大鼠Li-Pilocarpine癫痫模型的代谢与形态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大鼠Lithium-Pilocarpine癫痫模型与人类的颞叶癫痫发生的改变非常类似,2000年以后逐步成为癫痫领域的研究热点。该模型存在明显不同的三个阶段:①急性期(acute period),即采用Li-Pilocarpine联合诱发大鼠的癫痫发作持续状态(SE)后的最初的24小时内;②静息期(silent period),在急性期以后,大鼠进入一个行为和表现相对正常的阶段,该阶段一般为15天左右;③慢性期(chronic period),大鼠表现出间断性的反复自发性癫痫发作(spontaneous recurrent seizures,SRS),一般每周反复发作多次,长期的研究发现其主要特点与人类的复杂性部分性癫痫发作非常类似。到目前为止,国内外尚未见关于大鼠Lithium-Pilocarpine癫痫模型的~1H-MRS的研究报道。
     本课题的研究目的就是观察此大鼠癫痫模型在慢性期出现反复自发性癫痫发作(SRS)前大鼠脑,特别是海马的动态性变化,从而探寻癫痫产生的相关机制。
     本实验在应用Li剂24小时后,在大鼠上多次腹腔低剂量注射Pilocarpine(10~15mg/kg)诱发大鼠癫痫发作持续状态。癫痫持续发作1小时后,采用安定中止。经过表现相对正常的一段时间后,大鼠开始出现间断性的自发性癫痫发作(SRS)。
     所有癫痫大鼠模型随机分为7组,分别在癫痫发作终止后的不同时间点:3小时、1天、3天、1周、2周、4周和8周,对以上7组大鼠进行各项检查并与一个正常组进行对照研究。形态学检查内容包括MRI和病理学检查,其中MRI在1.5T设备上行T1、T2检查和海马容积测量。而海马的提取物在9.4T场强设备上,采用~1H-MRS技术检测NAA、Cho、Cr、GABA和谷氨酸的变化。而采用Western Blot蛋白印渍技术检测各时间点的海马内相应的GABA_A和谷氨酸NMDA受体的变化。各组计量资料采用SPSS 10.0软件包
    
    大允Li一PIlocarPine浦扁撰型的代谢与形态学研究摘要
    行单因素方差分析,判断各组间有无显著性差异;而后采用Duunettt检验进
    行各时间点与正常对照组间的两两比较。
     研究结果显示,在慢性期产生反复自发性癫痈发作(s RS)以前,此大
    鼠Li一Piloc娜ine癫痛模型同时存在多系统的异常代谢与形态变化:
     1.急性期,癫痈持续状态后3小时,’H一MRS显示海马内的谷氨酸的水
    平Gl川Cr较正常升高(F值=2.465,P=0.047);而MRI上出现杏仁核与周围
    梨状皮层、内嗅皮层的TZWI高信号,感觉运动皮层亦可见高信号,但此高
    信号在24小时后消失。此时,可见杏仁核与周围梨状皮层、内嗅皮层、海马
    以及丘脑区产生广泛水肿。同时’H一MRs显示海马内NAA/c:水平从癫痈持
    续状态后24小时开始降低(F值=5.813,P二0.001)。
     2.静息期,Western Blot显示海马内谷氨酸NMDA受体表达水平在癫痈
    持续状态后3天一1周升高(F值=4.5“,P=0.006);癫痈持续状态3天后,
    海马内NAA/Cr由正常的0.6272士0.0335降低至0.4466士0.0578,M班显示
    海马水肿明显,而丘脑区的水肿缓解;癫痈持续状态7天后,海马内N凡A/Cr
    持续减低至0.4352士0,0486,杏仁核的水肿缓解,海马区在MIU的TZWI仍
    有高信号。癫痈持续状态14天后,海马内NAA/Cr减低至0.4038士0.0376,
    容积测量显示双侧海马明显萎缩(F值二20.131,P<0.001)。MRI上此时还可
    见邻近侧脑室的扩张。’H一MRs显示海马内GAB刀c:水平较正常对照组开始
    降低(F值=H.518,P<0.001),而GABAA受体al蛋白的检测也显示此受体
    蛋白的表达减少(F值=8.493,P<0.001)。
     3.慢性期,在癫痛持续状态后的4周和8周,海马内GAB刀Cr水平由
    正常对照组的0.07158士0.01923明显减低至0.01980士0.01296和0.01484士
    0.00688;而GABAA受体al蛋白亚单位的表达量GAB抓al/A ctin由正常对
    照组的1.0428士0.0872减少至0.5222士0.0960和0.4602士0.1711。海马内
    Cho/Cr较正常对照组明显升高(F值二5.813,P二0.001),提示海马硬化;海
    马体积测量显示双侧海马缩小,在4周至8周时双侧海马体积由正常的69.12
    士9.46nun3,萎缩至33.57士 4.37mm3和37.60士5.s3mm3,约相当于正常海马
    体积的49%和54%。此时亦可见邻近侧脑室的扩张。
     通过对此Li一Piloc呷ine癫痈模型的研究,可以得出以下结论:
     1.癫痈持续状态后的脑损伤的包括多个受累部位,既累及海马,也累及
    其他边缘系统,如杏仁核和邻近的梨状皮层、内嗅皮层以及丘脑,以及大脑
    
    反周郎昆还冽区。血也仿姆为仕同的边缘杂既w以父史刀具来。
     2.在癫痛的产生过程中包括海马内多系统的参与或障碍,此过程既涉及
    兴奋性神经递质一谷氨酸,又涉及抑制性神经递质一一1一氨基丁酸;既有
    递质含量的变化,又有神经递质受体表达的异常。①兴奋性神经递质——谷
    氨酸在癫痫急性期时升高,参与了癫痫持续状态脑损伤有关。②抑制性神经
    递质一一一下一氨基丁酸在慢性期明显减低,与反复自发性癫病发作倍RS)的发
    作有关。③谷氨酸NMDA受体,在静息期的3—7天激活,可能参与了慢性
    期的反复自发性癫痛(SRS)的产生过程。④GABAA受体,在癫痛的慢性期
    可产生数量和结构的异常,可以导致药物难治性癫痛的产生。
     研究同时显示,磁共振波谱技术不仅可通过NAA和Ch。的变化早期?
The lithium-pilocarpine rat model of epilepsy reproduces most of the features of human temporal lobe epilepsy, and becomes a popular topic in the epilepsy research after 2000. This model of epilepsy in rats has three distinct periods: (1)an acute period, the first 24h after that built up progressively into status epilepticus (SE) by Li-Pilocarpine injection; (2)a silent period, the rat with a progressive normalization of EEG and behaviour which about 15 days after acute period; (3)a chronic period with spontaneous recurrent seizures (SRS). It recurs several times per week and the main features of the SRS observed during the long-term period resemble those of human complex partial seizures. And there isn't any report about the 'H-MRS changes of this lithium-pilocarpine model till now.
    This study investigates the progressive changes in the brain especially in the hippocampus of the rats before appearing chronic period onset of spontaneous recurrent seizures (SRS) in the epilepsy model and search for basic mechanisms of epileptogenesis.
    Status epilepticus was induced in adult rats by repeated injection of low doses of pilocarpine(10~15mg/kg) after 24h of lithium administration. After onset of Status epilepticus for 1 hour, the animals were treated with diazepam. The rats established spontaneous recurrent seizures after some days with normal behaviors.
    All of the rat models of epilepsy were divided into 7 groups randomly, the examinations were taken on those groups at different time points: 3 hours, 1 day, 3 days, 1 week, 2 weeks, 4 weeks and 8 weeks after pilocarpine-induced status epilepticus (SE), and compared with a normal control group. MRI and pathological examination were used to detect the morphological changes. T1, T2
    
    
    
    weight sequence and volumetry of the hippocampus were preformed on a 1.5 MRI system. The hippocampus extract was measured using 'H-MRS on 9.4T condition to define the changes of NAA, Cho, Cr, GAB A and glutamate in it. The GABAA and glutamate (NMDA) receptors changes in the hippocampus also were examined at each time point by western blot. All the statistics was preformed on SPSS 10.0 software package by One-way ANOV (Analysis of Variance) to compare the mean between 8 groups and Dunnett t test to compare each epilepsy group with the normal control group.
    The results display multiple abnormal metabolic and morphological changes on the Li-pilocarpine rat model before the onset of spontaneous recurrent seizures in chronic peroid:
    1. At acute period, there was a highly elevation of Glu/Cr level in the hippocampus on 'H-MRS at 3 hours after status epilepticus (F=2.465, P=0.047), and hyper signals appeared in the amygdala, the piriform and entorhinal cortex on MRI T2WI. And hyper signals can also be found in the sensor-motor cortex area, but it disappeared 24 hours after SE. But edema can be found in the amygdala, the piriform and entorhinal cortex, the hippocampus and the thalamus at this time. Also the NAA/Cr level in the hippocampus on 'H-MRS began to decrease from 24 hours after SE (F=5.813, P=0.001).
    2. At silent period, the expression of glutamate NMDA receptor in the hippocampus was elevated from 3-7 days after SE (F=4.566, P=0.006). 3 days after SE, the NAA/Cr level in the hippocampus decreased from normal 0.6272 + 0.0335 to 0.4466 + 0.0578, obviously edema can be found on MRI in the hippocampus, but the edema of thalamus was remitted; 7 days after SE, the NAA/Cr level in the hippocampus continually decreased to 0.4352+0.0486, the edema of amygdala was remitted, but the high signal on MRI T2WI in the hippocampus still exist. 14 days after SE, the NAA/Cr level in the hippocampus decreased to 0.4038 + 0.0376. The volumetry showed bilateral atrophy of the hippocampus (F=20.131, P<0.001). And enlarged cerebral ventricular also can be found on MRI at this time. 'H-MRS showed the GABA/Cr level in the hippocampus decreased from this time (F=11.518, PO.001). The expression of its
    
    
    receptor, GABAA receptor al subunit in the hippocampus also decreased (F=8.493, P<0.001).
引文
1. Hauser WA, Hesdorffer DC. Incidence and prevalence. In: Hauser WA, Hesdorffer DC, editors. Epilepsy: frequecy, causes and consequences. New York: Demo; 1990
    2. Brown TR, Holmes GL. Handbook of epilepsy, 2nd Ed. Lippincott William and Wilkins, Philadelphia, 2000(P5) .
    3. Cendes F, Andermann F, Dubeau F, et al. Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structure, and temporal lobe epilepsy: a MRI volumetric study. Neurology, 1993;43:1083-7
    4. Theodore WH, Bhatia S, Hatta J, et al. Hippocampal atrophy, epilepsy duration, and febrile seizures in patients with partial seizures. Neurology, 1999;52:132-6
    5. Saukkonen A, Kalviainen R, Partanen K, et al. Do seizures cause neuronal damage? A MRI study in newly diagnosed and chronic epilepsy. Neuroreport, 1994;6:219-23
    6. Kalviainen R, Salmeenpera T, Partanen K, et al. Recurrent seizure may cause hippocampal damage in temporal epilepsy. Neurology, 1998;50:1377-82
    7. Roch C, Leroy C, Nehlig A, et al. Magnetic Resonance Imaging in the Study of the Lithium-Pilocarpine Model of Temporal Lobe Epilepsy in Adult Rats. Epilepsia, 2002 Apr;43(4) :325-35
    8. Pereira de Vasconcelos A, Ferrandon A, et al. Local cerebral blood flow during lithium-pilocarpine seizures in the developing and adult rat: role of coupling between blood flow and metabolism in the genesis of neuronal damage. J Cereb Blood Flow Metab, 2002 Feb;22(2) : 196-205
    9. Honchar MP, Olney JW, Sherman WR. System Cholinergic Agents Induce Seizures and Brain Damage in Lithium-Treated Rats. Science, 1983 Apr;220:323-25
    10. Cavalheiro EA, Santos NF, Priel MR. The pilocarpine model of epilepsy in mice. Epilepsia, 1996 Oct;37(10) :1015-9
    11. Priel MR, dos Santos NF, Cavalheiro EA. Developmental aspects of the
    
    pilocarpine model of epilepsy. Epilepsy Res, 1996 Dec;26(1) :115-21
    12. Cavalheiro EA. The pilocarpine model of epilepsy. Ital J Neurol Sci, 1995 Feb-Mar;16(1-2) :33-7
    13. Arida RM, Scorza FA, Peres CA, et al. The course of untreated seizures in the pilocarpine model of epilepsy. Epilepsy Res, 1999 Apr;34(2-3) :99-107
    14. Peeling J, Sutherland G. 1H magnetic resonance spectroscopy of extracts of human epileptic neocortex and hippocampus. Neurology, 1993 Mar;43:589-94
    15. Coulter DA, Mclntyre DC, Loscher W. Animal models of limbic epilepsies: what can they tell us? Brain Pathol 2002 Apr;12(2) :240-56
    16. Loscher W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 2002 Jun;50( 1-2) : 105-23
    17. Leite JP, Garcia-Cairasco N, Cavalheiro EA. New insights from the use of pilocarpine and kainate models. Epilepsy Res 2002 Jun;50(1-2) :93-103
    18. Nakasu Y, Nakasu S, Morikawa S, et al. Diffusion-weighted MR in experimental sustained seizures elicited with kainic acid. AJNR, 1995 Jun-Jul; 16(6) : 1185-92
    19. Ebisu T, Rooney WD, Graham SH, et al. MR spectroscopic imaging and diffusion-weighted MRI for early detection of kainate-induced status epilepticus in the rat. Magn Reson Med, 1996 Dec;36(6) :821-8
    20. Hernandez EJ, Williams PA, Dudek FE. Effects of fluoxetine and TFMPP on spontaneous seizures in rats with pilocarpine-induced epilepsy. Epilepsia 2002 Nov;43(11) :1337-45
    21. Sanabria ER, da Silva AV, Spreafico R, et al. Damage, reorganization, and abnormal neocortical hyperexcitability in the pilocarpine model of temporal lobe epilepsy. Epilepsia, 2002;43 Suppl 5:96-106
    22. Silva AV, Sanabria ER, Cavalheiro EA, et al. Alterations of the neocortical GABAergic system in the pilocarpine modet of temporal lobe epilepsy: neuronal damage and immunocytochemical changes in chronic epileptic rats. Brain Res Bull, 2002 Aug 15;58(4) :417-21
    
    
    23. Christopher Wall, Edward Kendall and Andre Obenaus. Rapid Alterations in Diffusion-weighted Images with Anatomic Correlates in a Rodent Model of Status Epilepticus. AJNR, 2000 Nov 21:1841-52
    24. Roch C, Leroy C, Nehlig A, et al. Magnetic resonance imaging in the study of the lithium-pilocarpine model of temporal lobe epilepsy in adult rats. Epilepsia, 2002 Apr;43(4) :325-35.
    25. Roch C, Leroy C, Nehlig A, et al. Predictive value of cortical injury for the development of temporal lobe epilepsy in 21-day-old rats: an MRI approach using the lithium-pilocarpine model. Epilepsia, 2002 Oct;43(10) :1129-36
    26. Chaudhary G, Malhotra JK, Chaudhari JD, et al. Effect of different lithium priming schedule on pilocarpine induced status epilepticus in rats. Methods Find Exp Clin Pharmacol, 1999;21(1) 21-24
    27. Williams MB, Jope RS. Modulation by inositol of cholinergic-and serotonergic-induced seizures in lithium-treated rats. Brain Res, 1995 Jul 10;685(1-2) : 169-78
    28. Evans MS, Zormiski CF, Clifford DB. Lithium enhances neuronal muscarinic excitation by presynaptic facilitation. Neurosci, 1990;38(2) :457-68
    29. Ormandy CG, Song L, Jope RS. Analysis of the convulsant potentiating effect of lithium in rats. Exp Neurol, 1991; 111:356-61
    30. Chaudhary G, Gupta YK. Lithium does not synergize the peripheral action of cholinomimetics as seen in the central nervous system. Life Sci, 2001 Mar 23;68(18) :2115-21
    31. Turski WA, Cavalheiro EA, Bortolotto ZA, et al. Seizures Produced by Pilocarpine in Mice: A Behavioral, Electroencephalographic and Morphological Analysis. Brain Research, 1984;321:237-253.
    32. Furtado Mde A, Braga GK, Oliveira JA, et al. Behavioral, morphologic, and electroencephalographic evaluation of seizures induced by intrahippocampal microinjection of pilocarpine. Epilepsia 2002;43 Suppl 5:37-9
    33. Priel MR, Albuquerque EX. Short-term effects of pilocarpine on rat hippocampal neurons in culture. Epilepsia 2002;43 Suppl 5:40-6
    34. Chaudhary G, Malhotra J, Chaudhari JD, et al. Effect of different lithium
    
    priming schedule on pilocarpine-induced status epilepticus in rats. Methods Find Exp Clin Pharmacol 1999 Jan-Feb;21 (1 ):21-4
    35. Persinger MA, Stewart LS, Richards PM, et al. Seizure onset times for rats receiving systemic lithium and pilocarpine: sources of variability. Pharmacol Biochem Behav 2002 Jan-Feb;71(1-2) :7-17
    36. Lemos T, Cavalheiro EA. Suppression of pilocarpine-induced status epilepticus and the late development of epilepsy in rats. Exp Brain Res, 1995;102(3) :423-8
    37. Glien M, Brandt C, Potschka H, et al. Repeated low-dose treatment of rats with pilocarpine: low mortality but high proportion of rats developing epilepsy. Epilepsy Res, 2001 Aug;46(2) :111-9
    38. Fujikawa DG, Itabashi HH, Wu A, et al. Status epilepticus-induced neuronal loss in humans without systemic complications or epilepsy. Epilepsia 2000 Aug;41(8) :981-91
    39. Bengzon J, Mohapel P, Ekdahl CT, Neuronal apoptosis after brief and prolonged seizures. Prog Brain Res 2002; 135:111-9
    40. Liu Z, Nagao T, Desjardins GC, et al. Quantitative evaluation of neuronal loss in the dorsal hippocampus in rats with long-term pilocarpine seizures. Epilepsy Res, 1994 Mar;17(3) :237-47
    41. Covolan L, Smith RL, Mello LE. Ultrastructural identification of dentate granule cell death from pilocarpine-induced seizures. Epilepsy Res 2000 Aug;41(1) :9-21
    42. Scharfman HE, Sollas AL, Smith KL, et al. Structural and functional asymmetry in the normal and epileptic rat dentate gyrus. J Comp Neurol 2002 Dec 23;454(4) :424-39
    43. Lehmann TN, Gabriel S, Kovacs R, et al. Alterations of neuronal connectivity in area CA1 of hippocampal slices from temporal lobe epilepsy patients and from pilocarpine-treated epileptic rats. Epilepsia 2000;41 Suppl 6:S190-4
    44. Lehmann TN, Gabriel S, Eilers A, et al. Fluorescent tracer in pilocarpine-treated rats shows widespread aberrant hippocampal neuronal
    
    connectivity. Eur J Neurosci 2001 Jul;14(1) :83-95
    45. Zhang X, Cui SS, Wallace AE, et al. Relations between brain pathology and temporal lobe epilepsy. J Neurosci 2002 Jul 15;22(14) :6052-61
    46. Peredery O, Persinger MA, Parker G, et al. Temporal changes in neuronal dropout following inductions of lithium/pilocarpine seizures in the rat. Brain Res 2000 Oct 20;881(1) :9-17
    47. Roch C, Leroy C, Nehlig A, et al. Predictive value of cortical injury for the development of temporal lobe epilepsy in 21-day-old rats: an MRI approach using the lithium-pilocarpine model. Epilepsia 2002 Oct;43(10) :1129-36
    48. Kubova H, Druga R, Haugvicova R, et al. Dynamic changes of status epilepticus-induced neuronal degeneration in the mediodorsal nucleus of the thalamus during postnatal development of the rat. Epilepsia 2002;43 Suppl 5:54-60
    49. Kubova H, Druga R, Lukasiuk K, et al. Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats. J Neurosci 2001 May 15;21(10) :3593-9
    50. Scorza FA, Arida RM, Priel M, et al. The contribution of the lateral posterior and anteroventral thalamic nuclei on spontaneous recurrent seizures in the pilocarpine model of epilepsy. Arq Neuropsiquiatr 2002 Sep;60(3-A):572-5
    51. Werhahn KJ, Lieber J, Classen J, et al. Motor cortex excitability in patients with focal epilepsy. Epilepsy Res, 2000;41:179-189
    52. Sanabria ER, da Silva AV, Spreafico R, et al. Damage, reorganization, and abnormal neocortical hyperexcitability in the pilocarpine model of temporal lobe epilepsy. Epilepsia 2002;43 Suppl 5:96-106
    53. Silva AV, Sanabria ER, Cavalheiro EA, et al. Alterations of the neocortical GABAergic system in the pilocarpine model of temporal lobe epilepsy: neuronal damage and immunocytochemical changes in chronic epileptic rats. Brain Res Bull 2002 Aug 15;58(4) :417-21
    54. 解学孔主编。癫痫病学。人民卫生出版社。1995年。
    55. Dube C, da Silva Fernandes MJ, Nehlig A. Age-dependent consequences of seizures and the development of temporal lobe epilepsy in the rat. Dev
    
    Neurosci 2001;23(3) :219-23
    56. Kudin AP, Kudina TA, Seyfried 3, et al. Seizure-dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Eur 3 Neurosci 2002 Apr; 15(7) : 1105-14
    57. Andre V, Marescaux C, Nehlig A, et al. Alterations of hippocampal GABAergic system contribute to development of spontaneous recurrent seizures in the rat lithium-pilocarpine model of temporal lobe epilepsy. Hippocampus 2001;11(4) :452-68
    58. Graeme J. New techniques in magnetic resonance and epilepsy. Epilepsia, 1994;35(suppl):2-13
    59. Bergen D, Bleck T, Ramsey R, Clasen R, et al. Magnetic resonance imaging as a sensitive and specific predictor of neoplasms removed for intractable epilepsy. Epilepsia, 1989;30:310-327
    60. Kuzniecky RI. Magnetic resonance imaging in developmental disorders of cerebral cortex. Epilepsia, 1994;35(suppl):44-56
    61. Berkovic SF, Ethier R, Robitaille Y, et al. Magnetic resonance imaging of the hippocampus: Ⅱ. Mesial temporal sclerosis. Epilepsia, 1986;27:612
    62. Kuzniecky R, De La Sayette V, Ethier R, et al. Magnetic resonance imaging in temporal lobe epilepsy: pathological correlations. Ann Neurol, 1987;22:341-7
    63. Jackson GD, Berkovic SF, Duncan JS, Connelly A. Optimizing the diagnosis of hippocampal sclerosis using magnetic resonance imaging. AJNR, 1993;14:753-62
    64. Jack CR, Sharbrough FW, Twomey CK, et al. Temporal lobe seizures: lateralisation with MR volume measurements of the hippocampal formation. Radiology, 1990; 175:423-29
    65. van Paesschen W, Sisodiya S, Connelly A, et al. Quantitative hippocampus MRI and intractable temporal lobe epilepsy. Neurology, 1995;45:2233-40
    66. Urenjak J, Williams SR, Gadian DG, Noble M. Proton nuclear magnetic resonace spectroscopy unambiguously identifies different neural cell types. J
    
    Neurosci, 1993; 13:981-9
    67. Duncan JS. Imaging and epilepsy. Brain 1997:339-77
    68. Connelly A, Van Paesschen W, Porter DA, et al. Proton magnetic resonace spectroscopy in MRI negative temporal lobe epilepsy. Neurology, 1998;51:66-71
    69. Mueller SG, Weber OM, Duc CO, et al. Effects of vigabatrin on Brain GABA+/CR signals in patients with epilepsy monitored by 1H-NMR-Spectroscopy: responder characteristics. Epilepsia, 2001;42(1) :29-40
    70. Rothman DL, Hanstock CC, Petroff OAC, et al. Localized 1H NMR measurements of gluamate in the human brain. Magn Reson Med, 1992;25:94-106
    71. Shen J, Shungu DC, Rothman DL. Chemical shift imaging of gamma-aminobutyric acid in the human brain. Magn Reson Med, 1999;41:35-42
    72. van Gelder NM, Sherwin AL. Metabolic parameters of epilepsy: adjuncts to established antiepileptic drug therapy. Neurochem Res 2003 Feb;28(2) :353-65
    73. Esclapez M, Houser CR. Up-regulation of GAD65 and GAD67 in remaining hippocampal GABA neurons in a model of temporal lobe epilepsy. J Comp Neurol 1999 Sep 27;412(3) :488-505
    74. Thatcher NM, Badar-Goffer RS, Ben-Yoseph O, et, al. A comparison of some metabolic effects of N-methylaspartate stereoisomers, glutamate and depolarization: a multinuclear MRS study. Neurochem Res 2002 Feb;27(1-2) :51-8
    75. Okazaki MM, Nadler JV. Glutamate receptor involvement in dentate granule cell epileptiform activity evoked by mossy fiber stimulation. Brain Res 2001 Oct 5;915(1) :58-69
    76. Kochan LD, Churn SB, Omojokun O, et al. Status epilepticus results in an N-methyl-D-aspartate receptor dependent inhibition of Ca2+/calmodulin-dependent kinase Ⅱ activity in the rat. Neuroscience 2000;95(3) :735-43
    77. Rice AC, DeLorenzo RJ. N-methyl-D-aspartate receptor activation regulates refractoriness of status epilepticus to diazepam. Neuroscience 1999;93(1) : 117-23
    78. Mathern GW, Pretorius JK, Mendoza D, et al. Hippocampal AMPA and
    
    NMDA mRNA levels correlate with aberrant fascia dentata mossy fiber sprouting in the pilocarpine model of spontaneous limbic epilepsy. J Neurosci Res 1998 Dec 15;54(6) :734-53
    79. Rice AC, DeLorenzo RJ. NMDA receptor activation during status epilepticus is required for the development of epilepsy. Brain Res 1998 Jan 26;782(1-2) :240-7
    80. Rice AC, Floyd CL, Lyeth BG, et al. Status epilepticus causes long-term NMDA receptor-dependent behavioral changes and cognitive deficits. Epilepsia 1998 Nov;39(11) : 1148-57
    81. Chebib M, Johnston GA. The "ABC" of GAB A receptors: a brief review. Clin Exp Pharmacol Physiol, 1999,26(11) :937-40.
    82. FukaoK, Momiyama T, Ishihara K, et al. Inhibition by y-aminobutyric acid system activation of epileptic seizures in spontaneously epileptic rats. Jpn J Pharmacol, 1998,76(4) :387-96.
    83. Kapur J. Hippocampal neurons express GABA(A) receptor insensitive to diazepam in hyperexcitable conditions. Epilepsia, 2000,41(suppl 6) :s86-89.
    84. Jones DM, Esmaeil N, Maren S, et al. Characterization of pharmacoresistance to benzodiazepines in the rat Li-pilocarpine model of status epilepticus. Epilepsy Res 2002 Aug;50(3) :301-12
    85. Poulter MO, Brown LA, Tynan S, et al. Differential expression of α1, α2 , α3 and α5 GABAA receptors subunits in seizure-prone and seizure-resistant rat models of temporal lobe epilepsy. J Neurosci, 1999,19(11) :4654-61.
    86. Fritschy JM, Kiener T, Bouilleret V, et al. GABAergic neurons and GABA(A)-receptors in temporal lobe epilepsy. Neurochem Int 1999 May;34(5) :435-45
    87. Loup F, Wieser HG, Yonekawa Y, et al. Selective alteration in GABAA receptor subtypes in human temporal lobe epilepsy. J Neurosci, 2000, 20(14) :5401-19.
    88. Schwarzer C, Tsunashima K, Wanzenbock C,et al. GABAA receptor subunits in the rat hippocampus Ⅱ : altered distribution in kainic acid induced temporal lobe epilepsy. Neurosci, 1997,80(4) : 1001-17.
    
    
    89. Brooks-Kayal AR, Shumate MD, Jin H, et al. Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med 1998 Oct;4(10) :1166-72