基于TiO_2纳米线阵列结构的染料/半导体敏化太阳能电池研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维TiO_2纳米结构因其优异的光生电荷分离与输运性质和卓越的化学稳定性在太阳能转换与利用领域受到广泛关注。特别是TiO_2单晶纳米线阵列的制备与光电转换应用是近年来国内外研究的热点。本文以染料/半导体敏化TiO_2纳米线太阳能电池为研究对象,从TiO_2纳米线的可控制备、纳米线-纳米粒子复合结构增强光吸收和电荷分离、无序空腔散射层增强光利用、和构造半导体敏化固态电池等方面开展研究,探索利用TiO_2纳米线阵列实现高效率太阳能光电转换的途径。具体研究概述如下:
     以钛酸纳米片作为晶种层,在SnO_2:F (FTO)导电玻璃等多种衬底表面实现TiO_2纳米线阵列的水热法制备,解决了TiO_2纳米线的生长对衬底的依赖性问题。研究表明,钛酸纳米片晶种层的引入能够抑制纳米线在FTO上生长过程中的簇集,显著增大纳米线阵列的粗糙度;另一方面纳米片层还能够覆盖裸露的FTO电极,作为阻挡层抑制I3-电解质在FTO表面的还原。以N719染料敏化纳米线阵列制备敏化太阳能电池,在AM1.5模拟太阳光下,采用纳米片晶种层的TiO_2纳米线阵列相比直接生长在FTO表面的纳米线阵列制备的电池在短路电流、开路电压和填充因子等方面均有提高,总体太阳能光电转换效率提高约3.4倍。
     为提高纳米线电极的光捕获效率,进一步制备了TiO_2金红石纳米线和锐钛矿纳米粒子复合结构。以1.4微米厚度的纳米线/纳米粒子复合结构作为光阳极,制备染料敏化太阳能电池器件。在AM1.5G模拟太阳光激发下,器件的光电转换效率达到3.8%,分别是纳米线器件的2.2倍,和纳米粒子器件的1.5倍。稳态/瞬态吸收光谱和开路光电压衰减动力学研究表明,金红石纳米线和锐钛矿纳米粒子在光电转换过程中发挥着协同促进作用:一方面纳米粒子的引入提高了复合结构的光捕获效率,另一方面金红石-锐钛矿异质结能够抑制TiO_2/电解液界面和TiO_2/N719界面的电荷复合,从而提高光生电子的收集效率。
     为提高TiO_2金红石纳米线和锐钛矿纳米粒子复合结构的光捕获效率,进一步在纳米线复合结构上构造具有无序空腔(空腔尺寸为200nm或450nm)结构的TiO_2纳米粒子散射层。在AM1.5G模拟太阳光激发下,染料敏化太阳能电池光电转换效率从2.62%提高到3.47%(200nm空腔)和4.07%(450nm空腔)。透过/反射光谱表征以及光电流活性谱研究表明,多孔薄膜中的空腔结构是有效的光散射中心,特别是在580-700nm波长范围内散射效果明显,从而提高了染料分子对入射光的利用效率,显著提高器件的短路光电流和光电转换效率。
     为克服染料单分子层光吸收能力不足和使用液体电解质带来的器件不稳定性问题,以Sb2S3直接带隙半导体为敏化层,p-型CuI为空穴导体,制备了TiO_2纳米线/Sb2S3/CuI/Au全固态半导体敏化太阳能电池。在AM1.5G模拟太阳光激发下,器件光电转换效率达到1.2%。IPCE测试表明器件响应阈值波长为750nm,与Sb2S3带隙一致,峰值效率达到64%,优于染料敏化体系。但是由于固态器件内部严重的界面复合,其暗态电流大大高于染料敏化电池,导致器件的开路电压和填充因子偏低,仅为0.3V和42%,限制其光电转换效率。进一步采用合理的界面工程手段抑制界面复合是提高半导体敏化固态太阳能电池性能的关键。
1D TiO_2nanostructures have been extensively studied in solar energy conversionfield, for the excellent photogenerated charge separation and transport properties andgood chemical stability of TiO_2nanostructures. Especially,1D single-crystalline TiO_2nanowire arrays as one of the most potential photoanode materials have attractedimmense scientific research interests, focusing on the preparation and solar energyconversion application of TiO_2nanowire arrays. In this thesis, concentrated on theTiO_2nanowire array based dye/semiconductor-sensitized solar cells, we carried outour research on the controllable synthesis of TiO_2nanowires, facilitatinglight-harvesting and charge separation employing nanowire-nanoparticle compositestructure, enhancing light-harvesting via disordered hollow scattering layer and theall-solid-state semiconductor-sensitized solar cells, searching for approaches inachieving highly efficient TiO_2nanowire based solar cells. Details are listed asfollows:
     By using titanate nanosheet (TN) film as a seed layer,1D single-crystalline rutileTiO_2nanowire array has been successfully prepared on SnO_2:F (FTO) conductiveglass and other solid substrates via a facile hydrothermal process, solving the problemconcerning the growth dependence of rutile nanowires on the FTO substrate. Detailedstudy revealed that the TN film can suppress the aggragation of nanowires duringgrowth period, thus increasing the dye-loading amount of nanowire arrays; In addition,the TN film can also form a blocking layer which covers the bare FTO surfaceunoccupied by rutile nanowires, suppressing the charge recombination atFTO/electrolyte interface. Under AM1.5G simulated solar irradiation, rutilenanowires grown on a TN film performed better in DSSCs than those on bare FTOconductive glass in terms of all cell parameters including short-circuit current,open-circuit voltage and fill factor, thus giving an improvement of energy conversionefficiency of about3.4times compared with the one without the TN film.
     In order to enhance the light harvesting efficiency, rutile TiO_2nanowires (NWs)array-anatase nanoparticles (NPs) photoanode system is chosen and fabricated via asimple two-step synthesis process. As an example, a dye-sensitized TiO_2NW-NPcomposite photoanode, only1.4μm thick, exhibits a solar energy conversionefficiency of3.8%under AM1.5G simulated solar irradiation, which is2.2times and 1.5times higher than that of the NW array and NP photoanodes, respectively.Kinetics study in terms of stationary/transient obsorption and open-circuit decaytechnique, demonstrated the synergistic effect of rutile NWs and anatase NPs forphotoelectrochemical solar energy conversion. On one hand, the introduce of anatasenanoparticles improved the light harvesting efficiency of composite structure; On theother hand, the presence of a rutile-anatase heterojunction at the interface reducedcharge recombination at both the NP/electrolyte and NP/dye interfaces, thusimproving the charge collecting efficiency of composite structure.
     On the purpose of further increasing the light harvesting property of TiO_2NW-NP photoanode, disordered hollow structure (pore size~200nm,450nm) isintroduced as TiO_2nanoparticle scattering layer. Under AM1.5G simulated solarirradiation, energy conversion efficiency of3.47%(pore size~200nm) and4.07%(pore size~450nm) are achieved, compared with2.62%of DSSC without the hollowstructure. Optical transmittance and reflectance spectrum and incidentphoton-to-current conversion efficiency study revealed the effective light-scatteringproperties of hollow structures in TiO_2nanoparticle scattering layer, especially overthe wavelength range of580-700nm, thus improved the light harvesting efficiency ofTiO_2NW-NP photoanode. Hence, the photocurrent and overall energy conversionefficiency for the DSSC based on the light-scattering layer is remarkably improved.
     In order to overcome the inefficient light harvesting problem of monolayereddye-sensitized solar cells, and simultaneously avoiding the solvent leakage andvolatility of liquid electrolyte, all solid-state solar cell device of TiO_2NWs/Sb2S3/CuI/Au was prepared based on the as-synthesized TiO_2NWs, employingdirect bandgap semiconductor Sb2S3as sensitizer, and p-type CuI as hole-transportingmaterial. The device exhibits a solar energy conversion efficiency of1.2%under AM1.5G simulated solar irradiation. The IPCE measurement indicates that thephotocurrent onset is at750nm, which is consistant with the bandgap of Sb2S3, andthe peak efficiency reached64%, which is superior to dye-sensitized cells. But due tothe serious interfacial charge recombination process in solid-statesemiconductor-sensitized solar cells, the dark current of the device is obviously higherthan dye-sensitized solar cells, which lead to lower device open-circuit voltage (0.3V)and fill factor (42%) and finally poor device performance. Therefore, suppressinginterfacial recombination by interfacial engineering is the keypoint for improving theperformance of solid-state semiconductor-sensitized solar cells.
引文
[1] Brinkworth B J, Solar Energy[J]. Nature,1974,249(5459):726-729.
    [2] Merriam M F, Solar energy absorption[J]. Science,1974,185(4146):101.
    [3] George W C, Nathan S L. Solar energy conversion[J]. Physics Today,2007,60(3):37-42.
    [4] Nathan S L. Toward cost-effective solar energy use[J]. Science,2007,315(5813):798-801.
    [5] Irgon J, Using solar energy[J]. Chemical and Engineering News,1974,52(22):5.
    [6] Bockris J O, The coming energy crisis and solar sources[J]. Environmental Conservation,1974,1(4):241-249.
    [7] Wolf M, Solar energy utilization by physical methods[J]. Science,1974,184(4134):382-386.
    [8] Norman C, US plans for solar energy[J]. Nature,1974,251(5474):368.
    [9] Duffie J A, Beckman W A, Solar heating and cooling. Solar energy for buildings isdeveloping rapidly in the United States[J]. Science,1976,191(4223):143-149.
    [10] Calvin M, Solar energy by photosynthesis[J]. Science,1974,184(4134):375-381.
    [11] Dickinson W C, Clark A F, Day J A, The shallow solar pond energy conversion system[J].Solar Energy,1976,18(1):3-10.
    [12] Prengle J H W, Sun C-H, Operational chemical storage cycles for utilization of solar energyto produce heat or electric power[J]. Solar Energy,1976,18(6):561-567.
    [13] Mcgowan J G, Ocean thermal energy conversion. A significant solar resource[J]. SolarEnergy,1976,18(2):81-92.
    [14] Anderson W W, Chai Y G, Becquerel effect solar cell[J]. Energy Conversion,1976,15(3-4):85-94.
    [15] Pulfrey D L, McOuat R F, Schottky-barrier solar-cell calculations[J]. Applied Physics Letters,1974,24(4):167-169.
    [16] Goetzberger A, Hebling C, Schock H-W, Photovoltaic materials, history, status andoutlook[J]. Materials Science and Engineering Reports,2003,40(1):1-46.
    [17] Landsberg P T, De Vos A, Baruch P, A comparison of some efficiency factors inphotovoltaics[J]. Journal of Physics: Condensed Matter,1991,3(33):6415-6424.
    [18] Shockley W, Queisser H J, Detailed balance limit of efficiency of pn junction solar cells[J].Journal of Applied Physics,1961,32(3):510-519.
    [19] Polman A, Atwater H A, Photonic design principles for ultrahigh-efficiency photovoltaics[J].Nature Materials,2012,11,(3):174-177.
    [20] Krogstrup P, J rgensen H I, Heiss M, et al. Single-nanowire solar cells beyond theShockley-Queisser limit[J]. Nature Photonics,2013,7(4):306-310.
    [21] Rouse L M, Silicon solar cells for terrestrial applications[J]. Journal of Materials Science,1977,12(3):602-615.
    [22] Green M A, Emery K, Hishikawa Y, Solar cell efficiency tables (version39)[J]. Progress inPhotovoltaics: Research and Applications,2012,20(1):12-20.
    [23] Green M A, Emery K, Hishikawa Y, Solar cell efficiency tables (version41)[J]. Progress inPhotovoltaics: Research and Applications,2013,21(1):1-11.
    [24] Hall R N, Silicon photovoltaic cells[J]. Solid State Electronics,1981,24(7):595-616.
    [25] Rittner E S, Arndt R A, Comparison of silicon solar cell efficiency for space and terrestrialuse[J]. Journal of Applied Physics,1976,47(7):2999-3002.
    [26] Gribov B G, Zinovev K V, Preparation of high-purity silicon for solar cells[J]. InorganicMaterials,2003,39(7):653-662.
    [27] Charles J H K, Ariotedjo A P, Review of amorphous and polycrystalline thin film silicon solarcell performance parameters[J]. Solar Energy,1980,24(4):329-339.
    [28] Nakano S, Kuwano Y, Ohnishi M, High performance a-Si solar cells and new fabricationmethods for a-Si solar cells[J]. Applied Physics A: Solids and Surfaces,1986,41(4):267-274.
    [29] Wakisaka K, Kuwano Y, Terrestrial applications of amorphous silicon solar cells[J]. Progressin Photovoltaics: Research and Applications,1998,6(3):207-217.
    [30] Yang J, Banerjee A, Guha S, Amorphous silicon based photovoltaics-From earth to the “finalfrontier”[J]. Solar Energy Materials and Solar Cells,2003,78(1-4):597-612.
    [31] Susumu Y, Sumio M, GaAs solar cell for space applications[J]. Mitsubishi Electric Advance,1986,37(2),23-25.
    [32] Shah A, Torres P, Tscharner R, et al. Photovoltaic technology: The case for thin-film solarcells[J]. Science,1999,285(5428):692-698.
    [33] Ma Y Y, Fahrenbruch A L, Bube R H, Photovoltaic properties of n-CdS/p-CdTeheterojunctions prepared by spray pyrolysis[J]. Applied Physics Letters,1977,30(8):423-424.
    [34] Mitchel K M, Fahrenbruch A L, Bube R H, Evaluation of the CdS/CdTe heterojunction solarcell[J]. Journal of Applied Physics,1977,48(10):4365-4371.
    [35] Romeo N, Sberveglieri G, Tarricone L, et al. Preparation and characteristics of CuGaSe2/CdSsolar cells[J]. Applied Physics Letters,1977,30(2):108-110.
    [36] Kazmerski L L, Sanborn G A, CuInS2thin-film homojunction solar cells[J]. Journal ofApplied Physics,1977,48(7):3178-3180.
    [37] Divan D M, Hasan M M, Maximisation of operating efficiency of solar cells[J]. EnengyConversion,1977,17(4):183-188.
    [38] Botten L C, Ritchie I T, Improvements in the design of solar selective thin film absorbers[J].Optics Communications,1977,23(3):421-426.
    [39] Albery W J, Archer M D, Optimum efficiency of photogalvanic cells for solar energyconversion[J]. Nature,1977,270(5636):399-402.
    [40] Wood A, Scott A, Nanomaterials: A big market potential[J]. Chemical Week,2002,164(41):17-21.
    [41] Mehta G K, Nanoworld: The new frontier[J]. IETE Technical Review,2002,19(5):237-243.
    [42] Zhang Q F, Cao G Z, Nanostructured photoelectrodes for dye-sensitized solar cells[J].Nanotoday,2011,6(1):91-109.
    [43] O Regan B, Gr tzel M, A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films[J]. Nature,1991,353(24):737-740.
    [44] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2Bis(2,2-bipyridyl-4,4-dicarboxylate) ruthenium (Ⅱ) charge-transfer sensitizers (X=C1-, Br-, I-,CN-, and SCN-) on nanocrystalline TiO2electrodes[J]. Journal of the American ChemicalSociety,1993,115(14):6382-6390.
    [45] Gr tzel M, Photoelectrochemical Cells[J]. Nature,2001,41(15):338-344.
    [46] Gr tzel M, Solar energy conversion by dye-sensitized photovoltaic cells[J]. InorganicChemistry,2005,44(20):6841-6851.
    [47] Yella A, Lee H-W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)-basedredox electrolyte exceed12percent efficiency[J]. Science,2011,334(4):629-634.
    [48] Kamat P V, Boosting the efficiency of quantum dot sensitized solar cells through modulationof interfacial charge transfer[J]. Accounts of Chemical Research,2012,45(11):1906-1915.
    [49] Mora-seróI, Giménez S, Fabregat-santiago F, et al. Recombination in quantum dot sensitizedsolar cells[J]. Accounts of Chemical Research,2009,42(11):1848-1857.
    [50] Vogel R, Hoyer P, Weller H, Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3particles assensitizers for various nanoporous wide-bandgap semiconductors[J]. Journal of PhysicalChemistry,1994,98(12):3183-3188.
    [51] Lee H J, Chen P, Moon S-J, et al. Regenerative PbS and CdS quantum dot sensitized solarcells with a cobalt complex as hole mediator[J]. Langmuir,2009,25(13):7602-7608.
    [52] Diguna L J, Shen Q, Kobayashi J, et al. High efficiency of CdSe quantum-dot-sensitizedTiO2inverse opal solar cells[J]. Applied Physics Letters,2007,91(2):023116.
    [53] Shen Q, Kobayashi J, Diguna L J, et al. Effect of ZnS coating on the photovoltaic propertiesof CdSe quantum dot sensitized solar cells[J]. Journal of Applied Physics,2008,103(8):084304.
    [54] Nagasuna K, Akita T, Fujishima M, et al. Photodeposition of Ag2S quantum dots andapplication to photoelectrochemical cells for hydrogen production under simulatedsunlight[J]. Langmuir,2011,27(11):7294-7300.
    [55] Itzhaik Y, Niitsoo O, Page M, et al. Sb2S3-sensitized nanoporous TiO2solar cells[J]. TheJournal of Physical Chemistry Letters,2009,113(11):4254-4256.
    [56] Ernst K, Engelhardt R, Ellmer K, et al. Contacts to a solar cell with extremely thin CdTeabsorber[J]. Thin Solid Films,2001,387(1):26-28.
    [57] Ma W, Swisher S L, Ewers T, et al. Photovoltaic performance of ultrasmall PbSe quantumdots[J]. ACS Nano,2011,5(10):8140-8147.
    [58] Gorer S, Hodes G, Quantum size effects in the study of chemical solution depositionmechanisms of semiconductor films[J]. Journal of Physical Chemistry,1994,98(24):5338-5346.
    [59] Cardoso J C, Grimes C A, Feng X J, et al. Fabrication of coaxial TiO2/Sb2S3nanowirehybrids for efficient nanostructured organic-inorganic thin film photovoltaics[J]. ChemicalCommunications,2012,48(22):2818-2820.
    [60] Lim C-S, Im S H, Kim H-J, et al. Enhancing the device performance of Sb2S3-sensitizedheterojunction solar cells by embedding Au nanoparticles in the hole-conducting polymerlayer[J]. Physical Chemistry Chemical Physics,2012,14(10):3622-3626.
    [61] Barea E M, Shalom M, Giménez S, et al. Design of injection and recombination in quantumdot sensitized solar cells[J]. Journal of the American Chemical Society,2010,132(19):6834-6839.
    [62] Mora-seróI, Bisquert J, Breakthroughs in the development of semiconductor-sensitized solarcells[J]. The Journal of Physical Chemistry Letters,2010,1(20):3046-3052.
    [63] González-pedro V, Xu X Q, Mora-seró I, et al. Modeling high-efficiency quantum dotsensitized solar cells[J]. ACS Nano,2010,4(10):5783-5790.
    [64] Brown P, Kamat P V, Quantum dot solar cells. Electrophoretic deposition of CdSe-C60composite films and capture of photogenerated electrons with nC60cluster shell[J]. Journalof the American Chemical Society,2008,130(28):8890-8891.
    [65] Bang J H, Kamat P V, CdSe quantum dot-fullerene hybrid nanocomposite for solar energyconversion: electron transfer and photoelectrochemistry[J]. ACS Nano,2011,5(12):9421-9427.
    [66] Lightcap I V, Kosel T H, Kamat P V, Anchoring semiconductor and metal nanoparticles on a2-dimensional catalyst mat. Storing and shuttling electrons with reduced grapheme oxide[J].Nano Letters,2010,10(2):577-583.
    [67] Kamat P V, Graphene based nanoarchitectures. Anchoring semiconductor and metalnanoparticles on a2-dimensional carbon support[J]. The Journal of Physical ChemistryLetters,2010,1(2):520-527.
    [68] Farrow B, Kamat P V, CdSe quantum dot sensitized solar cells. Shuttling electrons throughstacked carbon nanocups[J]. Journal of the American Chemical Society,2009,131(31):11124-11131.
    [69] Radich J G, Dwyer R, Kamat P V, Cu2S reduced graphene oxide composite forhigh-efficiency quantum dot solar cells. Overcoming the redox limitations of S2-/S2-nat thecounter electrode[J]. The Journal of Physical Chemistry Letters,2011,2(3):2453-2460
    [70] Santra P K, Kamat P V, Mn-doped quantum dot sensitized solar cells: A strategy to boostefficiency over5%[J]. Journal of the American Chemical Society,2012,134(5):2508-2511.
    [71] Kearns D, Calvin M. Photovoltaic effect and photoconductivity in laminated organic systems[J]. Journal of Chemical Physics,1958,29(4):950-951.
    [72] Ghosh A K, Morel D L, Feng T, Photovoltaic and rectification properties of Al/Mgphthalocyanine/Ag schottky-barrier cells[J]. Journal of Applied Physics,1974,45(1):230-236.
    [73] Weinberger B R, Akhtar M, Gau S C, Polyacetylene photovoltaic devices [J]. SyntheticMetals,1982,4(3):187-197.
    [74] Glenis S, Tourillon G, Garnier F, Influence of the doping on the photovoltaic properties ofthin films of poly-3-methylthiophene[J]. Thin Solid Films,1986,139(3):221-231.
    [75] Tang C W, Two-layer organic photovoltaic cell[J].1986,48(2):183-185.
    [76] Service R F, Outlook brightens for plastic solar cells[J]. Science,2011,332(6027):293.
    [77] Heliatek erzielt mit10.7%Effizienz neuen Weltrekord für seine organische Tandemzelle,Heliatek http://www.heliatek.com/newscenter/latest news/heliatek-erzielt-mit-107-effizienz-neuen-weltrekord-fur-seine-organische-tandemzelle/[2012-7-24].
    [78] Yoshida A, Agui T, Katsuya N, et al. Development of InGaP/GaAs/InGaAs inverted triplejunction solar cells for concentrator application.21st International Photovoltaic Science andEngineering Conference (PVSEC-21), Fukuoka, Japan2011.
    [79] Ahn S W, Lee S E, Lee H W, Toward commercialization of triple-junction thin-film siliconsolar panel with>12%efficiency.27th European Photovoltaic Solar Energy Conference,3AO5.1Frankfurt, September2012.
    [80] He J J, Lindstrom H, Hagfeldt A, et al. Dye-sensitized nanostructured tandem cell-firstdemonstrated cell with a dye-sensitized photocathode[J]. Solar Energy Materials&SolarCells2000,62(3):265-273.
    [81] Dürr M, Bamedi A, Yasuda A, et al. Tandem dye-sensitized solar cell for improved powerconversion efficiencies[J]. Applied Physics Letters,2004,84(17):3397-3399.
    [82] Yanagida M, Onozawa-Komatsuzaki N, Kurashige M, et al. Optimization oftandem-structured dye-sensitized solar cell[J]. Solar Energy Materials&Solar Cells2010,94(2):297-302.
    [83] Guo X Z, Zhang Y D, Qin D, et al. Hybrid tandem solar cell for concurrently converting lightand heat energy with utilization of full solar spectrum[J]. Journal of Power Sources,2010,195(22):7684-7690.
    [84] Shao F, Sun J, Gao L, Growth of various TiO2nanostructures for dye-sensitized solar cells[J].The Journal of Physical Chemistry C,2011,115(5):1819-1823.
    [85] Zhang Q F, Cao G Z, Hierarchically structured photoelectrodes for dye-sensitized solarcells[J]. Journal of Materials Chemistry,2011,21(19):6769-6774.
    [86] Chen C-Y, Wang M K, Li J-Y, et al. Highly efficient light-harvesting ruthenium sensitizer forthin-film dye-sensitized solar cells[J]. ACS Nano,2009,3(10):3103-3109.
    [87] Zeng W D, Cao Y M, Bai Y, et al. Efficient dye-sensitized solar cells with an organicphotosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosiloleblocks[J].Chemistry of Materials,2010,22(5):1915-1925.
    [88] Cai N, Moon S-J, Cevey-Ha L, et al. An organic D-π-A dye for record efficiency solid-statesensitized heterojunction solar cells[J]. Nano Letters,2011,11(4):1452-1456.
    [89] Lee H J, Leventis H C, Moon S-J, et al. PbS and CdS quantum dot-sensitized solid-state solarcells: Old concepts, new results [J]. Advanced Functional Materials,2009,19(2):2735-2742
    [90] Itzhaik Y, Niitsoo O, Page M, et al. Sb2S3-sensitized nanoporous TiO2solar cells[J]. TheJournal of Physical Chemistry Letters,2009,113(11):4254-4256.
    [91] Nezu S, Larramona G, Choné C, et al. Light soaking and gas effect on nanocrystallineTiO2/Sb2S3/CuSCN photovoltaic cells following extremely thin absorber concept[J]. TheJournal of Physical Chemistry C,2010,114(14):6854-6859.
    [92] Pablo P B, Larramona G, Jacob A, et al. Hole transport and recombination in all-solidSb2S3-sensitized TiO2solar cells using CuSCN as hole transporter[J]. The Journal of PhysicalChemistry C,2012,116(1):1579-1587.
    [93] Hodes G, Cahen D, All-solid-state, semiconductor-sensitized nanoporous solar cells[J].Accounts of Chemical Research,2012,45(5):705-713.
    [94] Chang J A, Rhee J H, Im S H, et al. High-performance nanostructured inorganic-organicheterojunction solar cells[J]. Nano Letters,2010,10(7):2609-2612.
    [95] Im S H, Lim C-S, Chang J A, et al. Toward interaction of sensitizer and functional moietiesin hole-transporting materials for efficient semiconductor-sensitized solar cells[J]. NanoLetters,2011,11(11):4789-4793.
    [96] Chang J A, Im S H, Lee Y H, et al. Panchromatic photon-harvesting by hole-conductingmaterials in inorganic-organic heterojunction sensitized-solar cell through the formation ofnanostructured electron channels[J]. Nano Letters,2012,12(4):1863-1867.
    [97] Hamann T W, Ondersma J W, Dye-sensitized solar cell redox shuttles[J]. Energy&Environmental Science,2011,4(2):370-381.
    [98] Boschloo G, Hagfeldt A, Characteristics of the iodide/triiodide redox mediator indye-sensitized solar cells[J]. Accounts of Chemical Research,2009,42(11):1819-1826.
    [99] Long H J, Zhou D F, Zhang M, et al. Probing dye-correlated interplay of energetics andkinetics in mesoscopic titania solar cells with4-tert-butylpyridine[J]. The Journal of PhysicalChemistry C,2011,115(29):14408-14414.
    [100]Bai Y, Cao Y M, Zhang J, et al. High-performance dye-sensitized solar cells based onsolvent-free electrolytes produced from eutectic melts[J]. Nature Materials,2008,7(8):626-630.
    [101]Yu Bai, Qingjiang Yu, Ning Cai, et al. High-efficiency organic dye-sensitized mesoscopicsolar cells with a copper redox shuttle[J]. Chemical Communications,2011,47(15):4376-4378.
    [102]Difei Zhou, Qingjiang Yu, Ning Cai, et al. Efficient organic dye-sensitized thin-film solarcells based on the tris(1,10-phenanthroline)cobalt(II/III) redox shuttle[J]. Energy&Environmental Science,2011,4(6):2030-2034.
    [103]Yu Bai, Jing Zhang, Difei Zhou, et al. Engineering Organic Sensitizers for Iodine-FreeDye-Sensitized Solar Cells: Red-Shifted Current Response Concomitant with AttenuatedCharge Recombination[J]. Journal of the Americal Chemical Society,2011,133(30):11442-11445.
    [104]Yanagida S, Yu Y, Manseki K, Iodine/iodide-free dye-sensitized solar cells[J]. Accounts ofChemical Research,2009,42(11):1827-1838.
    [105]Burschka J, Dualeh A, Kessler F, et al. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-typedopant for organic semiconductors and its application in highly efficient solid-statedye-sensitized solar cells[J]. Journal of the American Chemical Society,2011,133(45):18042-18045.
    [106]Wu M X, Lin X, Hagfeldt A, et al. Low-cost molybdenum carbide and tungsten carbidecounter electrodes for dye-sensitized solar cells[J]. Angewandte Chemie-InternationalEdition,2011,50(15):3520-3524.
    [107]Wu M X, Lin X, Wang T H, et al. Low-cost dye-sensitized solar cell based on nine kinds ofcarbon counter electrodes[J]. Energy&Environmental Science,2011,4(6):2308-2315.
    [108]Wu M X, Lin X, Wang Y D, et al. Economical Pt-free catalysts for counter electrodes ofdye-sensitized solar cells[J]. Journal of the American Chemical Society,2012,134(7):3419-3428.
    [109]Zhao W, Lin T Q, Sun S R, et al. Oriented single-crystalline nickel sulfide nanorod arrays:“two-in-one” counter electrodes for dye-sensitized solar cells[J]. Journal of MaterialsChemistry A,2013,1(2):194-198.
    [110]Jiang Q W, Li G R, Gao X P, Highly ordered TiN nanotube arrays as counter electrodes fordye-sensitized solar cells[J]. Chemical Communications,2009(44):6720-6722.
    [111]Wang H, Liu G H, Li X, et al. Highly efficient poly(3-hexylthiophene) based monolithicdye-sensitized solar cells with carbon counter electrode[J]. Energy&Environmental Science,2011,4(6):2025-2029.
    [112]Gong F, Wang H, Xu X, et al. In situ growth of Co0.85Se and Ni0.85Se on conductivesubstrates as high-performance counter electrodes for dye-sensitized solar cells[J]. Journal ofthe American Chemical Society,2012,134(26):10953-10958.
    [113]Zhou H W, Shi Y, Qin D, et al. Printable fabrication of Pt-and-ITO free counter electrodesfor completely flexible quasi-solid dye-sensitized solar cells[J]. Journal of MaterialsChemistry A,2013,1(12):3932-3937.
    [114]Linsebigler A L, Lu G Q, Yates J T, Photocatalysis on TiO2surfaces: principles, mechanisms,and selected results[J]. Chemical Reviews,1995,95(3):735-758.
    [115]Fujishima A, Honda K, Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38.
    [116]Fujishima A, Zhang X T, Solid-state dye-sensitized solar cells[J]. Proceeds of the JapanAcademy,2005,81(2):33-42.
    [117]Takcda S, Suzuki S, Odaka H, et al. Photocatalytic TiO2thin film deposited onto glass byDC magnetron sputtering[J]. Thin Solid Films,2001,392(2):338-344.
    [118]Pradhan S K, Reucroft P J, Yang F, et al. Growth of TiO2nanorods by metalorganicchemical vapor deposition[J]. Journal of Crystal Growth,2003,256(1-2):83-88.
    [119]Lin J, Liu Y, Liu P, et al. Hot-fluid annealing for crystalline titanium dioxide nanoparticlesin stable suspension[J]. Journal of the American Chemical Society,2002,124(38):11514-11518.
    [120]Mao L Q, Li Q L, Dang H X, et al. Synthesis of nanocrystalline TiO2with high photoactivityand large specific surface area by sol-gel method[J]. Material Research Bulletin,2005,40(2):201-208.
    [121]Zhang Q, Gao L, Preparation of oxide nanocrystals with tunable morphologies by themoderate hydrothermal method: insights from rutile TiO2[J]. Langmuir,2003,19(3):967-971.
    [122]Zhang Y X, Li G H, Jin Y X, et al. Hydrothermal synthesis and photoluminescence of TiO2nanowires[J]. Chemical Physics Letters,2002,365(3-4):300-304.
    [123]Kim C S, Moon B K, Park J H, et al. Solvothermal synthesis of nanocrystalline TiO2intoluene with surfactant[J]. Journal of Crystal Growth,2003,257(3-4):309-315.
    [124]Wen B, Liu C, Liu Y, Solvothermal synthesis of ultralong single-crystalline TiO2nanowires[J]. New Journal of Chemistry,2005,29(7):969-971.
    [125]Ding B, Kim C K, Kim H Y, et al. Titanium dioxide nanofibers prepared by usingelectrospinning method[J]. Fibers and Ploymers,2004,5(2):105-109.
    [126]Huang W P, Tang X H, Wang Y Q, et al. Selective synthesis of anatase and rutile viaultrasound irradiation[J]. Chemical Communications,2000,(15):1415-1416.
    [127]Guo S, Wu Z, Wang H, et al. Synthesis of mesoporous TiO2nanorods via a mildtemplate-free sonochemical route and their photocatalytic performances[J]. CatalysisCommunications,2009,10(13):1766-1770.
    [128]Corradi A B, Bondioli F, Focher B, et al. Convertional and microwave-hydrothermalsynthesis of TiO2nanopowders[J]. Journal of the American Ceramic Society,2005,88(9):2639-2641.
    [129]Wu X, Jiang Q Z, Ma Z F, et al. Synthesis of titania nanotubes by microwave irradiation[J].Solid State Communications,2005,136(9-10):513-517.
    [130] Gong D W, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared byanodic oxidation[J]. Journal of Materials Research,2001,16(12):3331-3334.
    [131]Kavan L, O Regan B, Kay A, et al. Preparation of TiO2(anatase) films on electrodes byanodic oxidative hydrolysis of TiCl3[J], Journal of Electroanalytical Chemistry,1993,346(1-2):291-307.
    [132]Kavan L, Stoto T, Gr tzel M, Quantum size effects in nanocrystalline semiconducting TiO2layers prepared by anodic oxidative hydrolysis of TiCl3[J], Journal of physical chemistry,1993,97,(37):9493-9498.
    [133]Ebbesen T W, Ajayan P M, Large-scale synthesis of carbon nanotubes[J]. Nature,1992,358(6383):220-222.
    [134]Sawada S, Hamada N, Energetics of carbon nano-tubes[J]. Solid State Communications,1992,83(11):917-919.
    [135]Chatterjee A, Deopura B L, Carbon nanotubes and nanofibers: An overview[J]. Fibers andPolymers,2002,3(4):134-139.
    [136]Xia Y N, Yang P D, Chemistry and physics of nanowires[J]. Advanced Materials,2003,15(5):351-352.
    [137]Schwarz K W, Tersoff J, Elementary processes in nanowire growth[J]. Nano Letters,2010,11(2):316-320.
    [138]Schwarz K W, Tersoff J, Multiplicity of steady modes of nanowire growth[J]. Nano Letters,2012,12(3):1329-1332.
    [139]Yan R X, Gargas D, Yang P D, Nanowire Photonics[J]. Nature Photonics,2009,3(10):569-576.
    [140]Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: synthesis,characterization, and applications[J]. Advanced Materials,2003,15(5):353-389.
    [141] Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells[J]. NatureMaterials,2005,4(6):455-459.
    [142]Hochbaum A I, Yang P D, Semiconductor nanowires for energy conversion[J]. ChemicalReviews,2010,110(1):527-546.
    [143]Martel R, Nanotube electronics: High-performance transistors[J]. Nature Materials,2002,1(4):203-204.
    [144]Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically orientedTiO2nanotube arrays: fabrication, material properties, and solar energy applications[J]. SolarEnergy Materials&Solar Cells,2006,90(14):2011-2075.
    [145]Mor G K, Shankar K, Paulose M, et al. Enhanced photocleavage of water using titaniananotube arrays[J]. Nano Letters,2005,5(1):191-195.
    [146]Paulose M, Shankar K, Varghese O K, et al. Backside illuminated dye-sensitized solar cellsbased on titania nanotube array electrodes[J]. Nanotechnology,2006,17(5):1446-1448.
    [147]Hoyer P, Formation of a titanium dioxide nanotube array[J]. Langmiur,1996,12(6):1411-1413.
    [148]Gong D, Grimes C A, Varghese O K, Titanium oxide nanotube arrays prepared by anodicoxidation[J]. Journal of Materials Research,2001,16(12):3331-3334.
    [149]Paulose M, Shankar K, Yoriya S, et al. Anodic growth of highly ordered TiO2nanotubearrays to134μm in length[J]. The Journal of Physical Chemistry B,2006,110(33):16179-16184.
    [150]Sun X M, Li Y D, Synthesis and characterization of ion-exchangeable titanate nanotubes[J].Chemistry-A European Journal,2003,9(10):2229-2238.
    [151]Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2nanotube arrays indye-sensitized solar cells[J]. Nano Letters,2006,6(2):215-218.
    [152]Shankar K, Mor G K, Prakasam H E, Highly-ordered TiO2nanotube arrays up to220μm inlength: use in water photoelectrolysis and dye-sensitized solar cells[J]. Nanotechnology,2007,18(6):065707-065718.
    [153]Hosono E, Fujihara S, Kakiuchi K, et al. Growth of submicrometer-scale rectangularparallelepiped rutile TiO2films in aqueous TiCl3solutions under hydrothermal conditions [J].Journal of the American Chemical Society,2004,126(25):7790-7791.
    [154]Feng X J, Shankar K, Varghese O K, et al. Vertically aligned single crystal TiO2nanowirearrays grown directly on transparent conducting oxide coated glass: synthesis details andapplications [J]. Nano Letters,2008,8(11):3781-3786.
    [155]Hendry E, Koeberg M, O Regan B, et al. Local field effects on electron transport innanostructured TiO2revealed by terahertz spectroscopy[J]. Nano Letters,2006,6(4):755-759.
    [156]Liu B, Aydi E S, Growth of oriented single-crystalline rutile TiO2nanorods on transparentconducting substrates for dye-densitized dolar cells[J]. Journal of the American ChemicalSociety,2009,131(11):3985-3990.
    [157]Wang G, Wang H, Ling Y, et al. Hydrogen-treated TiO2nanowire arrays forphotoelectrochemical water splitting[J]. Nano Letters,2011,11(7):3026-3033.
    [158]Migas D B, Shaposhnikov V L, Borisenko V E, et al. Effects of morphology on stability,electronic, and optical properties of rutile TiO2nanowires[J]. The Journal of PhysicalChemistry C,2010,14(49):21013-21019.
    [159]Chu Y M, Lin C C, Chang H C, et al. TiO2nanowires FET device: Encapsulation ofbiomolecules by electro polymerized pyrrole propylic acid[J]. Biosensors and Bioelectronics,2011,26(5):2334-2340.
    [160]Chen T, Qiu L, Yang Z, et al. An integrated “energy wire” for both photoelectric conversionand energy storage[J]. Angewandte Chemie-International Edition,2012,51(48):11977-11980.
    [161]Wang X Y, Liu Y, Zhou X, et al. Synthesis of long TiO2nanowire arrays with high surfaceareas via synergistic assembly route for highly efficient dye-sensitized solar cells[J]. Journalof Materials Chemistry,2012,22(34):17531-17538.
    [162]Kumar A, Madaria A R, Zhou C W, Growth of aligned single-crystalline rutile TiO2nanowires on arbitrary substrates and their application in dye-sensitized solar cells[J]. TheJournal of Physical Chemistry C,2010,114(17):7787-7792.
    [163]Lee B H, Hwang D-K, Guo P J, et al. Materials, interfaces, and photon confinement indye-sensitized solar cells [J]. The Journal of Physical Chemistry B,2010,114(45):14582-14591.
    [164]Petrozza A, Groves C, Snaith H J, Electron transport and recombination in dye-sensitizedmesoporous TiO2probed by photoinduced charge-conductivity modulation spectroscopy withmonte carlo modeling[J]. Journal of the American Chemical Society,2008,130(39):12912-12920.
    [165]Enache-Pommer E, Liu B, Aydil E S, Electron transport and recombination in dye-sensitizedsolar cells made from single-crystal rutile TiO2nanowires[J]. Physical Chemistry ChemicalPhysics,2009,11(42):9648-9652.
    [166]Wong D K-P, Ku C-H, Chen Y-R, et al. Enhancing electron collection efficiency andeffective diffusion length in dye-sensitized solar cells[J]. ChemPhysChem,2009,10(15):2698-2702.
    [167] Feng X J, Zhu K, Frank A J, et al. Rapid charge transport in dye-sensitized solar cells madefrom vertically aligned single-crystal rutile TiO2nanowires[J]. Angewandte Chemie-International Edition,2012,51(11):2727-2730
    [168]Wang H, Bai Y S, Wu Q, et al. Rutile TiO2nano-branched arrays on FTO for dye-sensitizedsolar cells[J]. Physical Chemistry Chemical Physics,2011,13(15):7008-7013.
    [169]Tan B, Wu Y Y, Dye-sensitized solar cells based on anatase TiO2nanoparticle/nanowirecomposites[J]. The Journal of Physical Chemistry B,2006,110(32):15932-15938.
    [170]Ai G, Sun W-T, Zhang Y-L, et al. Nanoparticle and nanorod TiO2composite photoelectrodeswith improved performance[J]. Chemical Communications,2011,47(23):6608-6610.
    [171]Manthina V, Baena J P C, Liu G L, et al. ZnO-TiO2nanocomposite films for high lightharvesting efficiency and fast electron transport in dye-sensitized solar cells[J]. The Journalof Physical Chemistry C,2012,116(45):23864-23870.
    [172]Miao Z, Xu D S, Ouyang J H, et al. Electrochemically induced sol-gel preparation ofsingle-crystalline TiO2nanowires[J]. Nano Letters,2002,2(7):717-720.
    [173]Lei Y, Zhang L D, Meng G W, et al. Preparation and photoluminescence of highly orderedTiO2nanowire arrays[J]. Applied Physics Letters,2001,78(8):1125-1127.
    [174]Lei Y, Zhang L D, Fabrication, characterization, and photoluminescence properties of highlyordered TiO2nanowire arrays[J]. Journal of Materials Research,2001,16(4):1138-1144.
    [175]Zhang X, Yao B, Zhao L, et al. Electrochemical fabrication of single-crystalline anataseTiO2nanowire arrays[J]. Journal of the Electrochemical Society,2001,148(7): G398-G400.
    [176]Zhang X Y, Zhang L D, Chen W, et al. Electrochemical fabrication of highly orderedsemiconductor and metallic nanowire arrays[J]. Chemistry of Materials,2001,13(8):2511-2515.
    [177]Lin Y, Wu G S, Yuan X Y, et al. Fabrication and optical properties of TiO2nanowire arraysmade by sol-gel electrophoresis deposition into anodic alumina membranes[J]. Journal ofPhysics Condensed Matterials,2003,15(17):2917-2922.
    [178]Sedach P A, Gordon T J, Sayed S Y, et al. Solution growth of anatase TiO2nanowires fromtransparent conducting glass substrates[J]. Journal of Materials Chemistry,2010,20(24):5063-5069.
    [179] Yu X, Wang H, Liu Y, et al. One-step ammonia hydrothermal synthesis of single crystalanatase TiO2nanowires for highly efficient dye-sensitized solar cells[J]. Journal of MaterialsChemistry A,2013,1(6):2110-2117.
    [180] Liao J Y, Lei B X, Chen H Y, et al. Oriented hierarchical single crystalline anatase TiO2nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells[J]. Energy&Environmental Science,2012,5(2):5750-5757.
    [181] Wu W Q, Lei B X, Rao H S, et al. Hydrothermal fabrication of hierarchically anatase TiO2nanowire arrays on FTO glass for dye-sensitized solar cells[J]. Scientific Reports,2013,3,1352.
    [1] Feng X J, Shankar K, Varghese O K, et al. Vertically aligned single crystal TiO2nanowirearrays grown directly on transparent conducting oxide coated glass: synthesis details andapplications [J]. Nano Letters,2008,8(11):3781-3786.
    [2] Hendry E, Koeberg M, O Regan B, et al. Local field effects on electron transport innanostructured TiO2revealed by terahertz spectroscopy[J]. Nano Letters,2006,6(4):755-759.
    [3] Liu B, Aydi E S, Growth of oriented single-crystalline rutile TiO2nanorods on transparentconducting substrates for dye-densitized dolar cells[J]. Journal of the American ChemicalSociety,2009,131(11):3985-3990.
    [4] Feng X J, Zhu K, Frank A J, et al. Rapid charge transport in dye-sensitized solar cells madefrom vertically aligned single-crystal rutile TiO2nanowires[J]. Angewandte Chemie-International Edition,2012,51(11):2727-2730
    [5] Wang X Y, Liu Y, Zhou X, et al. Synthesis of long TiO2nanowire arrays with high surfaceareas via synergistic assembly route for highly efficient dye-sensitized solar cells[J]. Journalof Materials Chemistry,2012,22(34):17531-17538.
    [6] Xu M, Da P M, Wu H Y, et al. Controlled Sn-doping in TiO2nanowire photoanodes withenhanced photoelectrochemical conversion[J]. Nano Letters,2012,12(3):1503-1508.
    [7] Bang J H, Kamat P V, Solar cells by design: Photoelectrochemistry of TiO2nanorod arraysdecorated with CdSe[J]. Advanced Functional Materials,2010,20(12):1970-1976.
    [8] Wang H, Bai Y S, Wu Q, et al. Rutile TiO2nano-branched arrays on FTO for dye-sensitizedsolar cells[J]. Physical Chemistry Chemical Physics,2011,13(15):7008-7013.
    [9] Huang Q L, Zhou G, Fang L, et al. TiO2nanorod arrays grown from a mixed acid mediumfor efficient dye-sensitized solar cells[J]. Energy Environmental Science,2011,4(6):2145-2151.
    [10] Kumar A, Madaria A R, Zhou C W, Growth of aligned single-crystalline rutile TiO2nanowires on arbitrary substrates and their application in dye-sensitized solar cells[J]. TheJournal of Physical Chemistry C,2010,114(17):7787-7792.
    [11] Sasaki T, Komatsu Y, Fujiki Y, A new layered hydrous titanium dioxide HxTi2-x/4O4H2O[J].Journal of the Chemical Society, Chemical Communications,1991,(12):817-818.
    [12] Sasaki T, Watanabe M, Hashizume H, et al. Macromolecule-like aspects for a colloidalsuspension of an exfoliated titanate. Pairwise association of nanosheets and dynamicreassembling process initiated from it[J]. Journal of the American Chemical Society,1996,118(35):8329-8335.
    [13] Sasaki T, Watanabe M, Osmotic swelling to exfoliation. Exceptionally high degrees ofhydration of a layered titanate[J]. Journal of the American Chemical Society,1998,120(19):4682-4689.
    [14] Sasaki T, Ebina Y, Tanaka T, Layer-by-layer assembly of titania nanosheet/polycationcomposite films[J]. Chemistry of Materials,2001,13(12):4661-4667.
    [15] Sasaki T, Fabrication of nanostructured functional materials using exfoliated nanosheets as abuilding block[J]. Journal of the Ceramic Society of Japan,2007,115(1):9-16.
    [16] Ma R, Sasaki T, Nanosheets of oxides and hydroxides: Ultimate2D charge-bearingfunctional crystallites[J]. Advanced Materials,2010,22(45):5082-5104.
    [17] Osada M, Sasaki T, Exfoliated oxide nanosheets: new solution to nanoelectronics[J]. Journalof Materials Chemistry,2009,19(17):2503-2511.
    [18] Wen P H, Itoh H, Tang W P, et al. Single nanocrystals of anatase-type TiO2prepared fromlayered titanate nanosheets: Formation mechanism and characterization of surfaceproperties[J]. Langmuir,2007,23(23):11782-11790.
    [19] Yui T, Mori Y, Tsuchino T, et al. Synthesis of photofunctional titania nanosheets byelectrophoretic deposition[J]. Chemistry of Materials,2005,17(1):206-211.
    [20] Dong W J, Zhang T R, Epstein J, et al. Multifunctional nanowire bioscaffolds on titanium[J].Chemistry of Materials,2007,19(18):4454-4459.
    [21] Wang M K, Chen P, Humphry-Baker R, et al. The influence of charge transport andrecombination on the performance of dye-sensitized solar cells[J]. ChemPhysChem,2009,10(1):290-299.
    [22] Ito S, Liska P, Comte P, et al. Control of dark current in photoelectrochemical (TiO2/I-–I-3)and dye-sensitized solar cells[J]. Chemical Communications,2005(34):4351-4353.
    [23] Cameron P J, Peter L M, How does back-reaction at the conducting glass substrate influencethe dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?[J]. TheJournal of Physical Chemistry B,2005,109(15):7392-7398.
    [24] Cameron P J, Peter L M, Hore S, How important is the back reaction of electrons via thesubstrate in dye-sensitized nanocrystalline solar cells?[J]. Journal of Physical Chemistry B,2005,109(2):930-936.
    [25] Hamann T W, Ondersma J W, Dye-sensitized solar cell redox shuttles[J]. Energy&Environmental Science,2011,4(2):370-381.
    [26] Boschloo G, Gibson E A, Hagfeldt A, Photomodulated voltammetry of iodide/triiodide redoxelectrolytes and its relevance to dye-sensitized solar cells[J]. The Journal of PhysicalChemistry Letters,2011,2(24):3016-3020.
    [27] Rowley J G, Ardo S, Sun Y L, Charge recombination to oxidized iodide in dye-sensitizedsolar cells[J]. The Journal of Physical Chemistry C,2011,115(41):20315-20326.
    [28] Chandiran A K, Tetreault N, Humphry-Baker R, Subnanometer Ga2O3tunnelling layer byatomic layer deposition to achieve1.1V open-circuit potential in dye-sensitized solar cells[J].Nano Letters,2012,12(8):3941-3947.
    [1] O Regan B, Gr tzel M, A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films[J]. Nature,1991,353(24):737-740.
    [2] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2Bis(2,2-bipyridyl-4,4-dicarboxylate) ruthenium (Ⅱ) charge-transfer sensitizers (X=C1-, Br-, I-,CN-, and SCN-) on nanocrystalline TiO2electrodes[J]. Journal of the American ChemicalSociety,1993,115(14):6382-6390.
    [3] Gr tzel M, Photoelectrochemical Cells[J]. Nature,2001,41(15):338-344.
    [4] Gr tzel M, Solar energy conversion by dye-sensitized photovoltaic cells[J]. InorganicChemistry,2005,44(20):6841-6851.
    [5] Yella A, Lee H-W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)-basedredox electrolyte exceed12percent efficiency[J]. Science,2011,334(4):629-634.
    [4] Wu J-J, Chen Y-R, Liao W-P, et al. Construction of nanocrystalline film on nanowire arrayvia swelling electrospun polyvinylpyrrolidone-hosted nanofibers for use in dye-sensitizedsolar cells [J]. ACS Nano,2010,4(10):5679-5684.
    [5] Hwang S H, Kim C, Song H, et al. Designed architecture of multiscale porous TiO2nanofibers for dye-sensitized solar cells photoanode[J]. ACS Applied Materials&Interfaces,2012,4(10):5287-5292.
    [6] Luo Y H, Li D M, Meng Q B, Towards optimization of materials for dye-sensitized solarcells [J]. Advanced Materials,2009,21(45):4647-4651.
    [7] Huang F Z, Chen D H, Zhang X L, et al. Dual-function scattering layer ofsubmicrometer-sized mesoporous TiO2beads for high-efficiency dye-sensitized solar cells [J].Advanced Functional Materials,2010,20(8):1301-1305.
    [8] Zhang H M, Han Y H, Liu X L, et al. Anatase TiO2microspheres with exposed mirror-likeplane {001} facets for high performance dye-sensitized solar cells (DSSCs)[J]. ChemicalCommunicaions,2010,46(44):8395-8397.
    [9] Hore S, Nitz P, Vetter C, et al. Scattering spherical voids in nanocrystalline TiO2-enhancement of efficiency in dye-sensitized solar cells [J]. Chemical Communications,2005(15):2011-2013.
    [10] Hwang D, Lee H, Jang S-Y, et al. Electrospray preparation of hierarchically-structuredmesoporous TiO2spheres for use in highly efficient dye-sensitized solar cells[J]. ACSApplied Materials&Interfaces,2011,3(7):2719-2725.
    [11] Halaoui L I, Abrams N M, Mallouk T E, Increasing the conversion efficiency ofdye-sensitized TiO2photoelectrochemical cells by coupling to photonic crystals[J]. TheJournal of Physical Chemistry B,2005,109(13):6334-6342.
    [12] Tétreault N, M. Gr tzel, Novel nanostructures for next generation dye-sensitized solar cells[J]. Energy Environmental Science,2012,5(9):8506-8516.
    [13] Nishimura S, Abrams N, Lewis B A, et al. Standing wave enhancement of red absorbanceand photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photoniccrystals [J]. Journal of the American Chemical Society,2003,125(20):6306-6310.
    [14] Lee B H, Hwang D-K, Guo P J, et al. Materials, interfaces, and photon confinement indye-sensitized solar cells[J]. The Journal of Physical Chemistry B,2010,114(45):14582-14591.
    [15] Petrozza A, Groves C, Snaith H J, Electron transport and recombination in dye-sensitizedmesoporous TiO2probed by photoinduced charge-conductivity modulation spectroscopy withmonte carlo modeling[J]. Journal of the American Chemical Society,2008,130(39):12912-12920.
    [16] Zhu K, Jang S-R, Frank A J, Impact of high charge-collection efficiencies and darkenergy-loss processes on transport, recombination, and photovoltaic properties ofdye-sensitized solar cells[J]. The Journal of Physical Chemistry Letters,2011,2(9):1070-1076.
    [17] Liu B, Aydil E S, Growth of oriented single-crystalline rutile TiO2nanorods on transparentconducting substrates for dye-sensitized solar cells[J]. Journal of the American ChemicalSociety,2009,131(11):3985-3990.
    [18] Hosono E, Fujihara S, Kakiuchi K, et al. Growth of submicrometer-scale rectangularparallelepiped rutile TiO2films in aqueous TiCl3solutions under hydrothermal conditions[J].Journal of the American Chemical Society,2004,126(25):7790-7791.
    [19] Feng X J, Shankar K, Varghese O K, et al. Vertically aligned single crystal TiO2nanowirearrays grown directly on transparent conducting oxide coated glass: synthesis details andapplications[J]. Nano Letters,2008,8(11):3781-3786.
    [20] Hendry E, Koeberg M, O Regan B, et al. Local field effects on electron transport innanostructured TiO2revealed by terahertz spectroscopy[J]. Nano Letters,2006,6(4):755-759.
    [21] Enache-Pommer E, Liu B, Aydil E S, Electron transport and recombination in dye-sensitizedsolar cells made from single-crystal rutile TiO2nanowires[J]. Physical Chemistry ChemicalPhysics,2009,11(42):9648-9652.
    [22] Wang H, Bai Y S, Wu Q, et al. Rutile TiO2nano-branched arrays on FTO for dye-sensitizedsolar cells[J]. Physical Chemistry Chemical Physics,2011,13(15):7008-7013.
    [23] Wang X Y, Liu Y, Zhou X, et al. Synthesis of long TiO2nanowire arrays with high surfaceareas via synergistic assembly route for highly efficient dye-sensitized solar cells[J]. Journalof Materials Chemistry,2012,22(34):17531-17538.
    [24] Huang Q L, Zhou G, Fang L, et al. TiO2nanorod arrays grown from a mixed acid medium forefficient dye-sensitized solar cells[J]. Energy&Environmental Science,2011,4(6):2145-2151.
    [25] Xu C K, Wu J M, Desai U V, et al. Multilayer assembly of nanowire arrays for dye-sensitizedsolar cells[J]. Journal of the American Chemical Society,2011,133(21):8122-8155.
    [26] Tan B, Wu Y Y, Dye-sensitized solar cells based on anatase TiO2nanoparticle/nanowirecomposites[J]. The Journal of Physical Chemistry B,2006,110(32):15932-15938.
    [27] Ai G, Sun W-T, Zhang Y-L, et al. Nanoparticle and nanorod TiO2composite photoelectrodeswith improved performance[J]. Chemical Communications,2011,47(23):6608-6610.
    [28] Manthina V, Baena J P C, Liu G L, et al. ZnO-TiO2nanocomposite films for high lightharvesting efficiency and fast electron transport in dye-sensitized solar cells[J]. The Journalof Physical Chemistry C,2012,116(45):23864-23870.
    [29] Bai Y, Yu H, Li Z, et al. In situ growth of a ZnO nanowire network within a TiO2nanoparticle film for enhanced dye-sensitized solar cell performance[J]. Advanced Materials,2012,24(43):5850-5856.
    [30] Romero-Gomez P, Borras A, Barranco A, et al. Enhanced photoactivity in bilayer films withburied rutile-anatase heterojunctions[J]. ChemPhysChem,2011,12(1):191-196.
    [31] Kawahara T, Konishi Y, Tada H, et al. A patterned TiO2(anatase)/TiO2(rutile) bilayer-typephotocatalyst: effect of the anatase/rutile junction on the photocatalytic activity[J].Angewandte Chemie-International Edition,2002,41(15):2811-2813.
    [32] Miyagi T, Kamei M, Mitsuhashi T, et al. Charge separation at the rutile/anatase interface: adominant factor of photocatalytic activity[J]. Chemical Physics Letters,2004,390(4-6):399-402.
    [33] Liu Z Y, Zhang X T, Nishimoto S, et al. Anatase TiO2nanoparticles on rutile TiO2nanorods:A heterogeneous nanostructure via layer-by-layer assembly[J]. Langmuir,2007,23(22):10916-10919.
    [34] Sun P P, Zhang X T, Liu X P, et al. Growth of single-crystalline rutile TiO2nanowire arrayon titanate nanosheet film for dye-sensitized solar cells[J]. Journal of Materials Chemistry,2012,22(13):6389-6393.
    [35] O Regan B, Durrant J R, Kinetic and energetic paradigms for dye-sensitized solar cells:Moving from the ideal to the real[J]. Accounts of Chemical Research,2009,42(11):1799-1808.
    [36] Peter L,“Sticky electrons” transport and interfacial transfer of electrons in the dye-sensitizedsolar cell[J]. Accounts of Chemical Research,2009,42(11):1839-1847.
    [37] Wang M K, Bai J, Le Formal F, et al. Solid-state dye-sensitized solar cells using orderedTiO2nanorods on transparent conductive oxide as photoanodes[J]. The Journal of PhysicalChemistry C,2012,116(5):3266-3273.
    [38] Zaban A, Greenshtein M, Bisquert J, et al. Determination of the electron lifetime innanocrystalline dye solar cells by open-circuit voltage decay measurements[J].ChemPhysChem,2003,4(8):859-864.
    [39] Wang H X, Liu M N, Zhang M, et al. Kinetics of electron recombination of dye-sensitizedsolar cells based on TiO2nanorod arrays sensitized with different dyes[J]. PhysicalChemistry Chemical Physics,2011,13(38):17359-17366.
    [40] Bisquert J, Zaban A, Greenshtein M, et al. Determination of rate constants for charge transferand the distribution of semiconductor and electrolyte electronic energy levels indye-sensitized solar cells by open-circuit photovoltage decay method[J]. Journal of theAmerican Chemical Society,2004,126(41):13550-13559.
    [41] Tachibana Y, Moser J E, Gr tzel M, et al. Subpicosecond interfacial charge separation indye-sensitized nanocrystalline titanium dioxide films[J]. The Journal of Physical Chemistry,1996,100(51):20056-20062.
    [42] Haque S A, Tachibana Y, Klug D R, et al. Charge recombination kinetics in dye-sensitizednanocrystalline titanium dioxide films under externally applied bias[J]. The Journal ofPhysical Chemistry B,1998,102(10):1745-1749.
    [43] Clifford J N, Yahioglu G, Milgrom L R, et al. Molecular control of recombination dynamicsin dye sensitized nanocrystalline TiO2films[J]. Chemical Communications,2002,(12):1260-1261.
    [44] Palomares E, Clifford J N, Haque S A, et al. Slow charge recombination in dye-sensitizedsolar cells (DSSC) using Al2O3coated nanoporous TiO2films[J]. Chemical Communications,2002,(14):1464-1465.
    [45] Haque S A, Park T, Holmes A B, et al. Transient optical studies of interfacial energeticdisorder at nanostructured dye-sensitised inorganic/organic semiconductor heterojunctions[J].ChemPhysChem,2003,(1):89-93.
    [46] Palomares E, Clifford J N, Haque S A, et al. Control of charge recombination dynamics indye sensitized solar cells by the use of conformally deposited metal oxide blocking layers[J].Journal of the American Chemical Society,2003,125(2):475-482.
    [47] Kavan L, O Regan B, Kay A, et al. Preparation of TiO2(anatase) films on electrodes byanodic oxidative hydrolysis of TiCl3[J], Journal of Electroanalytical Chemistry,1993,346(1-2):291-307.
    [48] Kavan L, Stoto T, Gr tzel M, Quantum size effects in nanocrystalline semiconducting TiO2layers prepared by anodic oxidative hydrolysis of TiCl3[J], Journal of physical chemistry,1993,97(37):9493-9498.
    [49] Liu Y, Wang H, Wang Y C, et al. A non-template hydrothermal route to uniform3Dmacroporous films with switchable optical properties[J]. Journal of Non-Crystalline Solids,2011,357(7):1768-1773.
    [1] Zhang H M, Han Y H, Liu X L, et al. Anatase TiO2microspheres with exposed mirror-likeplane {001} facets for high performance dye-sensitized solar cells (DSSCs)[J]. ChemicalCommunications,2010,46(44):8395-8397.
    [2] Yang W G, Li J M, Wang Y L, et al. A facile synthesis of anatase TiO2nanosheets-basedhierarchical spheres with over90%{001} facets for dye-sensitized solar cells[J]. ChemicalCommunications,2011,47(6):1809-1811.
    [3] Liu M, Piao L Y, Zhao L, et al. Anatase TiO2single crystals with exposed {001} and {110}facets: facile synthesis and enhanced photocatalysis[J]. Chemical Communications,2010,46(10):1664-1666.
    [4] Halaoui L I, Abrams N M, Mallouk T E, Increasing the conversion efficiency ofdye-sensitized TiO2photoelectrochemical cells by coupling to photonic crystals[J]. TheJournal of Physical Chemistry B,2005,109(13):6334-6342.
    [5] Lee B H, Hwang D-K, Guo P J, et al. Materials, interfaces, and photon confinement indye-sensitized solar cells[J]. The Journal of Physical Chemistry B,2010,114(45):14582-14591.
    [6] Chen D H, Huang F Z, Cheng Y-B, et al. Mesoporous anatase TiO2beads with high surfaceareas and controllable pore sizes: A superior candidate for high-performance dye-sensitizedsolar cells[J]. Advanced Materials,2009,21(21):2206-2210.
    [7] Wu J-J, Chen Y-R, Liao W-P, et al. Construction of nanocrystalline film on nanowire arrayvia swelling electrospun polyvinylpyrrolidone-hosted nanofibers for use in dye-sensitizedsolar cells[J]. ACS Nano,2010,4(10):5679-5684.
    [8] Sauvage F, Chen D H, Comte P, et al. Dye-sensitized solar cells employing a single film ofmesoporous TiO2beads achieve power conversion efficiencies over10%[J]. ACS Nano,2010,4(8):4420-4425.
    [9] Huang F Z, Chen D H, Zhang X L, et al. Dual-function scattering layer ofsubmicrometer-sized mesoporous TiO2beads for high-efficiency dye-sensitized solar cells[J].Advanced Functional Materials,2010,20(8):1301-1305.
    [10] Yang W-G, Wan F-R, Chen Q-W, et al. Controlling synthesis of well-crystallizedmesoporous TiO2microspheres with ultrahigh surface area for high-performancedye-sensitized solar cells[J]. Journal of Materials Chemistry,2010,20(14):2870-2876.
    [11] Ferber J, Luther J, Computer simulations of light scattering and absorption in dye-sensitizedsolar cells[J]. Solar Energy Materials and Solar Cells,1998,54(1-4):265-275.
    [12] Zhang Q F, Myers D, Lan J, et al. Applications of light scattering in dye-sensitized solarcells[J]. Physical Chemistry Chemical Physics,2012,14(43):14982-14998.
    [13] Harakeh M E, Halaoui L, Enhanced conversion of light at TiO2photonic crystals to the blueof a stop band and at TiO2random films sensitized with Q-CdS: order and disorder[J]. TheJournal of Physical Chemistry C,2010,114(6):2806-2813.
    [14] Yang L J, Leung W W-F, Application of a bilayer TiO2nanofiber photoanode foroptimization of dye-sensitized solar cells[J]. Advanced Materials2011,23(39):4559-4562.
    [15] Hwang D, Lee H, Jang S-Y, et al. Electrospray preparation of hierarchically-structuredmesoporous TiO2spheres for use in highly efficient dye-sensitized solar cells[J]. ACSApplied Materials&Interfaces,2011,3(7):2719-2725.
    [16] Shao W, Gu F, Gai L L, et al. Planar scattering from hierarchical anatase TiO2nanoplateswith variable shells to improve light harvesting in dye-sensitized solar cells[J].2011,47(17):5046-5048.
    [17] Yu I G, Kim Y J, Kim H J, et al. Size-dependent light-scattering effects of nanoporous TiO2spheres in dye-sensitized solar cells[J]. Journal of Materials Chemistry,2011,21(2):532-538.
    [18] Zhu G, Wang X J, Li H L, et al. Y3Al5O12: Ce phosphors as a scattering layer forhigh-efficiency dye-sensitized solar cells[J]. Chemical Communications,2012,48(7):958-960.
    [19] Zhu P N, Nair A S, Yang S Y, et al. Which is a superior material for scattering layer indye-sensitized solar cells-electrospun rice grain-or nanofiber-shaped TiO2?[J]. Journal ofMaterials Chemistry,2011,21(33):12210-12212.
    [20] Tétreault N, Gr tzel M, Novel nanostructures for next generation dye-sensitized solarcells[J]. Energy&Environmental Science,2012,5(9):8506-8516.
    [21] Hore S, Nitz P, Vetter C, et al. Scattering spherical voids in nanocrystalline TiO2enhancementof efficiency in dye-sensitized solar cells[J]. Chemical Communications,2005,4(15):2011-2013.
    [22] Han S-H, Lee S, Shin H, et al. A quasi-inverse opal layer based on highly crystalline TiO2nanoparticles: A new light-scattering layer in dye-sensitized solar cells[J]. Advanced EnergyMaterials,2011,1(4):546–550.
    [1] O Regan B, Gr tzel M, A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films[J]. Nature,1991,353(24):737-740.
    [2] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2Bis(2,2-bipyridyl-4,4-dicarboxylate) ruthenium (Ⅱ) charge-transfer sensitizers (X=C1-, Br-, I-,CN-, and SCN-) on nanocrystalline TiO2electrodes[J]. Journal of the American ChemicalSociety,1993,115(14):6382-6390.
    [3] Gr tzel M, Photoelectrochemical Cells[J]. Nature,2001,41(15):338-344.
    [4] Gr tzel M, Solar energy conversion by dye-sensitized photovoltaic cells[J]. InorganicChemisry,2005,44(20):6841-6851.
    [5] Yella A, Lee H-W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)-basedredox electrolyte exceed12percent efficiency[J]. Science,2011,334(4):629-634.
    [6] Fujishima A, Zhang X T, Solid-state dye-sensitized solar cells[J]. Proceeds of the JapanAcademy,2005,81(2):33-42.
    [7] Meng Q B, Takahashi K, Zhang X T, Fabrication of an efficient solid-state dye-sensitizedsolar cell[J]. Langmiur,2003,19(9):3572-3574.
    [8] Zhang X T, Liu H W, Taguchia T, Slow interfacial charge recombination in solid-statedye-sensitized solar cell using Al2O3-coated nanoporous TiO2films[J]. Solar EnergyMaterials&Solar Cells,2004,81(2):197-203.
    [9] Itzhaik Y, Niitsoo O, Page M, et al. Sb2S3-sensitized nanoporous TiO2solar cells[J]. TheJournal of Physical Chemistry Letters,2009,113(11):4254-4256.
    [10] Nezu S, Larramona G, Choné C, et al. Light soaking and gas effect on nanocrystallineTiO2/Sb2S3/CuSCN photovoltaic cells following extremely thin absorber concept[J]. TheJournal of Physical Chemistry C,2010,114(14):6854-6859.
    [11] Pablo P B, Larramona G, Jacob A, et al. Hole transport and recombination in all-solidSb2S3-sensitized TiO2solar cells using CuSCN as hole transporter[J]. The Journal of PhysicalChemistry C,2012,116(1):1579-1587.
    [12] Chang J A, Rhee J H, Im S H, et al. High-performance nanostructured inorganic-organicheterojunction solar cells[J]. Nano Letters,2010,10(7):2609-2612.
    [13] Jiang K J, Manseki K, Yu Y H, et al. Photovoltaics based on hybridization of effectivedye-sensitized titanium oxide and hole-conductive polymer P3HT[J]. Advanced FunctionalMaterials,2009,19(15):2481-2485.
    [14] Xia J, Masaki N, Lira-Cantu M, et al. Influence of doped anions on poly(3,4-ethylenedioxythiophene) as hole conductors for iodine-free solid-state dye-sensitizedsolar cells[J]. Journal of the American Chemical Society,2008,130(4):1258-1263.
    [15] Tan S X, Zhai J, Wan M X, et al. Polyaninine as hole transport material to prepare solid solarcells[J]. Synthetic Metals,2003,137(1-3):1511-1512.
    [16] Lee M M, Teuscher J, Miyasaka T, Efficient hybrid solar cells based on meso-superstructuredorganometal halide perovskites[J]. Science,2012,338(6107):643-647.
    [17] Hodes G, Cahen D, All-solid-state, semiconductor-sensitized nanoporous solar cells[J].Accounts of Chemical Research,2012,45(5):705-713.
    [18] Hodes G, Comparison of dye-and semiconductor-sensitized porous nanocrystalline liquidjunction solar cells[J]. The Journal of Physical Chemistry C,2008,112(46):17778-17787.
    [19] Im S H, Kim H-J, Rhee J H, et al. Performance improvement of Sb2S3-sensitized solar cellby introducing hole buffer layer in cobalt complex electrolyte[J]. Energy&EnvironmentalScience,2011,4(8):2799-2802.
    [20] Larramona G, ChonéC, Jacob A, et al. Nanostructured photovoltaic cell of the type titaniumdioxide, cadmium sulfide thin coating, and copper thiocyanate showing high quantumefficiency[J]. Chemistry of Materials,2006,18(6):1688-1696.
    [21] Santra P K, Kamat P V, Mn-doped quantum dot sensitized solar cells: A strategy to boostefficiency over5%[J]. Journal of the American Chemical Society,2012,134(5):2508-2511.
    [22] Kamat P V, Boosting the efficiency of quantum dot sensitized solar cells through modulationof interfacial charge transfer[J]. Accounts of Chemical Research,2012,45(11):1906-1915.
    [23] Mora-seróI, Giménez S, Fabregat-santiago F, et al. Recombination in quantum dot sensitizedsolar cells[J]. Accounts of Chemical Research,2009,42(11):1848-1857.
    [24] Barea E M, Shalom M, Giménez S, et al. Design of injection and recombination in quantumdot sensitized solar cells[J]. Journal of the American Chemical Society,2010,132(19):6834-6839.
    [25] Mora-seróI, Bisquert J, Breakthroughs in the development of semiconductor-sensitized solarcells[J]. The Journal of Physical Chemistry Letters,2010,1(20):3046-3052.
    [26] González-pedro V, Xu X Q, Mora-seró I, et al. Modeling high-efficiency quantum dotsensitized solar cells[J]. ACS Nano,2010,4(10):5783-5790.
    [27] Cardoso J C, Grimes C A, Feng X J, et al. Fabrication of coaxial TiO2/Sb2S3nanowirehybrids for efficient nanostructured organic-inorganic thin film photovoltaics[J]. ChemicalCommunications,2012,48(22):2818-2820.
    [28] Lim C-S, Im S H, Kim H-J, et al. Enhancing the device performance of Sb2S3-sensitizedheterojunction solar cells by embedding Au nanoparticles in the hole-conducting polymerlayer[J]. Physical Chemistry Chemical Physics,2012,14(10):3622-3626.
    [29] Lim C-S, Im S H, Rhee J H, et al. Hole-conducting mediator for stable Sb2S3-sensitizedphotoelectrochemical solar cells[J]. Journal of Materials Chemistry,2012,22(3):1107-1111.
    [30] Yui T, Mori Y, Tsuchino T, et al. Synthesis of photofunctional titania nanosheets byelectrophoretic deposition[J]. Chemistry of Materials2005,17(1):206-211.
    [31] Kavan L, O Regan B, Kay A, et al. Preparation of TiO2(anatase) films on electrodes byanodic oxidative hydrolysis of TiCl3[J], Journal of Electroanalytical Chemistry,1993,346(1-2):291-307.
    [32] Kavan L, Stoto T, Gr tzel M, Quantum size effects in nanocrystalline semiconducting TiO2layers prepared by anodic oxidative hydrolysis of TiCl3[J], Journal of physical chemistry,1993,97,(37):9493-9498.
    [33] Taguchi T, Zhang X T, Sutanto I, et al. Improving the performance of solid-statedye-sensitized solar cell using MgO-coated TiO2nanoporous film[J]. ChemicalCommunications,2003,(19):2480-2481.
    [34] Ichinose I, Senzu H, Kunitake T, A surface sol-gel process of TiO2and other metal oxidefilms with molecular precision[J]. Chemistry of Materials,1997,9(6):1296-1298.
    [35] Bayón R, Guillén C, Martinez M A, et al. Preparation of indium hydroxy sulfide Inx(OH)ySzthin films by chemical bath deposition[J]. Journal of the Electrochemical Society,1998,145(8):2775-2779.
    [36] Wienke J, Krunks M, Lenzmann F, Inx(OH)ySzas recombination barrier inTiO2/inorganicabsorber heterojunctions[J]. Semiconductor Science and Technology,2003,18(9):876-880.
    [37] Nair M T S, Pe a Y, Campos J, et al. Chemically deposited Sb2S3and Sb2S3-CuS thin films[J].Journal of the Electrochemical Society,1998,145(6):2113-2120.
    [38] Vogel R, Hoyer P, Weller H, Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3particles assensitizers for various nanoporous wide-bandgap semiconductors[J]. The Journal of PhysicalChemistry,1994,98(12):3183-3188.
    [39] Messina S, Nair M T S, Nair P K, Antimony sulfide thin films in chemically deposited thinfilm photovoltaic cells[J]. Thin Solid Films,2007,515(12):5777-5782.
    [40] Messina S, Nair M T S, Nair P K, Antimony selenide absorber thin films in all-chemicallydeposited solar cells[J]. Journal of the Electrochemical Society,2009,156(5): H327-H332.
    [41] Messina S, Nair M T S, Nair P K, Solar cells with Sb2S3absorber films[J]. Thin Solid Films,2009,517(7):2503-2507.
    [42] Moon S J, Itzhaik Y, Yum J-H, et al. Sb2S3-based mesoscopic solar cell using an organic holeconductor[J]. The Journal of Physical Chemistry Letters,2010,1(10):1524-1527.
    [43] Tsujimoto K, Nguyen D-C, Ito S, et al. TiO2surface treatment effects by Mg2+, Ba2+, andAl3+on Sb2S3extremely thin absorber solar cells[J]. The Journal of Physical Chemistry C,2012,116(25):13465-13471.
    [44] O Mahony F T F, Lutz T, Guijarro N, et al. Electron and hole transfer at metaloxide/Sb2S3/spiro-OMeTAD heterojunctions[J]. Energy Environmental Science,2012,5(12):9760-9764.
    [45] Lim C-S, Im S H, Kim H-J, et al. Enhancing the device performance of Sb2S3-sensitizedheterojunction solar cells by embedding Au nanoparticles in the hole-conducting polymerlayer[J]. Physical Chemistry Chemical Physics,2012,14(10):3622-3626.
    [46] Fukumoto T, Moehl T, Niwa Y, Effect of interfacial engineering in solid-state nanostructuredSb2S3heterojunction solar cells[J]. Advanced Energy Materials,2013,3(1):29-33.
    [47] Chang J A, Im S H, Lee Y H, et al. Panchromatic photon-harvesting by hole-conductingmaterials in inorganic-organic heterojunction sensitized-solar cell through the formation ofnanostructured electron channels[J]. Nano Letters,2012,12(4):1863-1867.
    [48] Im S H, Lim C-S, Chang J A, et al. Toward interaction of sensitizer and functional moietiesin hole-transporting materials for efficient semiconductor-sensitized solar cells[J]. NanoLetters,2011,11(11):4789-4793.
    [49] Marchioro A, Dualeh A, Punzi A, et al, Effect of posttreatment of titania mesoscopic films byTiCl4in solid-state dye-sensitized solar cells: A time-resolved spectroscopy study[J]. TheJournal of Physical Chemistry C,2012,116(51):26721-26727.