiviral-mediated, microRNA-based RNA interference of SIRPαin DC was designed. After infected by lentivirus, in vitro and in vivo growth and survival of DCs were evaluated firstly. Secondly, maturation and cytokine production of DCs regulated by SIRPαwere detected. Thirdly, T cell responses and anti-tumor immune effects were evaluated. Finally, the molecular mechanisms.of SIRPαin regulation of DC function were discussed.
     Results: SIRPαwas found to suppress the survival, phenotypic and functional maturation of immature dendritic cells (DCs) and to inhibit cytokine production by mature DCs. Moreover, SIRPαsilenced-DCs showed potent antitumor effects by activation of antigen-specific cytotoxic T lymphocytes.
     Conclusions: This study indicates that SIRPαis a critical regulator of DC function, and inhibiting SIRPαis necessary to evoke potent adaptive immunity and induce effective antitumor responses in an antigen-specific manner.
     Part II Abrogation of Local Cancer Recurrence after Radiofrequency Ablation by Dendritic Cell-based Hyperthermic Tumor Vaccine in Mice
     Purpose: Radiofrequency thermal ablation (RFA) has become a viable treatment option for small solid focal malignancies. However, aggressive local and distant recurrence indicate a need to combine it with other treatment modalities. Here we investigated whether proactive priming with tumor heat-shocked tumor lysate-pulsed dendritic cells (HT-DC), which mimics RFA effects in vivo, can prevent local cancer recurrence after RFA treatment.
     Experimental Design: Poorly immunogenic melanoma tumors were established in syngeneic mice and sequentially treated with DC cancer vaccines and RFA. Local cancer recurrence and survival were monitored. In vitro and in vivo induction of antitumor responses of RFA as single modality and in combination with DC pre-vaccination were evaluated by immunohistochemistry, IFN-γrelease, and CTL assay.
     Results: The combination treatment with HT-DC and RFA showed potent anti-tumor effects compared with either treatment modality alone, with >90% of tumor recurrence abrogated in the combination group. However, pre-vaccination with un-heated tumor lysate-pulsed DC failed to prevent late tumor recurrence, suggesting a need for hyperthermia-induced DC activation and cryptic antigen presentation. The spleens of mice treated with HT-DC plus RFA contained tumor-specific cytotoxic and IFN-γ-secreting T ells whereas the spleens of control groups did not. Moreover, adoptive transfer of splenocytes from successfully treated tumor-free mice protected naive animals from a tumor recurrence after RFA, and this was mediated mainly by CD8+ T cells.
     Conclusions: The optimal priming for the DC vaccination before RFA is important for boosting antigen-specific T cell responses and this combined modalities may provide a potent therapeutic strategy for cancer treatment.
引文
1. Kharitonenkov A, Chen Z, Sures I, Wang H, Schilling J, Ullrich A. A family of proteins that inhibit signalling through tyrosine kinase receptors. Nature 1997 Mar 13;386(6621):181-186.
    2. Kong XN, Yan HX, Chen L, Dong LW, Yang W, Liu Q, et al. LPS-induced down-regulation of signal regulatory protein {alpha} contributes to innate immune activation in macrophages. J Exp Med 2007 Oct 29;204(11):2719-2731.
    3. Alblas J, Honing H, de Lavalette CR, Brown MH, Dijkstra CD, van den Berg TK. Signal regulatory protein alpha ligation induces macrophage nitric oxide production through JAK/. Mol Cell Biol 2005 Aug;25(16):7181-7192.
    4. Latour S, Tanaka H, Demeure C, Mateo V, Rubio M, Brown EJ, et al. Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein-alpha: down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation. J Immunol 2001 Sep 1;167(5):2547-2554.
    5. Wu CJ, Chen Z, Ullrich A, Greene MI, O'Rourke DM. Inhibition of EGFR-mediated phosphoinositide-3-OH kinase (PI3-K) signaling and glioblastoma phenotype by signal-regulatory proteins (SIRPs). Oncogene 2000 Aug 17;19(35):3999-4010.
    6. Oshima K, Machida K, Ichigotani Y, Nimura Y, Shirafuji N, Hamaguchi M, et al. SHPS-1: a budding molecule against cancer dissemination. Cancer Res 2002 Jul 15;62(14):3929-3933.
    7. Yan HX, Wang HY, Zhang R, Chen L, Li BA, Liu SQ, et al. Negative regulation of hepatocellular carcinoma cell growth by signal regulatory protein alpha1. Hepatology 2004 Sep;40(3):618-628.
    8. Seiffert M, Brossart P, Cant C, Cella M, Colonna M, Brugger W, et al. Signal-regulatory protein alpha (SIRPalpha) but not SIRPbeta is involved in T-cell activation, binds to CD47 with high affinity, and is expressed on immature CD34(+)CD38(-) hematopoietic cells. Blood 2001 May 1;97(9):2741-2749.
    9. Park D, Lapteva N, Seethammagari M, Slawin KM, Spencer DM. An essential role for Akt1 in dendritic cell function and tumor immunotherapy. Nat Biotechnol 2006 Dec;24(12):1581-1590.
    10. Hou WS, Van PL. A Bcl-2-dependent molecular timer regulates the lifespan and immunogenicity of dendritic cells. Nat Immunol 2004 Jun;5(6):583-589.
    11. van Beek EM, Cochrane F, Barclay AN, van den Berg TK. Signal regulatory proteins in theimmune system. J Immunol 2005 Dec 15;175(12):7781-7787.
    12. Wu CY, Wang K, McDyer JF, Seder RA. Prostaglandin E2 and dexamethasone inhibit IL-12 receptor expression and IL-12 responsiveness. J Immunol 1998 Sep 15;161(6):2723-2730.
    13. Kalinski P, Schuitemaker JH, Hilkens CM, Wierenga EA, Kapsenberg ML. Final maturation of dendritic cells is associated with impaired responsiveness to IFN-gamma and to bacterial IL-12 inducers: decreased ability of mature dendritic cells to produce IL-12 during the interaction with Th cells. J Immunol 1999 Mar 15;162(6):3231-3236.
    14. Shen L, Evel-Kabler K, Strube R, Chen SY. Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat Biotechnol 2004 Dec;22(12):1546-1553.
    15. Cui Y, Kelleher E, Straley E, Fuchs E, Gorski K, Levitsky H, et al. Immunotherapy of established tumors using bone marrow transplantation with antigen gene--modified hematopoietic stem cells. Nat Med 2003 Jul;9(7):952-958.
    16. Hanks BA, Jiang J, Singh RA, Song W, Barry M, Huls MH, et al. Re-engineered CD40 receptor enables potent pharmacological activation of dendritic-cell cancer vaccines in vivo. Nat Med 2005 Feb;11(2):130-137.
    17. Gautier G, Humbert M, Deauvieau F, Scuiller M, Hiscott J, Bates EE, et al. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J Exp Med 2005 May 2;201(9):1435-1446.
    18. Johnson S, Zhan Y, Sutherland RM, Mount AM, Bedoui S, Brady JL, et al. Selected Toll-like receptor ligands and viruses promote helper-independent cytotoxic T cell priming by upregulating CD40L on dendritic cells. Immunity 2009 Feb;30(2):218-227.
    19. Warger T, Osterloh P, Rechtsteiner G, Fassbender M, Heib V, Schmid B, et al. Synergistic activation of dendritic cells by combined Toll-like receptor ligation induces superior CTL responses in vivo. Blood 2006 Jul 15;108(2):544-550.
    20. Saito H, Frleta D, Dubsky P, Palucka AK. Dendritic cell-based vaccination against cancer. Hematol Oncol Clin North Am 2006 Jun;20(3):689-710.
    21. Schuler G, Schuler-Thurner B, Steinman RM. The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 2003 Apr;15(2):138-147.
    (1) Cho YK, Kim JK, Kim MY, Rhim H, Han JK. Systematic review of randomized trials for hepatocellular carcinoma treated with percutaneous ablation therapies. Hepatology 2008.
    (2) Bolondi L, Gaiani S, Celli N, Piscaglia F. Tumor dissemination after radiofrequency ablation of hepatocellular carcinoma. Hepatology 2001;34:608-1.
    (3) Kato T, Reddy KR. Radiofrequency ablation for hepatocellular carcinoma: help or hazard? Hepatology 2001;33:1336-7.
    (4) Zerbini A, Pilli M, Penna A, Pelosi G, Schianchi C, Molinari A, et al. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res 2006;66:1139-46.
    (5) Zerbini A, Pilli M, Fagnoni F, Pelosi G, Pizzi MG, Schivazappa S, et al. Increased immunostimulatory activity conferred to antigen-presenting cells by exposure to antigen extract from hepatocellular carcinoma after radiofrequency thermal ablation. J Immunother 2008;31:271-82.
    (6) Fagnoni FF, Zerbini A, Pelosi G, Missale G. Combination of radiofrequency ablation and immunotherapy. Front Biosci 2008;13:369-81.
    (7) Huang XF, Ren W, Rollins L, Pittman P.Shah M, Shen L, et al. A broadly applicable, personalized heat shock protein-mediated oncolytic tumor vaccine. Cancer Res 2003;63:7321-9.
    (8) Yang D, Chen Q, Yang H, Tracey KJ, Bustin M, Oppenheim JJ. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J Leukoc Biol 2007;81:59-66.
    (9) Yang WL, Nair DG, Makizumi R, Gallos G, Ye X, Sharma RR, et al. Heat shock protein 70 is induced in mouse human colon tumor xenografts after sublethal radiofrequency ablation. Ann Surg Oncol 2004;11:399-406.
    (10) Ramirez SR, Singh-Jasuja H, Warger T, Braedel-Ruoff S, Hilf N, Wiemann K, et al. Glycoprotein 96-activated dendritic cells induce a CD8-biased T cell response. Cell Stress Chaperones 2005;10:221-9.
    (11) Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245-52.
    (12) den Brok MH, Sutmuller RP, Nierkens S, Bennink EJ, Frielink C, Toonen LW, et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination withimmune modulation induces anti-tumour immunity. Br J Cancer 2006;95:896-905.
    (13) Bell D, Chomarat P, Broyles D, Netto G, Harb GM, Lebecque S, et al. In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 1999;190:1417-26.
    (14) Gilboa E. DC-based cancer vaccines. J Clin Invest 2007;117:1195-203.
    (15) Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 2002;20:395-425.
    (16) Chan T, Chen Z, Hao S, Xu S, Yuan J, Saxena A, et al. Enhanced T-cell immunity induced by dendritic cells with phagocytosis of heat shock protein 70 gene-transfected tumor cells in early phase of apoptosis. Cancer Gene Ther 2007;14:409-20.
    (17) Milani V, Noessner E, Ghose S, Kuppner M, Ahrens B, Scharner A, et al. Heat shock protein 70: role in antigen presentation and immune stimulation. Int J Hyperthermia 2002;18:563-75.
    (18) Martin CA, Carsons SE, Kowalewski R, Bernstein D, Valentino M, Santiago-Schwarz F. Aberrant extracellular and dendritic cell (DC) surface expression of heat shock protein (hsp)70 in the rheumatoid joint: possible mechanisms of hsp/DC-mediated cross-priming. J Immunol 2003;171:5736-42.
    (19) Koike N, Pilon-Thomas S, Mule JJ. Nonmyeloablative chemotherapy followed by T-cell adoptive transfer and dendritic cell-based vaccination results in rejection of established melanoma. J Immunother 2008;31:402-12.
    (20) Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005;5:263-74.
    (21) den Brok MH, Sutmuller RP, van d, V, Bennink EJ, Figdor CG, Ruers TJ, et al. In situ tumor den Brok MH, Sutmuller RP, van d, V, Bennink EJ, Figdor CG, Ruers TJ, et al. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res 2004;64:4024-9.
    (22) Schueller G, Kettenbach J, Sedivy R, Stift A, Friedl J, Gnant M, et al. Heat shock protein expression induced by percutaneous radiofrequency ablation of hepatocellular carcinoma in vivo. Int J Oncol 2004;24:609-13.
    (23) Bendz H, Ruhland SC, Pandya MJ, Hainzl O, Riegelsberger S, Brauchle C, et al. Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling. J Biol Chem2007;282:31688-702.
    (24) Binder RJ, Blachere NE, Srivastava PK. Heat shock protein-chaperoned peptides but not freepeptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. J Biol Chem 2001;276:17163-71.
    (25) Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994;12:991-1045.
    (26) Bretscher P, Cohn M. A theory of self-nonself discrimination. Science 1970;169:1042-9.
    (27)Matzinger P. The danger model: a renewed sense of self. Science 2002;296:301-5.
    (28) Fuchs EJ, Matzinger P. Is cancer dangerous to the immune system? Semin Immunol 1996;8:271-80.
    (29) Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 2000;6:435-42.
    (30) Wang Y, Kelly CG, Singh M, McGowan EG, Carrara AS, Bergmeier LA, et al. Stimulation of Th1-polarizing cytokines, C-Cchemokines,maturation of dendritic cells, and adjuvantfunction by the peptide binding fragment of heat shock protein 70. J Immunol 2002;169:2422-9.
    (31) Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol 2008;8:59-73.
    (32)Zitvogel L, Apetoh L, Ghiringhelli F, Andre F, Tesniere A, Kroemer G. The anticancerimmune response: indispensable for therapeutic success? J Clin Invest 2008;118:1991-2001.
    1. Kawakami, N. et al. Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J. Exp. Med. 201, 1805–1814 (2005).
    2. Fujioka, Y. et al. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol. Cell. Biol. 16, 6887–6899 (1996).
    3. Bromley, S. K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).
    4. Miller, M. J., Safrina, O., Parker, I. & Cahalan, M. D. Imaging the single cell dy namics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med. 200, 847–856 (2004).
    5. Kharitonenkov, A. et al. A family of proteins that inhibit ignaling through tyrosine kinase receptors. Nature 386, 181–186 (1997).
    6. Ohnishi, H., Kubota, M., Ohtake, A., Sato, K. & Sano, S. Activation of protein-tyrosine phosphatase SH-PTP2 by a tyrosine-based activation motif of a novel brain molecule. J. Biol. Chem. 271, 25569–25574 (1996).
    7.Veillette, A., Thibaudeau, E. & Latour, S. High expression of inhibitory receptor SHPS-1 andits association with protein-tyrosine phosphatase SHP-1 in macrophages. J. Biol. Chem. 273, 22719–22728 (1998).
    8. Seiffert, M. et al. Signal-regulatory proteinα(SIRPα) but not SIRPβis involved in T-cell activation, binds to CD47 with high affinity, and is expressed on immature CD34+CD38– hematopoietic cells. Blood 97, 2741–2749 (2001).
    9. Ichigotani, Y. et al. Molecular cloning of a novel human gene (SIRP-B2) which encodes a new member of the SIRP/SHPS-1 protein family. J. Human Gen. 45, 378–382 (2000).
    10. Dietrich, J., Cella, M., Seiffert, M., Buhring, H. J. & Colonna, M. Cutting edge: signal-regulatory proteinβ1 is a DAP12-associated activating receptor expressed in myeloid cells. J. Immunol. 164, 9–12 (2000).
    11. Tomasello, E. et al. Association of signal-regulatory proteinsβwith KARAP/DAP-12. Eur. J. Immunol. 30, 2147–2156 (2000).
    12. Tomasello, E. & Vivier, E. KARAP/DAP12/TYROBP: three names and a multiplicity of biological functions. Eur. J. Immunol. 35, 1670–1677 (2005).
    13. Lanier, L. L. & Bakker, A. B. The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function. Immunol. Today 21, 611–614 (2000).
    14. Liu, Y. et al. SIRPβ1 is expressed as a disulfide linked homodimer in leukocytes and positively regulates neutrophil transepithelial migration. J. Biol. Chem. 280, 36132–36140 (2005).
    15. Brooke, G., Holbrook, J. D., Brown, M. H. & Barclay, A. N. Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein(SIRP) family. J. Immunol. 173, 2562–2570 (2004).
    16. Piccio, L. et al. Adhesion of human T cells to antigenpresenting cells through SIRPβ2–CD47 interaction costimulates T-cell proliferation. Blood 105, 2421–2427 (2005).
    17. van Beek, E. M., Cochrane, F., Barclay, A. N. & van den Berg, T. K. Signal regulatory proteins in the immune system. J. Immunol. 175, 7781–7787 (2005).
    18. Sano, S., Ohnishi, H. & Kubota, M. Gene structure of mouse BIT/SHPS-1. Biochem. J. 344,667–675 (1999).
    19. van den Berg, T. K., Yoder, J. A. & Litman, G. W. On the origins of adaptive immunity: innate immune receptors join the tale. Trends Immunol. 25, 11–16 (2004).
    20. Jiang, P., Lagenaur, C. F. & Narayanan, V. Integrinassociated protein is a ligand for the P84 neural adhesion molecule. J. Biol. Chem. 274, 559–562 (1999).
    21. Seiffert, M. et al. Human signal-regulatory protein is expressed on normal, but not on subsets of leukemic myeloid cells and mediates cellular adhesion involving its counterreceptor CD47. Blood 94, 3633–3643 (1999).
    22. Vernon-Wilson, E. F. et al. CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP (OX41) and human SIRPα1. Eur. J. Immunol. 30, 2130–2137 (2000).
    23. Latour, S. et al. Bidirectional negative regulation of human T and dendritic cells by CD47 andits cognate receptor signal-regulator protein-α: down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation. J. Immunol. 167, 2547–2554 (2001).
    24. anna, P. P. & Frazier, W. A. The mechanism of CD47-dependent killing of T cells: heterotrimeric Gi-dependent inhibition of protein kinase A. J. Immunol. 170, 3544–3553(2003).
    25. Brown, E. J. & Frazier, W. A. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11, 130–135 (2001).
    26. 26. Gardai, S. J. et al. By binding SIRPαor calreticulin/CD91, lung collectins act as dualfunction surveillance molecules to suppress or enhance inflammation. Cell 115, 13–23 (2003).
    27. Yamao, T. et al. Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1. J. Biol. Chem. 277, 39833–39839 (2002).
    28. Okazawa, H. et al. Negative regulation of phagocytosis in macrophages by the CD47–SHPS-1 system. J. Immunol. 174, 2004–2011 (2005).
    29. Smith, R. E. et al. A novel MyD-1 (SIRP-1α) signaling pathway that inhibits LPS-induced TNFαproduction by monocytes. Blood 102, 2532–2540 (2003).
    30. Liu, Y. et al. Signal regulatory protein (SIRPα), a cellular ligand for CD47, regulates neutrophil transmigration. J. Biol. Chem. 277, 10028–10036 (2002).
    31. Inagaki, K. et al. SHPS-1 regulates integrin-mediated cytoskeletal reorganization and cell motility. EMBO J. 19, 6721–6731 (2000).
    32. Oshima, K., Ruhul Amin, A. R., Suzuki, A., Hamaguchi, M. & Matsuda, S. SHPS-1, a multifunctional transmembrane glycoprotein. FEBS Lett. 519, 1–7 (2002).
    33. Timms, J. F. et al. SHPS-1 is a scaffold for assembling distinct adhesion-regulated multi-protein complexes in macrophages. Curr. Biol. 9, 927-930 (1999).
    34. Alblas, J. et al. Signal regulatory proteinαligation induces macrophage nitric oxide production through JAK/STAT- and phosphatidylinositol 3-kinase/Rac1/ NAPDH oxidase/H2O2-dependent pathways. Mol. Cell. Biol. 25, 7181–7192 (2005).
    35. Lindberg, F. P. et al. Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice. Science 274, 795–798 (1996).
    36. Oldenborg, P. A. et al. Role of CD47 as a marker of self on red blood cells. Science 288, 2051–2054 (2000).
    37. Ishikawa-Sekigami, T. et al. SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages. Blood 107, 341–348 (2006).
    38. McVicar, D. W. et al. DAP12-mediated signal transduction in natural killer cells. A dominant role for the Syk protein-tyrosine kinase. J. Biol.Chem. 273, 32934–32942 (1998).
    39. Hayashi, A. et al. Positive regulation of phagocytosis by SIRPβand its signaling mechanism in macrophages. J. Biol. Chem. 279, 29450–29460 (2004).
    40. Lanier, L. L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).
    41. Vales-Gomez, M., Reyburn, H. T.Erskine, R. A. & Strominger, J. Differential binding to HLA-C of p50-activating and p58-inhibitory natural killer cell receptors. Proc. Natl Acad. Sci. USA 95, 14326–14331 (1998).
    42. Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity15 751–761 (2001).
    43. Wild, M. K. et al. Dependence of T cell antigen recognition on the dimensions of an accessory receptor–ligand complex. J. Exp. Med. 190, 31–41 (1999).
    44. Choudhuri, K., Wiseman, D., Brown, M. H., Gould, K. & van der Merwe, P. A. T-cell receptor triggering is critically dependent on the dimensions of its peptide–MHC ligand. Nature 436, 578–582 (2005).
    45. Barclay, A. N. et al. Leucocyte Antigens Factsbook 2nd edn (Academic Press, London, 1997).
    46. Wright, G. J. et al. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novelreceptor on macrophages implicated in the control of their function. Immunity 13, 233–242 (2000).
    47. Ohnishi, H. et al. Differential localization of Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 and CD47 and its molecular mechanisms in cultured hippocampal neurons. J. Neurosci. 25, 2702–2711 (2005).
    48. Mi, Z. P. et al. Expression of a synapse-associated membranmrotein, P84/SHPS-1, and itsligand, IAP/CD47, in mouse retina. J. Comp. Neurol. 416, 335–344(2000).
    49. Rebres, R. A., Vaz, L. E., Green, J. M. & Brown, E. J. Normal ligand binding and signaling by CD47 (integrin-associated protein) requires a long range disulfide bond between the extracellular and membrane-spanning domains. J. Biol. Chem. 276, 34607–34616 (2001).
    50. Jimenez, D., Roda-Navarro, P., Springer, T. A. & Casasnovas, J. M. Contribution of N-linked glycans to the conformation and function of intercellular adhesion molecules (ICAMs). J. Biol. Chem. 280,5854–5861 (2005).
    51. Ogura, T. et al. Resistance of B16 melanoma cells to CD47-induced negative regulation of motility as a result of aberrant N-glycosylation of SHPS-1. J. Biol. Chem. 279, 13711–13720 (2004).
    52. LeVine, A. M. et al. Distinct effects of surfactant protein A or D deficiency during bacterial infection on the lung. J. Immunol. 165, 3934–3940 (2000).
    53. van der Merwe, P. A. & Davis, S. J. Molecular interactions mediating T cell ntigen recognition. Annu. Rev. Immunol. 21, 659–684 (2003).
    54. van der Merwe, P. A. & Barclay, A. N. Analysis of celladhesion molecule interactions using surface plasmon resonance. Curr. Opin. Immunol. 8, 257–261 (1996).
    55. Foster-Cuevas, M., Wright, G. J., Puklavec, M. J. & Barclay, A. N. Human herpesvirus-8 K14protein mimics CD200 in down-regulating macrophage activation through CD200 receptor. J. Virol. 78, 7667–7676 (2004).
    56. Collins, A. V. et al. The interaction properties of costimulatory molecules revisited. Immunity 17, 201–210 (2002).
    57. Dustin, M. L. et al. Low affinity interaction of human or rat T cell adhesion molecule CD2 with its ligand aligns adhering membranes to achieve high physiological affinity. J. Biol.Chem. 272, 30889–30898 (1997).
    58. Douglass, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein–protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).
    59. Koch, C. et al. T cell activation-associated epitopes of CD147 in regulation of the T cell response, and their definition by antibody affinity and antigen density. Int. Immunol. 11, 777–786 (1999).
    60. Smith, H. R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl Acad. Sci. USA 99, 8826–8831 (2002).
    61. Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326(2002).
    62. Smith, K. M., Wu, J., Bakker, A. B., Phillips, J. H. & Lanier, L. L. Ly-49D and Ly-49H associate with mouse DAP12 and form activating receptors. J. Immunol. 161, 7–10 (1998).
    63. Bubic, I. et al. Gain of virulence caused by loss of a gene in murine cytomegalovirus. J. Virol. 78, 7536–7544 (2004).
    64. Sano, S., Ohnishi, H., Omori, A., Hasegawa, J. & Kubota, M. BIT, an immune antigen receptor-like molecule in the brain. FEBS Lett. 411, 327–334 (1997).
    65. Koshimizu, H. et al. Expression of CD47/integrinassociated protein induces death of cultured cerebral cortical neurons. J. Neurochem. 82, 249–257 (2002).
    66. Miyashita, M. et al. Promotion of neurite and filopodium formation by CD47: roles of integrins, Rac, and Cdc42. Mol. Biol. Cell 15, 3950–3963 (2004).
    67. Williams, A. F. & Barclay, A. N. The immunoglobulin superfamily—domains for cell surface recognition. Annu. Rev. Immunol. 6, 381–405 (1988).
    68. Barclay, A. N., Wright, G. J., Brooke, G. & Brown, M. H. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol. 23,285–290 (2002).
    69. Wright, G. J. et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J. Immunol. 171,3034–3046 (2003).
    70. Voehringer, D., Rosen, D. B., Lanier, L. L. & Locksley, R. M. CD200 receptor family members represent novel DAP12-associated activating receptors on basophils and mast cells. J. Biol. Chem.279, 54117–54123 (2004).
    71. Cameron, C. M., Barrett, J. W., Mann, M., Lucas, A. & McFadden, G. Myxoma virus M128L is expressed as a cell surface CD47-like virulence factor that contributes to the downregulation of macrophage activation in vivo. Virology 337, 55–67 (2005).
    72. Cameron, C. M., Barrett, J. W., Liu, L., Lucas, A. R. & McFadden, G. Myxoma virus M141R expresses a viral CD200 (vOX-2) that is responsible for down-regulation of macrophage and T-cell activation in vivo. J. Virol.79, 6052–6067 (2005).
    73. van den Berg, T. K. et al. A nomenclature for signal regulatory protein family members. J. Immunol. 175, 7788–7789 (2005).
    74. Shiratori, I., Ogasawara, K., Saito, T., Lanier, L. L. & Arase, H. Activation of natural killer cells and dendritic cells upon recognition of a novel CD99-like ligand by paired immunoglobulin-like type 2 receptor. J. Exp. Med. 199, 525–533 (2004).
    75. Allen, R. L., Raine, T., Haude, A., Trowsdale, J. & Wilson, M. J. Leukocyte receptor complex-encoded immunomodulatory receptors show differing specificity for alternative HLA-B27 structures.J. Immunol. 167, 5543–5547 (2001).
    76. Borges, L. & Cosman, D. LIRs/ILTs/MIRs, inhibitory and stimulatory Ig-superfamily receptors expressed in myeloid and lymphoid cells. Cytokine Growth Factor Rev. 11, 209–217 (2000).
    77. Aguilar, H. et al. Molecular characterization of a novel immune receptor restricted to the monocytic lineage. J. Immunol. 173, 6703–6711 (2004).
    78. Chung, D. H. et al. CMRF-35-like molecule-1, a novel mouse myeloid receptor, can inhibit osteoclast formation. J. Immunol. 171, 6541–6548 (2003).
    79. Clark, G. J., Green, B. J. & Hart, D. N. The CMRF-35H gene structure predicts for an independently expressed member of an ITIM/ITAM pair of molecules localized to human chromosome 17. Tissue Antigens 55, 101–109 (2000).
    1. M. Gonzalez-Angulo, G. N. Hortobagyi and F. J. Esteva: Adjuvant therapy with trastuzumab for HER-2/neu-positivebreast cancer. Oncologist 11(8), 857-67 (2006)
    2. E. E. Vokes and E. Chu: Anti-EGFR therapies: clinical experience in colorectal, lung, and head and neck cancers. Oncology 20(5 Suppl 2), 15-25 (2006)
    3. A. Lundqvist, S. I. Abrams, D. S. Schrump, G. Alvarez, D. Suffredini, M. Berg and R. Childs:Bortezomib and depsipeptide sensitize tumors to tumor necrosis factorrelated apoptosis-inducing ligand: a novel method to potentiate natural killer cell tumor cytotoxicity. Cancer Res66(14), 7317-25 (2006)
    4. L.Y. Schumacher, D. D. Vo, H. J.Garban, B. Comin- Anduix, S. K. Owens, V. B. Dissette, J. A. Glaspy, W. H. McBride, B. Bonavida, J. S. Economou and A. Ribas: Immunosensitization of tumor cells to dendritic cellactivated immune responses with the proteasome inhibitor bortezomib (PS-341, Velcade). J Immunol 176(8), 4757-65 (2006)
    5. S.Demaria, N. Bhardwaj, W. H. McBride and S. C. Formenti: Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiat Oncol Biol Phys 63, 655- 666 (2005)
    6. G. Chong and M. A. Morse: Combining cancer vaccines with chemotherapy. Expert Opin Pharmacother 6(16), 2813-2820 (2005)
    7. M. S. Mitchell: Combinations of anticancer drugs and immunotherapy. Cancer Immunol Immunother 52(11), 686- 92 (2003)
    8. T.A. Waldmann: Immunotherapy: past, present and future. Nat Med 9(3), 269-277 (2003)
    9. J. A: Sogn: Tumor Immunology: the glass is half full. Immunity 9, 757-763 (1998)
    10. F. F: Fagnoni and G. Robustelli della Cuna: Immunotherapy: on the edge between experimental and clinical oncology. J hemother 13(1), 15-23 (2001)
    11. D. O'Mahony and M. R. Bisho: Monoclonal antibody therapy. Front Biosci 11, 1620-1635 (2006)
    12. D. L. Porter, M. S. Roth, C. McGarigle, J. L. M. Ferrara and J. H. Antin: Induction of graft-versus-host disease as immunotherapy for relapsed chronic myelogenous leukemia. N Engl J Med 330, 100-106 (1994)
    13. D. L. Longo: Idiotype vaccination in follicular lymphoma: knocking on the doorway to cure. J Natl Cancer Inst 98(18), 1263-65 (2006)
    14. S. Inoges, M. Rodriguez-Calvillo, N. Zabalegui, A. Lopez-Diaz de Cerio, H. Villanueva, E. Soria, L. Suarez, A. Rodriguez-Caballero, F. Pastor, R. Garcia-Munoz, C. Panizo, J. Perez-Calvo, I. Melero, E. Rocha, A. Orfao and M. Bendandi: Clinical benefit associated with idiotypic vaccination in patients with follicular lymphoma. J Natl Cancer Inst 98(18), 1292-301 (2006)
    15. R. Parish: Cancer immunotherapy: the past, the present and the future. Immunol Cell Biol 81(2), 106-113 (2003)
    16. W. H. Woglom: Immunity to transplantable tumours. Cancer Rev 4, 129-214 (1929)
    17. N. Renkvist, C. Castelli, P. F. Robbins and G. Parmiani: A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 50(1), 3-15 (2001)
    18. C. Lengauer, K. W. Kinzler and B. Vogelstein: Genetic instabilities in human cancers. Nature 396, 643-649(1998)
    19. T. Sjoblom, S. Jones, L.D. Wood, D. W. Parsons, J. Lin, T.D. Barber, D. Mandelker, R. J. Leary, J. Ptak, N.Silliman, S. Szabo, P. Buckhaults, C. Farrell, P. Meeh, S. D. Markowitz, J. Willis, D. Dawson, J. K. Willson, A. F. Gazdar, J. Hartigan, L. Wu, C. Liu, G. Parmigiani, B. H. Park, K. E. Bachman, N. Papadopoulos, B. Vogelstein, K. W. Kinzler and V. E. Velculescu: The consensus coding sequences of human breast and colorectal cancers. Science 314(5797), 268-74 (2006)
    20. P. Matzinger: The danger model: a renewed sense of self. Science 296(5566), 301-5 (2002)
    21. S. Kusmartsev and D. I. Gabrilovich: Effect of tumorderived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev [Epub ahead of print] (2006)
    22. J. Banchereau and R. M. Steinman: Dendritic cells and the control of immunity. Nature 392(6673), 245-52 (1998)
    23. W. O'Neill, S. Adams and N. Bhardwaj: Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood 104(8), 2235-46 (2004)
    24. C.G. Figdor, I. J. de Vries, W. J. Lesterhuis and C. J. Melief: Dendritic cell immunotherapy: mapping the way. Nat Med10(5), 475-80 (2004)
    25. A. Nencioni and P.Brossart: Cellular immunotherapy with dendritic cells in cancer: current status. Stem Cells 22(4), 501-13 (2004)
    26. F.J. Hsu, C. Benike, F. F. Fagnoni, T. M. Liles, D. Czerwinski, B. Taidi, E. G. Engleman and R. Levy: Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 2(1), 52-58 (1996)
    27. D. Ridgway: The first 1000 dendritic cell vaccinees. Cancer Invest 21(6), 873-886 (2003)
    28. S. Mocellin, S. Mandruzzato, V. Bronte and F. M. Marincola: Cancer vaccines: pessimism in check. Nat Med 10(12), 1278-1279 (2004)
    29. P.L. Lollini, F. Cavallo, P. Nanni, G. Forni: Vaccines for tumour prevention. Nat Rev Cancer 6(3), 204-216 (2006).
    30. M. V. Dhodapkar, R. M. Steinman, J. Krasovsky, C. Munz and N. Bhardwaj: Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 193(2), 233-238 (2001)
    31. J.de Vries, W. J. Lesterhuis, N. M. Scharenborg, L. P. Engelen, D. J. Ruiter, M. J. Gerritsen, S. Croockewit, C. M. Britten, R. Torensma, G. J. Adema, C. G. Figdor and C. J. Punt: Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9(14):5091-5100 (2003)
    32. M. Merad, T. Sugie, E. G. Engleman and L. Fong: In vivo manipulation of dendritic cells to induce therapeutic immunity. Blood 99(5), 1676-1682 (2002)
    33.M. R. Crittenden, U. Thanarajasingam, R. G. Vile, M. J. Gough: Intratumoral immunotherapy: using the tumour against itself. Immunology 114(1), 11-22 (2005)
    34. M. R. Shurin, G. V. Shurin, A. Lokshin, Z. R. Yurkovetsky, D. W. Gutkin, G. Chatta, H. Zhong, B. Han and R. L. Ferris: Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis RevSep 23; 333-56 (2006)
    35. M. Ratta, F. F. Fagnoni, A. Curti, R. Vescovini, P. Sansoni, B. Oliviero, M. Fogli, E. Ferri, G. R. Della Cuna, S. Tura, M. Baccarani and R. M. Lemoli: Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 1(100), 230-237 (2002)
    36. P. L. Triozzi, R. Khurram, W. A. Aldrich, M. J. Walker, J. A. Kim and S. Jaynes: Intratumoral injection of dendritic cells derived in vitro in patients with metastatic cancer. Cancer 89(12), 2646-2654 (2000)
    37. E. Maraskovsky, K. Brasel, M. Teepe, E. R. Roux, S. D. Lyman, K. Shortman and H. J. McKenna: Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 184(5), 1953-1962(1996)
    38. L. Fong, Y. Hou, A. Rivas A, C. Benike, A. Yuen, G. A. Fisher, M. M. Davis and E. G. Engleman: Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc NatlAcad Sci U S A 98(15), 8809-8814 (2001)
    39. TFushimi, A. Kojima, M. A. Moore and R. G. Crystal: Macrophage inflammatory protein 3alpha transgene attractsdendritic cells to established murine tumors and supp resses tumor growth. J Clin Invest 10(105), 1383-1393 (2000)
    40. K. Furumoto, L. Soares, E. G. Engleman and M. Merad: Induction of potent antitumor immunity by in situ targeting of intratumoral DCs. J Clin Invest 113(5), 774- 783 (2004)
    41. C. Guiducci, E. Di Carlo, M. Parenza, M. Hitt, M. Giovarelli, P. Musiani and M. P. Colombo: Intralesional injection of adenovirus encoding CC chemokine ligand 16 inhibits mammary tumor growth and prevents metastaticinduced death after surgical removal of the treated primary tumor. J Immunol 172(7), 4026-4036 (2004)
    42. Y. Nishioka, M. Hirao, P. D. Robbins, M. T. Lotze and H. Tahara: Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res59(16), 4035-4041 (1999)
    43.I.Melero, M. Duarte, J. Ruiz, B. Sangro, J. Galofre, G. Mazzolini, M. Bustos, C. Qian, J. Prieto: Intratumoralinjection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas.Gene Ther 6, 1779-1784 (1999)
    44. T.Saika, T. Satoh, N. Kusaka, S. Ebara, V. B. Mouraviev, T. L. Timme and T. C. Thompson: Route ofadministration influences the antitumor effects of bone marrow-derived dendritic cells engineered to produce interleukin-12 in a metastatic mouse prostate cancer model. Cancer Gene Ther 5(11), 317-324 (2004)
    45. T.Kikuchi, M. A. Moore and R. G. Crystal: Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors. Blood. 96 (1), 91-99 (2000)
    46. Y. Liu, D. Xia, F. Li, C. Zheng and J. Xiang: Intratumoral administration of immature dendritic cells following the adenovirus vector encoding CD40 ligand elicits significant regression of established myeloma. Cancer Gene Ther 12(2), 122-132 (2005)
    47. Z. R. Yurkovetsky, G. V. Shurin, D. A. Barry, A. C. Schuh, M. R. Shurin and P. D. Robbins: Comparative analysis of antitumor activity of CD40L, RANKL, and 4- 1BBL in vivo following intratumoral administration of viral vectors or transduced dendritic cells. J Gene Med 8, 129-37.(2006)
    48. P. W. Miller, S. Sharma, M. Stolina, L. H. Butterfield, J. Luo, Y. Lin, M. Dohadwala, R. K. Batra, L. Wu, J. S. Economou and S. M. Dubinett: Intratumoral administration of adenoviral interleukin 7 gene-modifieddendritic cells augments specific antitumor immunity and achieves tumor eradication. Hum Gene Ther 11(1), 53-65 (2000)
    49. T. Tatsumi, J. Huang, W. E. Gooding, A. Gambotto, P. D. Robbins, N. L. Vujanovic, S. M. Alber, S. C. Watkins, H. Okada and W. J. Storkus: Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)- 12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res 63(19), 6378-6386 (2003)
    50. J.Hu, X. Yuan, M. L. Belladonna, J. M. Ong, S. Wachsmann-Hogiu, D. L. Farkas, K. L. Black and J. S. Yu: Induction of potent antitumor immunity by intratumoral injection of interleukin 23-transduced dendritic cells.Cancer Res 66(17), 8887-8896 (2006)
    51. N.Kuwashima, F. Nishimura, J.Eguchi, H. Sato, M. Hatano, T. Tsugawa, T. Sakaida, J. E. Dusak, W. K. Fellows-Mayle, G. D. Papworth, S. C. Watkins, A.Gambotto, I. F. Pollack, W. J. Storkus and H. Okada: Delivery of dendritic cells engineered to secrete IFN-alpha into central nervous system tumors enhances the efficacy of peripheral tumor cell vaccines: dependence on apoptotic pathways. J Immunol 175(4), 2730-2740 (2005)
    52. KA. Candido, K. Shimizu, J.C. McLaughlin, R. Kunkel, J.A. Fuller, B. G. Redman, E. K. Thomas, B. J. Nickoloff, J.J. Mulé. Local administration of dendritic cells inhibits established breast tumor growth: implications for apoptosis-inducing agents. Cancer Res 61, 228-236 (2001)
    53. A. Kianmanesh, N. R. Hackett, J. M. Lee, T. Kikuchi, R. J. Korst and R. G. Crystal: Intratumoral administration of low doses of an adenovirus vector encoding tumor necrosis factor alpha together with naive dendritic cells elicits significant suppression of tumor growth without toxicity. Hum Gene Ther 12(17), 2035-2049 (2001)
    54.K. Heckelsmiller, S. Beck, K. Rall, B. Sipos,A.Schlamp, E. Tuma, S. Rothenfusser, S. Endres and G. Hartmann: Combined dendritic cell- and CpG oligonucleotide-based immune therapy cures large murine tumors that resist chemotherapy. Eur J Immunol 32(11), 3235-3245 (2002)
    55. C.Guiducci, A. P. Vicari, S. Sangaletti, G. Trinchieri and M P. Colombo: Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65(8) 3437-3446 (2005)
    56. Okano, M. Merad, K. Furumoto and E. G. Engleman: In vivo manipulation of dendritic cells overcomes tolerance to unmodified tumor-associated self antigens and induces potent antitumor immunity. J Immunol 174(5), 2645-2652 (2005)
    57. S. C. Yang, R.K.Batra, S. Hillinger, K. L. Reckamp, R. M. Strieter, S. M. Dubinett and S. Sharma:Intrapulmonary administration of CCL21 gene-modified dendritic cells reduces tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Cancer Res 66(6), 3205- 3213 (2006)
    58. M.Nukiwa, S. Andarini, J. Zaini, H. Xin, M. Kanehira, T. Suzuki, T. Fukuhara, H. Mizuguchi, T. Hayakawa, Y. Saijo, T. Nukiwa and T. Kikuchi. Dendritic cells modified to express fractalkine/CX3CL1 in the treatment of preexisting tumors. Eur J Immunol 36(4), 1019-1027 (2006)
    59. G. Mazzolini, C. Alfaro, B. Sangro, E. Feijoo, J. Ruiz, A. Benito, I. Tirapu, A. Arina, J. Sola, M. Herraiz, F. Lucena, C. Olague, J. Subtil, J. Quiroga, I. Herrero, B. Sadaba, M. Bendandi, C. Qian, J. Prieto and I. Meleto: Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas. J Clin Oncol 23(5), 999-1010 (2005)
    60. E. Feijoo, C. Alfaro, G. Mazzolini, P. Serra, I. Penuelas, A. Arina, E. Huarte, I. Tirapu, B. Palencia, O. Murillo, J. Ruiz, B. Sangro, J. A. Richter, J. Prieto and I. Melero: Dendriticcells delivered inside human carcinomas are sequestered by interleukin-8. Int J Cancer 116(2), 275- 281 (2005)
    61.Y Tong,. Song and R. G. Crystal: Combined intratumoral injection of bone marrow-derived dendritic cells and systemic chemotherapy to treat pre-existing murine tumors. Cancer Res 61(20), 7530-7535 (2001)
    62. F. Tanaka, H. Yamaguchi, M. Ohta, K. Mashino, H. Sonoda, N. Sadanaga, H. Inoue and M. Mori: Intratumoral injection of dendritic cells after treatment of anticancerdrugs induces tumor-specific antitumor effect in vivo. Int J Cancer 101(3),265-269 (2002)
    63. A. K. Nowak, B. W. Robinson and R. A. Lake: Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res 63(15), 4490-4496 (2003)
    64. W.Song and R.Levy: Therapeutic vaccination against murine lymphoma by intratumoral injection of na?ve dendritic cells. Cancer Res 65(13), 5958-5964 (2005)
    65.E.Y. Nikitina and D. I. Gabrilovich: Combination of gamma-irradiation and dendritic cell administration induces a potent antitumor response in tumor-bearing mice:approach to treatment of advanced stage cancer. Int J Cancer 94(6), 825-833 (2001)
    66. M.Ehtesham, P. Kabos, M. A. Gutierrez, K. Samoto, K. L. Black and J. S.Yu: Intratumoral dendritic cell vaccination elicits potent tumoricidal immunity against malignant glioma in rats. J Immunother 26(2), 107-116 2003
    67. S. Teitz-Tennenbaum, Q. Li, S. Rynkiewicz, F. Ito, M. A. Davis, C. J. McGinn and A. E. Chang:Radiotherapy potentiates the therapeutic efficacy of intratumoral dendritic cell administration. Cancer Res 63(23), 8466- 8475 2003
    68. T.Kumagi, S. M. Akbar, N. Horiike and M. Onji: Increased68. survival and decreased tumor size due to intratumoral injection of ethanol followed by administration of immature dendritic cells. Int J Oncol 23(4), 949-955 (2003)
    69. A.Machlenkin, O. Goldberger, B. Tirosh, A. Paz,I. Volovitz, E. Bar-Haim, S. H. Lee, E. Vadai, E. Tzehoval and L. Eisenbach: Combined dendritic cell cryotherapy of tumor induces systemic antimetastatic immunity. Clin Cancer Res 11(13), 4955-4961 (2005)
    70. B. Jalili, M. Makowski, T. Switaj, D. Nowis,G. M. Wilczynski, E. Wilczek, M. Chorazy-Massalska, A. Radzikowska, W. Maslinski, L. Bialy, J. Sienko, A. Sieron, M. Adamek, G. Basak, P. Mroz, I. W. Krasnodebski, M. Jakobisiak and J. Golab: Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells. Clin Cancer Res 10(13), 4498-4508 (2004)
    71. H.Saji, W. Song, K. Furumoto, H. Kato and E. G. Engleman: Systemic antitumor effect of intratumoral injection of dendritic cells in combination with local photodynamic therapy. Clin Cancer Res 12(8), 2568-2574 (2006)
    72. N.Casares, M. O. Pequignot, A. Tesniere, F. Ghiringhelli, S. Roux, N. Chaput, E. Schmitt, A. Hamai, S. Hervas-Stubbs, M. Obeid, F. Coutant, D. Metivier, E. Pichard, P. Aucouturier, G. Pierron, C. Garrido, L. Zitvogel and G. Kroemer: Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202(12), 1691-1701 (2005)
    73. R. A. Lake and B. W. Robinson: Immunotherapy and chemotherapy-a practical partnership. Nat Rev Cancer 5, 397-405 (2005)
    74.F. T. Hakim, R.Cepeda, S. Kaimei, C. L. Mackall, N. McAtee, J. Zujewski, K. Cowan, R. E. Gress: Constraints on CD4 recovery postchemotherapy in adults: thymic insufficiency and apoptotic decline of expanded peripheral CD4 cells. Blood 90(9), 3789-3798 (1997)
    75. M.W. Wichmann, G. Meyer, M. Adam, W. Hochtlen- Vollmar, M. K. Angele, A. Schalhorn, R. Wilkowski, C. Muller and F. W. Schildberg: Detrimental immunologic effects of preoperative chemoradiotherapy in advanced rectal cancer. Dis Colon Rectum 46(7), 875-887 (2003)
    76. E. J. Fuchs and P. Matzinger: Is cancer dangerous to the immune system? Semin Immunol 8(5), 271-280 (1996)
    77. S. Gallucci, M. Lolkema and P. Matzinger: Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5(11), 1249-1255 (1999)
    78. G.Schueller, J. Kettenbach, R. Sedivy, H. Bergmeister, A. Stift, J. Fried, M. Gnant and J. Lammer: Expression of heat shock proteins in human hepatocellular carcinoma after radiofrequency ablation in an animal model. Oncol Rep 12(3), 495-499 (2004)
    79.G Schueller, J. Kettenbach, R. Sedivy, A. Stift, J. Friedl, M. Gnant, J. Lammer: Heat shock protein expression induced by percutaneous radiofrequency ablation of hepatocellular carcinoma in vivo. Int J Oncol 24(3), 609-13 (2004)
    80.M. Nikfarjam, V. Muralidharan, K Su, C. Malcontenti- Wilson and C. Christophi: Patterns of heat shock protein (HSP70) expression and Kupffer cell activity following thermal ablation of liver and colorectal liver metastases. Int J Hyperthermia 21, 319–332 (2005)
    81.S.Basu, R. J. Binder,T. Ramalingam, and P. K. Srivastava: CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14, 303–313 (2001)
    82. R.J. Binder and P. K. Srivastava: Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci USA 101, 6128–6133 (2004)
    83. A,Berwin, J. P. Hart, S. Rice, C. Gass, S. V. Pizzo, S. R. Post, and C. V. Nicchitta: Scavenger receptor-Amediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells. EMBO J 22 6127–6136 (2003)
    84. T. Becker, F. U. Hartl, and F. Wieland: CD40, an extracellular receptor for binding and uptake of Hsp70- peptide complexes. J Cell Biol 158, 1277–1285 (2002)
    85. Y.Delneste, G. Magistrelli, J. Gauchat, J. Haeuw, J. Aubry, K. Nakamura, N. Kawakami Honda, L. Goetsch, T. Sawamura, J. Bonnefoyand and P. Jeannin: Involvement of LOX-1 in dendritic cell mediated antigen crosspresentation. Immunity 17, 353–362 (2002)
    86. A.Asea, M. Rehli, E. Kabingu, J. A. Boch, O. Bare, P. E. Auron, M. A. Stevenson, and S. K. Calderwood: Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277, 15028–15034 (2002)
    87. T. T. Wissniowski, J. Hunsler, D. Neureiter, M. Frieser, S. Schaber, B. Esslinger, R. Voll, D. Strobel, E. G. Hahn and D. Schuppan: Activation of tumor-specific T lymphocytes by radio-frequency ablation of the VX2hepatoma in rabbits. Cancer Res 63, 6496–6500 (2003)
    88. M. H. den Brok, R. P. Sutmuller, R. van der Voort, E. J. Bennink, C. G. Figdor, T. J. Ruers and G. J. Adema:In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res 64(11),4024-4029 (2004)
    89. M. H. den Brok, R. P. Sutmuller, S. Nierkens, E. J. Bennink, C. Frielink, L. W. Toonen, O. C. Boerman, C. G. Figdor, T. J. Ruers and G. J. Adema: Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces antitumour immunity. Br J Cancer 95(7), 896-905 (2006)
    90. M. Y. Ali, C. F. Grimm, M. Ritter, L. Mohr, H. P. Allgaier, R. Weth, W. O. Bocher, K. Endrulat, H. E. Blum and M. Geissler: Activation of dendritic cells by local ablation of hepatocellular carcinoma. J Hepatol 43(5), 817- 822 (2005)
    91. A. Zerbini, M. Pilli, A. Penna, G. Pelosi, C. Schianchi, A. Molinari, S. Schivazappa, C. Zibera, F. F. Fagnoni, C. Ferrari, G. Missale: Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules canactivate and enhance tumor-specific T-cell responses. Cancer Res 66(2), 1139-46 (2006)
    92. J. Hansler, T. T. Wissniowski, D. Schuppan, A. Witte, T. Bernatik, E. G. Hahn, D. Strobel: Activation and dramatically increased cytolytic activity of tumor specific T lymphocytes after radio-frequency ablation in patients with hepatocellular carcinoma and colorectal liver metastases. World J Gastroenterol 12(23),3716-3721 (2006)
    93. M.Vivarelli, A.Guglielmi, A. Ruzzenente, A. Cucchetti, R. Bellusci, C. Cordiano and A. Cavallari: Surgical resection versus percutaneous radiofrequency ablation in the treatment of hepatocellular carcinoma oncirrhotic liver. Ann Surg 240, 102-107 (2004)
    94. A. M. Cho, W. Y.Tak, Y. O. Kweon, S. K. Kim, Y. H.Choi, Y. J. Hwang and Y. I. Kim: The comparative results of radiofrequency ablation versus surgicalresection for the treatment of hepatocellular carcinoma. Korean J Hepatol 11(1), 59-71 (2005)
    95.M. D. Lu, M. Kuang, L. J. Liang, X. Y. Xie, B. G. Peng, G. J. Liu, D. M. Li, J. M. Lai and S. Q. Li: Surgical resection versus percutaneous thermal ablation for earlystage hepatocellular carcinoma: a randomized clinical trial. Zhonghua Yi Xue Za Zhi 12(86), 801-805(2006)
    96.A. Elias, T. De Baere, T. Smayra, J. F. Ouellet, A. Roche and P. Lasser: Percutaneous radiofrequency thermoablation as an alternative to surgery for treatment of liver tumour recurrence after hepatectomy. Br J Surg 89(6), 752-756 (2002)
    97. A. Oshowo, A. Gillams, E. Harrison, W. R. Lees and I. Taylor. Comparison of resection and radiofrequencyablation for treatment of solitary colorectal liver metastases. Br J Surg 90(10), 1240-1243 (2003)
    98. T.Livraghi, L. Solbiati, F. Meloni, T. Ierace, S. N. Goldberg and G. S. Gazelle: Percutaneous radiofrequency ablation of liver metastases in potential candidates for resection: the "test-of-time approach". Cancer 97(12),3027-3035 (2003)
    99. A. R. Gillams: The use of radiofrequency in cancer. Br J Cancer 92(10), 1825-1829 (2005)
    100. W.Zgodzinski, N.J. Espat: Radiofrequency ablation for incidentally identified primary intrahepatic cholangiocarcinoma. World J Gastroenterol 11(33), 5239- 40 (2005)
    101. A.R. Zlotta, B. Djavan, C. Matos,J.C. Noel, M.O. Peny, D.E. Silverman, M. Marberger, C.C. Schulman: Percutaneous transperineal radiofrequency ablation of prostate tumour: safety,feasibility and pathological effects on human prostate cancer. Br J Urol 81(2), 265-75 (1998)
    102. R.P. Owen, T.S. Ravikumar, C.E. Silver, J. Beitler, S. Wadler, J. Bello: Radiofrequency ablation of head and neck tumors: dramatic results from application of a new technology. Head Neck 24(8), 754-8(2002)
    103.L.Thanos, S. Mylona, M. Pomoni, K. Athanassiadi, N. Theakos, L. Zoganas, N. Batakis: Percutaneous radiofrequency thermal ablation of primary and metastatic lung tumors. Eur J Cardiothorac Surg 30(5),797-800 (2006)
    104. V. Mouraviev., S. Joniau, H. Van Poppel, T.J. Polascik: Current Status of Minimally Invasive Ablative Techniques in the Treatment of Small Renal Tumours. Eur Urol 51(2), 328-36 (2006)
    105.Sudheendra D., M.M. Barth, U. Hegde, W.H. Wilson, B.J. Wood: Radiofrequency ablation of lymphoma. Blood 107(4), 1624-6 (2006)
    106. T.Susini , J. Nori, S. Olivieri, L. Livi, S. Bianchi, G. Mangialavori, F. Branconi, G. Scarselli: Radiofrequency ablation for minimally invasive treatment of breast carcinoma. A pilot study in elderly inoperable patients. Gynecol Oncol 104(2),304-10 (2007)
    107.G. Poggi, C. Gatti, M. Melazzini, G.Bernardo, M. Strada, C. Teragni, A. Delmonte, C. Tagliaferri, C. Bonezzi, M. Barbieri, A. Bernardo, P. Fratino: Percutaneous ultrasound-guided radiofrequency thermalablation of malignant osteolyses. Anticancer Res 23(6D), 4977-83 (2003)
    108. A.R. Henn, E.A. Levine, W. McNulty, R.J. Zagoria: Percutaneous radiofrequency ablation of hepatic metastases for symptomatic relief of neuroendocrine syndromes. AJR Am J Roentgenol 181, 1005-10 (2003)
    109.D. Gupta , R.K. Al-Lamee, M.J. Earley, P. Kistler, S.J. Harris, A.W. Nathan, S.C. Sporton, R.J. Schilling: Cryoablation compared with radiofrequency ablation for atrioventricular nodal re-entrant tachycardia: analysis of factors contributing to acute and follow-up outcome. Europace 12,1022-6 (2003)
    110.V. Bergamini., F. Ghezzi, A. Cromi, G. Bellini, G. Zanconato, S. Scarperi, M. Franchi: Laparoscopic radiofrequency thermal ablation: a new approach to symptomatic uterine myomas. Am J Obstet Gynecol 192, 768-73 (2005)
    111. R.V. Shah, J.J. Ericksen, M. Lacerte: Interventions in chronic pain management. 2. New frontiers: invasive nonsurgical interventions. Arch Phys Med Rehabil 84, S39- 44 (2003)
    112. http://clinicaltrials.gov/ct/show/NCT00185874
    113. H. Chi, S. J. Liu, C. P. Li, H. P. Kuo, Y. S. Wang, Y.Chao and S. L. Hsieh: Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J Immunother 28(2), 129-35 (2005)
    114. T. Kumagi, S. M. Akbar, N. Horiike, K. Kurose, M. Hirooka, A. Hiraoka, Y. Hiasa, K. Michitaka and M. Onji: Administration of dendritic cells in cancer nodules in hepatocellular carcinoma. Oncol Rep 14(4), 969-73 (2005)
    115. http://clinicaltrials.gov/ct/show/NCT00365872
    116.http://www.prostatecancer. org/education/novelthr/Ragde_Bahn_Cryo-Immunotherapy.html
    117. S. M. Santini, T. Di Pucchio, C. Lapenta, S. Parlato, M. Logozzi and F. Belardelli: A new type I IFN-mediated pathway for the rapid differentiation of monocytes into highly active dendritic cells. Stem Cells 21(3), 357-62 (2003)
    118. G.M. Barton, R. Medzhitov: Toll-like receptor(2002) s and their ligands. Curr Top Microbiol Immunol 270, 81-92
    119. R.R. Koganty: Vaccines: exploiting the role of tolllike receptors. Expert Rev Vaccines 2, 123-4 (2002)
    120. M.H. den Brok, R.P. Sutmuller, S. Nierkens, E.J. Bennink, L.W. Toonen, C.G. Figdor, T.J. Ruers, G.J. Adema: Synergy between in situ cryoablation and TLR9 stimulation results in a highly effective in vivo dendritic cell vaccine. Cancer Res 66, 7285-92 (2006)
    121. A.J. Korman, K.S. Peggs, J.P. Allison:Checkpoint blockade in cancer immunotherapy. Adv Immunol 90, 297- 339 (2006)
    122. G.Q. Phan, J.C. Yang, R.M. Sherry, P. Hwu, S.L.Topalian, D.J. Schwartzentruber, N.P. Restifo, L.R. Haworth, C.A. Seipp, L.J. Freezer, K.E. Morton, S.A. Mavroukakis, P.H. Duray, S.M. Steinberg, J.P. Allison, T.A. Davis, S.A. Rosenberg: Cancer regression and autoimmunity induced by cytotoxic T lymphocyteassociated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A 100, 8372-7 (2003)
    123. K.E. Beck, J.A. Blansfield, K.Q. Tran, A.L. Feldman, M.S. Hughes, R.E. Royal, U.S. Kammula, S.L. Topalian, R.M. Sherry, D. Kleiner, M. Quezado, I.Lowy, M. Yellin, S.A. Rosenberg, J.C. Yang: Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyteassociated antigen 4. J Clin Oncol 24, 2283-9 (2006)
    124. H.L. Kaufman, J.D. Wolchok: Is tumor immunity the same thing as autoimmunity? Implications for cancer immunotherapy. J Clin Oncol 24, 2230-2 (2006)
    125. R.A. Clynes, T.L. Towers, L.G. Presta, J.V. Ravetch: Inhibitory Fc receptors modulate in vivo cytoxicityagainst tumor targets. Nat Med 6, 443-6 (2006)
    126. A. Iannello, A. Ahmad: Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeuticanti-cancer monoclonal antibodies. Cancer Metastasis Rev 24, 487-99 (2005)
    127. R. Gennari, S. Menard, F.Fagnoni, L. Ponchio,M. Scelsi, E. Tagliabue, F. Castiglioni, L. Villani, C. Magalotti, N.Gibelli, B. Oliviero, B. Ballardini, G. Da Prada, A. Zambelli, A.Costa: Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 10, 5650-5 (2004)
    128. A. Veltri, P. Moretto, A. Doriguzzi, E. Pagano, G. Carrara, G. Gandini: Radiofrequency thermal ablation (RFA) after transarterial chemoembolization (TACE) as a combined therapy for unresectable non-early hepatocellular carcinoma (HCC). Eur Radiol 16, 661-9 (2006)