超高静压协同酶法降低专用大豆分离蛋白致敏性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛乳蛋白质过敏症和不同程度乳糖不耐症婴幼儿的患病率在我国分别约占1%~2%和30%。根据发达国家的经验,豆基婴幼儿配方粉适用于上述两类患儿,如果该婴幼儿的牛乳蛋白过敏是IgE介导的过敏,其对大豆蛋白过敏的几率高达53%~63%。大豆过敏症状主要表现为过敏性皮炎、胃肠道紊乱,严重者甚至危及生命。因此,开发低致敏性婴幼儿配方食品专用大豆分离蛋白,保护大豆过敏婴幼儿的消费安全,具有重要的现实意义;如何降低大豆分离蛋白致敏性,减轻其对婴幼儿的危害是迫切需要解决的科学问题。
     本论文通过国产大豆分离蛋白与国外婴幼儿配方食品专用大豆分离蛋白的比较,明确结构与功能方面的差异;通过国产大豆分离蛋白与我国大豆过敏患儿血清的一维电泳及双向电泳的免疫印迹,结合串联质谱解析,鉴定出引起我国婴幼儿大豆过敏的致敏原及其致敏概率;通过物理方法的筛选,明确了物理脱敏方法,然后根据超高静压对游离巯基、表面疏水性、Zeta电位、二级结构、亚基、高级结构的影响,探明其降低致敏性的机理;根据酶对水解度和致敏性的影响,筛选出合适的酶制剂及复配路线;研究复合酶法对致敏性的影响规律。根据超高静压对复合酶法降低致敏性反应速率和米氏常数、分子量分布及反相超高效液相色谱图的影响,探明其协同作用,为其在婴幼儿配方食品中的应用提供理论和试验依据。主要研究结果如下:
     (1)将国产大豆分离蛋白与国外婴幼儿配方食品专用大豆分离蛋白在SDS-PAGE、分子量分布、扫描电镜、过敏原含量、体外消化率、触变性等方面进行了比较,结果表明蛋白酶酶解是降低婴幼儿配方食品专用大豆分离蛋白致敏性,改善其营养价值和食用品质的有效途径。
     (2)将由中黄35和北豆10制备而成的国产大豆分离蛋白一维电泳(SDS-PAGE)与我国14例大豆过敏患儿血清的免疫印迹结果表明,各亚基致敏比例自高至低依次为:53~55kD亚基、20~24kD亚基及33~34kD亚基、18kD亚基、43kD亚基、28kD及69~72kD亚基、95~100kD、60~62kD亚基、40kD、83kD及130kD亚基、9kD亚基。二维电泳免疫印迹及串联质谱结果表明,引起我国婴幼儿大豆过敏的致敏原主要包括11S球蛋白G1的A1链、G2的A2链、G5的A3链;7S球蛋白α、α'和β亚基;11S突变体C88s晶体结构A链与11S突变体C12g的A链;大豆凝集素2,6-戊糖复合体A链。除大豆凝集素2,6-戊糖复合体A链属于外源凝集素L型超家族之外,其他的致敏原全部为Cupin超家族。11S突变体C12g的A链、11S突变体C88s晶体结构A链与大豆凝集素2,6-戊糖复合体的A链为新过敏原,11S球蛋白G1中的A1链、G1A1ab1b中的A1a链为已批准的过敏原Gly m6.0101,其余的过敏原均为已批准过敏原的新变体。
     (3)相对于微波、超声波、高压均质等物理方法,超高静压使大豆分离蛋白致敏性降低率最大。超高静压处理的压强、时间参数与致敏性降低率密切相关。在200~300MPa与5~15min之间,随着压强的增大和时间的延长,游离巯基的含量、表面疏水性、荧光光谱的峰值显著增加,而后显著下降(P<0.05)。超高静压处理使大豆分离蛋白最大发射波长蓝移。超高静压处理后,螺旋1和转角的含量显著增加,折叠1和无规则卷曲的含量显著下降(P<0.05),而螺旋2和折叠2的含量未发生显著变化。螺旋的平均长度显著增加(P<0.05),而每100个残基中螺旋的个数变化不显著。折叠的平均长度与每100个残基中折叠的个数均显著减少(P<0.05)。超高静压能够展开螺旋,压缩折叠。近紫外圆二色图谱表明超高静压处理后大豆分离蛋白三、四级结构的差异主要体现在酪氨酸与苯丙氨酸峰值的不同。第三章鉴定出的大豆分离蛋白过敏原与α螺旋、β折叠的二级结构密切相关。双向电泳图谱、免疫印迹图谱表明超高静压可降低专用大豆分离蛋白致敏性,其原因是蛋白空间构象发生了改变。响应面法优化超高静压的最佳工艺参数为:大豆分离蛋白浓度1%(w/v)、超高静压处理时间18min、压强369MPa;在最适参数下,致敏性降低率为49.33%。
     (4)不同酶由于其酶切位点不同,对大豆分离蛋白中的过敏原呈现出不同的作用机制。根据第三章鉴定出的引起我国婴幼儿大豆过敏的致敏原分布及结构,同时综合考虑其水解效率、成本、水解物的苦味等多方面因素确定了中性蛋白酶与风味蛋白酶按照1∶1的质量比复配,确定了同步酶解路线,复合酶法的最佳工艺参数为:初始底物浓度8%(w/v)、pH7.4,酶解温度46℃,时间2.5h,加酶量2.5%(g/100g蛋白质);在最适参数下,致敏性降低率为76.05%。
     (5)采用商用试剂盒和抗体滴度方法测定大豆分离蛋白致敏性,结果表明超高静压预处理均可显著提高复合酶法致敏性降低率,前者提高了19.33%,后者提高了17.24%。在优化的超高静压处理参数下,Km值相对单一酶及复合酶而言均显著下降;然而,Vmax值相对单一酶及复合酶而言均显著提高;超高静压预处理使得大豆分离蛋白酶解物中低分子量组分含量提高,而且增加了大豆分离蛋白酶解物中肽的含量,不影响其种类;表明超高静压对复合酶法水解大豆分离蛋白具有协同增效作用。超高静压协同复合酶法处理的国产大豆分离蛋白,其安全性和体外消化率较Solae产品提高了,但触变性与粘度有待进一步改善。
The incidence of cow milk allergy (CMA) ranges from1%to2%in Chinese infants andchildren.The ratio of infants with varing degrees of lactose intolerance reached30%. Based onthe experience of developed countries, soy-based infant formula was applied to these twotypes of children. If infants and children indicate IgE mediated allergic response,53-63%ofwhom can have adverse reactions to soy-based infant formula. The soy allergies performanceincludes atopic dermatitis, gastrointestinal disorders, and life-threatening. Therefore,development of hypoallergenic soy protein isolate (SPI) special for infant formula andprotection the safety of soybean allergic infants have important practical significance. How todecrease the allergenicity of SPI and relieve its dangers to infants and children, is an urgentscientific problem to be solved.
     By comparison domestic SPI with foreign special SPI for infant formula, the differencesof structure and function were ascertained. Western blotting of domestic SPI and soy allergicchildren's serum basing on one-dimensional electrophoresis and two-dimensionalelectrophoresis, combining with tandem mass resolution identified the allergens and allergicprobability relating to domestic children. Physical desensitization methods were screened.The mechanism of eliminating allergenicity was explored via the effects of HPP on surfacehydrophobicity, free sulfhydryl content, zeta potential, secondary structure, subunit andtertiary and quaternary structure. Basing on processing curve of enzymes on degree ofhydrolysis and allergenicity decrease, optimal enzyme types and enzymatic combinationroutine were screened. The effects of multi-enzymatic method on allergenicity wereinvestigated.The effects of HPP on multi-enzymatic method reducing allergenicity rate,Michaelis constant, molecular weight distribution and reversed-phase high performance liquidchromatogram were utilized to explore synergistic action of HPP and enzymatic method, thusproviding theoretical and experimental basis for special SPI application in infant formula. Themain findings were as follows:
     (1) By comparison domestic SPI for infant formula with foreign special SPI in the aspects ofSDS-PAGE, molecular weight distribution, scanning electron microscopy, allergen content,in vitro digestibility and thixotropy, the results show that protease enzymatic hydrolysis is aneffective approach to reduce the allergenicity of SPI for infant formula and to improve itsnutritional value and dietary quality.
     (2) The western blotting of domestic SPI (made from Zhonghuang35and Beidou10) andserum from14soy allergic children, basing on one-dimensional electrophoresis, indicated thatthe proportion of each allergic subunit from high level to low level were as follows:53~55kDsubunit,20~24kD subunit and33~34kD subunit,18kD subunit,43kD subunit,28kD subunit,69~72kD and95~100kD,60~62kD subunit,40kD,83kD and130kD subunit,9kD subunit.The western blotting basing on two-dimensional electrophoresis, combining with tandemmass spectrometry showed that the main allergens relating to chinese soy allergic childreninclude chain A1of11S globulin G1, chain A2of G2, chain A3of G5; α, α' and β subunit of7S globulin; chain A of crystal structure of proglycinin C12g mutant, chain A of crystal structure of proglycinin mutant C88s and chain A of soybean agglutinin complexed with2,6-pentasaccharide. Chain A of soybean agglutinin complexed with2,6-pentasaccharidebelongs to L-type lectin superfamily, and the other allergens belong to cupin superfamily.Chain A of Crystal structure of proglycinin C12g mutant, chain A of crystal structure ofproglycinin mutant C88s and chain A of soybean agglutinin complexed with2,6-pentasaccharide are new allergens. Chain A1of G1and Chain A1of G1A1ab1b are theapproved allergen Gly m6.0101, and the rest of the allergens are new vairants of approvedallergens.
     (3) High hydrostatic pressure (HHP) showed the highest allergenicity reducing rate, comparedwith microwave, ultrasonic and high pressure homogenization. The parameters of HHPpressure and time were closely related to allergenicity reducing rate. In the ranges of200~300MPa and5~15min, the free SH content, hydrophobicity and peak value of extrinsicemission fluorescence spectra of SPI significantly increased (P<0.05). Meanwhile at thelevels above300MPa and15min, the above three factors progressively decreased (P<0.05).Whatever HHP pressure and time, the maximum emission wavelength indicated blueshifts.After HHP treatment, the helix1and turns content significantly increased and the strand1andunordered content considerably decreased(P<0.05); whereas the amount of the helix2andstrand2did not indicate any obvious change. The average length of helices significantlyincreased(P<0.05), while the helices (per100residues) did not strikingly change after HHPmodification. However, both the strand (per100residues) and the average length of strandsclearly decreased(P<0.05). HHP can unfold helices and compress strands. The near-UVcircular dichroism spectra showed that HHP caused the tyrosine and phenylalanine peakdifferences of quaternary structure. The epitopes of SPI allergens identified in Chapter3couldbe closely related to the secondary structure of α-helix and β-sheet. Dimensionalelectrophoresis profiles, immunoblotting patterns showed that HHP can decrease theallergenicity of SPI, resulting from the conformational changes of SPI. The optimal HHPparameters using response surface method were1%(w/v) of SPI concentration,18min ofHHP time,369MPa of HHP pressure. The allergenicity reducting rate was49.33%at theoptimal levels.
     (4)Due to their restriction sites, different enzymes exhibited various mechanisms of actionon the allergens of SPI. Basing on the distributions and structures of the allergens identified inChapter3, while considering hydrolysis efficiency, cost, and bitterness of the hydrolyzate, theoptimal mass ratio of the neutrase and flavourzyme followed1:1, and synchronized enzymaticroute was determined. The optimal set of variables was initial substrate concentration of8%(w/v), pH of7.4, hydrolysis temperature of46℃, time of2.5h and enzyme adding dose of2.5%(g/100g protein). The allergenicity reducting rate reached76.05%at the optimal levelsof the tested factors.
     (5) The allergencity determined by commercial Elisa kit and antibody titers showed that HHPpretreatment significantly improved the allergenicity reducing rate of multi-enzymaticprocessing. The former increased by19.33%and the latter increased by17.24%. At theoptimal HHP parameters, Kmvalues significantly decreased compared with a single enzyme and multi-enzymes; However, Vmaxsignificantly increased compared with a single enzymeand multi-enzymes. HHP pretreatment caused higher content of low molecular weightfractions of SPI multi-enzymatic hydrolysate. HHP did not affect the types of SPI peptidesand increased their content. These data verified that HHP pretreatment exhibited synergisticaction on multi-enzymatic processing about the reducing allergenicity rate of SPI for infantformula. The domestic SPI was treated by composite enzymatic processing assisted by HHP.Compared with Solae products, the security and in vitro digestibility of hydrolysates assistedby HHP increased, but the thixotropy and viscosity should be further improved.
引文
[1] Russell J M, Belinda H J. Safety of Soy-Based Infant Formulas Containing Isoflavones: the ClinicalEvidence. The Journal of Nutrition,2004,134(5):1220s-1224s
    [2] Henley E C, Kuster J M. Protein quality evaluation by protein digestibility-corrected amino acidscoring. Food Technology,1994,48(4):74-77
    [3] Klish W J, Baker S S, Cochran W J, et al. Soy protein-based formulas: Recommendations for use ininfant feeding. The Journal of Pediatrics,1998,101(1):148-153
    [4] FAO/WHO. Protein Quality Evaluation, Report of a Joint FAO/WHO Expert Consultation. Rome:Food and Agriculture Organization (FAO Food and Nutrition Paper, No51),1989
    [5]张连慧.大豆分离蛋白在乳及乳制品中的应用[J].食品安全导刊,2009(5):46-48
    [6] Leung A, Otley A, Canadian Paediatric Society, Nutrition Committee. Concerns for the use ofsoy-based formulas in infant nutrition. Paediatr Child Health,2009,14(2):109-113
    [7]张玉洁,于景华,鄂志强等.豆蛋白婴儿配方粉的研究[J].中国乳品工业,1999,27(2):6-9
    [8]张瑞岩.豆基婴儿配方粉[D]:[硕士学位论文].哈尔滨:东北农业大学,2009
    [9]艾宇萍,艾长余.我国母乳代用品(代乳食品)发展历史回顾[J].中国乳品工业,2003,31(3):50-53
    [10]刘冬生.“5410”豆制代乳品的历史回顾[J].营养学报,2003,25(2):123-125
    [11]姜中航.婴儿配方奶粉生产中部分应用大豆分离蛋白的研究[J].大豆科技,2009(2):41-43
    [12]张瑞岩,赖莹,李晓东等.豆基婴儿配方粉和两种市售婴儿配方粉的蛋白质营养价值评价[J].食品工业,2009(4):60-63
    [13] Cederroth C R, Nef S. Soy, phytoestrogens and metabolism: A review. Molecular and CellularEndocrinology,2009,304(1-2):30-42
    [14] Patisaul H B, Jefferson W. The pros and cons of phytoestrogens. Frontiers in Neuro-endocrinology,2010,31(4):400-419
    [15]甄宇江.食物致敏原与食品安全[M].北京:中国标准出版社,2011
    [16] El-Agamy E I. The challenge of cow milk protein allergy. Small Ruminant Research,2007,68(1-2):64-72
    [17] Hill D J, Heine R G, Cameron D J S, et al. The natural history of intolerance to soy and extensivelyhydrolyzed formula in infants with multiple food protein intolerance (MFPI). The Journal ofPediatrics,1999,135(1):118-121
    [18] Gagnon C, Poysa V, Cober E R, et al. Soybean allergens affecting north American patientsidentified by2D gels and mass spectrometry. Food Analytical Method,2010,3(4):363-374
    [19] Klemola T, Vanto T, Juntunen-Backman K, et al. Allergy to soy formula and to extensivelyhydrolyzed whey formula in infants with cow’s milk allergy: a prospective, randomized study witha follow-up to the age of2years. The Journal of Pediatrics,2002,40(2):219-224
    [20] Maldonado J, Gil A, Narbona E, et al. Special formulas in infant nutrition: a review. Early HumanDevelopment,1998,53(Supplement):23-32
    [21] http://www.allergen.org
    [22] Breiteneder H, Mills E N C. Plant food allergens-structural and functional aspects of allergenicity.Biotechnology Advances,2005,23(6):395-399
    [23] Ogawa T, Bando N, Tsuji H, et al. Alpha-subunit of beta-conglycinin, an allergenic proteinrecognized by IgE antibodies of soy bean-sensitive patients with atopic dermatitis. Bioscience,Biotechnology and Biochemistry,1995,59(5):831-834
    [24]曾蕊,宋波,拓云等.大豆致敏蛋白及其清除方法的研究进展[J].大豆科学,2011,20(6):1040-1046
    [25] Ogawa T, Bando N, Tsuji H, et al. Identification of the soybean allergenic protein, Gly m Bd30K,with the soybean seed34-kDa oilbody-associated protein. Bioscience, Biotechnology andBiochemistry,1995,57(6):1030-1033
    [26] Beardslee T A, Zeece M G, Sarath G, et al. Soybean glycinin G1acidic chain shares IgE epitopeswith peanut allergen Ara h3. International Archives of Allergy and Immunology,2000,123(4):299-307
    [27] Helm R, Cockrell G, Herman E, et al. Cellular and molecular characterization of a major soybeanallergen. International Archives of Allergy and Immunology,1998,117(1):29-37
    [28] Gonzalez R, Varela J, Carreira J, et al. Soybean hydrophobic protein and soybean hull allergy.Lancet,1995,346:48-57
    [29] Baud F, Pebay-Peyroula E, Cohen-Addad C, et al. Crystal structure of hydrophobic protein fromsoybean; a member of a new cysteine-rich family. Journal of Molecular Biology,1993,231(3):877-887
    [30] Kleine-Tebbe J, Vogel L, Crowell D N, et al. Severe oral allergy syndrome and anaphylacticreactions caused by a Bet v1-related PR-10protein in soybean, SAM22. Journal of Allergy ClinicalImmunology,2002,110(5):797-804
    [31] Burks A W, Cockrell G, Connaughton C, et al. Identification of peanut agglutinin and soybeantrypsin inhibitor as minor legume allergens. International Archives of Allergy and Immunology,1994,105(2):143-152
    [32] Gu X, Beardslee T, Zeece M, et al. Identification of IgE-binding proteins in soy lecithin.International Archives of Allergy and Immunology,2001,126(3):218-243
    [33] Ji C, Boyd C, Slaymaker D, et al. Characterization of a34-kDa soybean binding protein for thesyringolide elicitors. Proceedings of the National Academy of Sciences of the United States ofAmerica,1998,95(6):3306-3317
    [34] Kamphuis I G, Drenth J, Baker E N. Thiol proteases comparative studies based on thehigh-resolution structures of papain and actinidin, and on amino acid sequence information forcathepsins B and H, and stem bromelain. Journal of Molecular Biology,1985,182(2):317-346
    [35] Ramachandran S, Christensen H E, Ishimaru Y, et al. Profilin plays a role in cell elongation, cellshape maintenance, and flowering in Arabidopsis. Plant Physiology,2000,124(4):1637-1684
    [36] Holzhauser T, Wackermann O, Ballmer-Weber B K. Soybean (Glycine max) allergy in Europe: Glym5(β-conglycinin) and Gly m6(glycinin) are potential diagnostic markers for severe allergicreactions to soy. Journal of Allergy Clinical Immunology,2009,123(2):452-458
    [37]刘晓毅.大豆食源性致敏蛋白的识别去除及脱敏后加工特性研究[D]:[博士学位论文].北京:中国农业大学,2005
    [38]孙秀兰,管露,单晓红等.食品过敏原体外检测方法研究进展[J].东北农业大学学报,2012,43(2):126-132
    [39]陈颖,王伟.食物过敏原检测方法研究进展[J].检验检疫学刊,2011,21(3):4-7,19
    [40]石良,王锡昌,刘源等.食物过敏原免疫学检测技术研究进展[J].分析测试学报,2010,29(9):981-986
    [41] Daniel B G, Bush P K. Standardization of allergenic extracts. In Grammer L C, Greenberger P A.Patterson’s allergy diseases.6th ed. Phaladelphia: Lippincott Williams&Wilkins,2002:87-89
    [42]吴海强,刘志刚.食品过敏原的检测与分析[J].热带医学杂志,2006,6(5):599-602
    [43] Pe as E, Préstamo G, Polo F, et al. Enzymatic proteolysis, under high pressure of soybean whey:Analysis of peptides and the allergen Gly m1in the hydrolysates. Food Chemistry,2006,99(3):569-573
    [44] Pe as E, Restani P, Ballabio C. Assessment of the residual immunoreactivity of soybean wheyhydrolysates obtained by combined enzymatic proteolysis and high pressure. European FoodResearch Technology,2006,222(3-4):286-290
    [45] Pe as E, Gomez R, Frias J, et al. High hydrostatic pressure effects on immunoreactivity andnutritional quality of soybean products. Food Chemistry,2011,125(2):423-29
    [46]萧能,余瑞元,袁明秀.生物化学实验原理和方法[M].第二版.北京:北京大学出版社,2005
    [47] Biji T, Kurien R, Scofield H. Western blotting. Methods,2006,38(4):283-293
    [48] Kuehne Y, Niggemann B, Ballmer-Weber B K, et al. Gly m5is a major soybean allergen inEuropean children: comparative investigation of linear B-cell epitopes of Gly m5and Ara h1, thehomologous peanut allergen. Journal of Allergy and Clinical Immunology,2009,123(2):176
    [49] Bush R K, Schroeckenstein D, Meier-Davis, et al. Soybean flour asthma: detection of allergens byimmunoblotting. Journal of Allergy Clinical Immunology,1988,82(2):251-255
    [50] You J M, Li D F, Qi S Y, et al. Development of a monoclonal antibody-based competitive ELISAfor detection of β-conglycinin, an allergen from soybean. Food Chemistry,2008,106(1):352-360
    [51] Ono T, Kawamura M, Arao S, et al. A highly sensitive quantitative immuno-chromatography assayfor antigen-specific IgE. Journal of Immunological Methods,2003,272(1-2):211-218
    [52] Ma X, Sun P, Han P L, et al. Development of monoclonalantibodies and a competitive ELISAdetection method for glycinin, an allergen in soybean. Food Chemistry,2010,121(2):546-551
    [53]郑义成,华萍,杨安树等.食物中过敏原检测技术研究进展[J].食品科学,2010,31(21):417-421
    [54] Hird H, Lloyd J, Goodier R, et al. Detection of peanut using real time polymerase chain reaction.European Food Research and Technology,2003,217(3):265-268
    [55]何庆华,吴永宁,印遇龙.蛋白组学技术及其在营养学研究中的应用[J].食品科学,2008,29(4):429-432
    [56]李学鹏,励建荣,于平.蛋白组学及其在食品科学研究中的应用[J].中国粮油学报,2010,25(2):141-149
    [57] Sancho A I, Mills E N C. Proteomic approaches for qualitative and quantitative characterisation offood allergens. Regulatory Toxicology and Pharmacology,2010,58(Supplement3):42-46
    [58] Rouquié D, Capt A, Eby W H, et al. Investigation of endogenous soybean food allergens by using a2-dimensional gel electrophoresis approach. Regulatory Toxicology and Pharmacology,2010,58(Supplement3):47-53
    [59]吴海强,余晓,刘志刚.食品过敏原指纹图谱快速检测研究-河虾总蛋白2-DE指纹图谱重现性分析[J].热带医学杂志,2006,6(2):131-134
    [60]吴海强,余晓,刘志刚.食品过敏原指纹图谱快速检测研究-花生总蛋白2-DE指纹图谱和蛋白点MALDI-TOF/MS分析[J].热带医学杂志,2006,6(3):271-274
    [61]吴海强,余晓,刘志刚.食品过敏原指纹图谱快速检测研究-鲫鱼、鲢鱼总蛋白2-DE指纹图谱分析[J].热带医学杂志,2006,6(1):10-12
    [62] Shriver S K, Yang W W. Thermal and Nonthermal Methods for Food Allergen Control. FoodEngineering Reviews,2011,3(1):26-43
    [63] Amnuaycheewa P, Mejia E G. Purification, characterisation, and quantification of the soy allergenprofilin (Gly m3) in soy products. Food Chemistry,2010,119(4):1671-1680
    [64] Vieths S, Zagon J, Fischer K, et al. Verarbeitungsbedingte Einflüsse auf das allergene Potential vonLebensmitteln. Die Sojaallergie als Modellbeispiel Lebensmittelchemie,1995,49:29-31
    [65] Yang W W, Chung S Y, Ajayi O, et al. Use of pulsed ultraviolet light to reduce the allergenicpotency of soybean extracts. International Journal Food Engineering,2010,6(3):1-12
    [66] http://www.moh.gov.cn/publicfiles//business/htmlfiles/zwgkzt/pwsbz/index.htm
    [67] Liu X M, Powers J R, Swanson B G, et al. Modification of whey protein concentrate hydrophobicityby high hydrostatic pressure. Innovative Food Science and Emerging Technologies,2005,6(3):310-317
    [68] Yan W, Qiao L W, Gu X H, et al. Effect of high pressure treatment on the physicochemical andfunctional properties of egg yolk. European Food Research and Technology,2010,231(3):371-377
    [69] Chawla R, Patil G, Singh A K. High hydrostatic pressure technology in dairy processing: a review.Journal of Food Science and Technology,2011,48(3):260-268
    [70] Messens W, Van Camp J, Huyghebaert A. The use of high pressure to modify the functionality offood proteins. Trends in Food Science and Technology,1997,8(4):107-112
    [71] Smelt J M. Recent advances in the microbiology of high pressure processing. Trends in FoodScience and Technology,1998,9(4):152-158
    [72] Toepfl S, Mathys A, Heinz V, et al. Review: potential of high hydrostatic pressure and pulsedelectric fields for energy efficient and environmentally friendly food processing. Food ReviewsInternational,2006,22(4):405-423
    [73] Estrada-Girón Y, Swanson B G, Barbosa-Cánovas G V. Advances in the use of high hydrostaticpressure for processing cereal grains and legumes. Trends in Food Science and Technology,2005,16(5):194-203
    [74] Préstamo G, Lesmes M, Otero L, et al. Soybean vegetable protein (tofu) preserved with highpressure. Journal of Agricultural and Food Chemistry,2000,48(7):2943-2947
    [75] Wuytack E Y, Diels A M J, Michiels C W. Bacterial inactivation by high-pressure homogenizationand high hydrostatic pressure. International Journal of Food Microbiology,2002,77(3):205-212
    [76] Molina E, Papadopoulou A, Ledward D A. Emulsifying properties of high pressure treated soyprotein isolates and7S and11S globulins. Food Hydrocolloids,2001,15(3):263-269
    [77] Apichartsrangkoon A. Effects of high pressure on rheological properties of soy protein gels. FoodChemistry,2003,80(1):55-60
    [78] Chapleau N, de Lamballerie-Anton M. Improvement of emulsifying properties of lupin proteins byhigh pressure induced aggregation. Food Hydrocolloids,2003,17(3):273-280
    [79] Zhang H K, Li L T, Mital G S. Effects of high pressure processing on soybean beta-conglycinin.Journal of Food Process Engineering,2010,33(3):568-583
    [80] Zhang H K, Li L T, Tatsumi E, et al. Influence of high pressure on conformational changes ofsoybean glycinin. Innovative Food Science and Emerging Technologies,2003,4(3):269-275
    [81] Puppo M C, Chapleau N, Speron F, et al. Physicochemical modifications of high-pressure-treatedsoybean protein isolates. Journal of Agricultural and Food Chezmistry,2004,52(6):1564-1571
    [82] Puppo M C, Speroni F, Chapleau N, et al. Effect of high-pressure treatment on emulsifyingproperties of soybean proteins. Food Hydrocolloids,2005,19(2):289-296
    [83] Torrezan R, Thamb W P, Bell A E, et al. Effects of high pressure on functional properties of soyprotein. Food Chemistry,2007,104(1):140-147
    [84] Wang X S, Tang C H, Li B S, et al. Effects of high pressure treatment on some physicochemical andfunctional properties of soy protein isolates. Food Hydrocolloids,2008,22(4):560-567
    [85] Tang C H, Ma C Y. Effect of high pressure treatment on aggregation and structural properties of soyprotein isolate. LWT-Food Science and Technology,2009,42(2):606-611
    [86] Wang R, Zhou X, Chen Z X, et al. High pressure inactivation of lipoxygenase in soy milk and crudesoybean extract. Food Chemistry,2008,106(2):603-611
    [87] Hajós G, Polgár M, Farkas J. High-pressure effects on IgE immunoreactivity of proteins in asausage batter. Innovative Food Science and Emerging Technologies,2004,5(4):443-449
    [88] Kato T, Katayama E, Matsubara S, et al. Release of allergic proteins from rice grains induced byhigh hydrostatic pressure. Journal of Agricultural and Food Chemistry,2000,48(8):3124-3129
    [89] Lagemaat van de J, Silvan J M, Moreno F J, et al. In vitro glycation and antigenicity of soy proteins.Food Research International,2007,40(1):153-160
    [90] Shannonw, Elvira G. Allergenic proteins in soybean: processing and reduction of P34allergenicity.Nutrition Reviews,2005,63(2):47-58
    [91] Usui M, Tamura H, Nakamura K. Enhanced bactericidal action and masking of allergen structure ofsoy protein by attachment of chitosan through Maillard-type protein-polysaccharide conjugation.Nahrung/Food,2004,48(1):69-72
    [92]漆定坤,曹劲松,唐传核.食品脱敏技术研究的新进展[J].食品与发酵工业,2006,32(7):79-82
    [93]程伟,陈红兵,高金燕等.酶改性对食物蛋白质过敏原性的影响[J].食品科学,2010,31(23):391-394
    [94]毕井辉,汪何雅,钱和等.酶解法脱除食品过敏原[J].食品工业科技,2011,32(8):432-439
    [95] Tsumura K, Wataur K,Bnado N. Preparation of hypoallergenic soybean Protein with ProcessingFunctionality by selective enzymatic hydrolysis. Food Science and Technology Research,1999,5(2):171-175
    [96] Lee U W, Keum E H, Lee S J, et al. Allergenicity of proteolytic hydrolysates on the soybean11Sglobulin. Journal of Food Science,2007,72(3):168-172
    [97] Cucu T, Platteau C, Taverniers I, et al. Effect of partial hydrolysis on the hazelnut and soybeanprotein detectability by ELISA. Food Control,2012,20(2):497-503
    [98] Kobayashi M. Immunological functions of soy sauce: Hypoallergenicity and anti-allergenic activityof soy sauce. Journal of Bioscience and Bioengineering,2005,100(2):144-151
    [99] Yamanishi R, Huang T, Tsuji H, et al. Reduction of soybean allergenicity by fermentation withBacillus nato. Food Science and Technology International Tokyo,1995(1):14-17
    [100]关荣霞,常汝镇,邱丽娟等.栽培大豆蛋白亚基11S/7S组成及过敏蛋白缺失分析[J].作物学报,2004,30(11):1076-1079
    [101] Krishnan H B, Kim W S, Jang S C, et al.All three subunits of soybean β-conglycinin are potentialfood allergens. Journal of Agricultural and Food Chemistry,2009,57:938-943
    [102] Singh M B, Bhalla P L. Genetic engineering for removing food allergens from plants. Trends inPlant Science,2008,3(6):257-260
    [103] Holding D R, Larkins B A. Genetic engineering of seed storage proteins. Advances in PlantBiochemistry and Molecular Biology,2008(1):107-133
    [104] Herman E M, Helm R M, Jung R, et al. Genetic modification removes an immunodomiant allergenfrom soybean. Plant Physiology,2003,132(1):36-43
    [105] Motrich R D, Gottero C, Rezzonico, et al. Cow’s milk stimulated lymphocyte proliferation and TNFalpha secretion in hypersensitivity to cow’s milk protein. Clinical Immunology,2003,109(2):203-211
    [106] Monaci L, Tregoat V, Hengel A J, et al. Milk allergens, their characteristics and their detection infood: A review. European Food Research and Technology,2006,223(2):149-179
    [107] Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature,1970,227:680-685
    [108] Tang C H, Peng J, Zhen D W, et al. Physicochemical and antioxidant properties of buckwheat(Fagopyrum esculentum Moench) protein hydrolysates. Food Chemistry,2009,115(2):672-678
    [109] Tang C H. Functional properties and in vitro digestibility of buckwheat protein products: Influenceof processing. Journal of Food Engineering,2007,82(4):568-576
    [110] Iwami K, Sakakibara K, Ibuki F. Involvement of post-digestion ‘hydrophobic’ peptides in plasmacholesterol-lowering effect of dietary plant proteins. Agricultural Biological Chemistry,1986,50(5):1217-1222
    [111] Deng S G, Peng Z Y, Chen F, et al. Amino acid composition and anti-anaemia action of hydrolyzedoffal protein from Harengula Zunasi Bleeker. Food Chemistry,2004,87(1):97-102
    [112] Jirapa P, Normah H, Zamaliah M M, et al.Nutritional quality of germinated cowpea flour (Vignaunguiculata) and its application in home prepared powdered weaning foods. Plant Foods for HumanNutrition,2001,56(3):203-216
    [113] Zhang L M, Kong T, Hui P S. Semi-dilute solutions of hydroxypropyl guar gum: Viscositybehaviour and thixotropic properties. Journal of the Science Food and Agriculture,2007,87(4):684-688
    [114] Terracciano L, Isoardi P, Arrigoni S, et al. Use of hydrolysates in the treatment of cow’s milk allergy.Annals of Allergy, Asthma and Immunology,2002,189(6Suppl.1):86-90
    [115] Burks A W, Williams L W, Thresher W, et al. Allergenicity of peanut and soybean extracts altered bychemical or thermal denaturation in patients with atopic dermatitis and positive food challenges.Journal of Allergy Clinical Immunology,1992,90(6):889-897
    [116] Astwood J D, Leach J N, Fuchs R L. Stability of food allergens to digestion in vitro[J]. Naturebiotechnology,1996,14(10):1269-1273
    [117] Besler M, Steinhart H, Paschke A. Stability of food allergens and allergenicity of processed foods.Journal of Chromatography,2001,756(1-2):207-228
    [118] Crevel R W R, Ballmer-Weber B K, Holzhauser T, et al. Thresholds for food allergens and theirvalue to different stakeholders. Allergy,2008,63(5):597-609
    [119] Kim J H, Jeong D, Kim Y R, et al. Development of a multiplex PCR method for testing six GMsoybean events. Food Control,2013,31(2):366-371
    [120] K nig A, Cockburn A, Crevel R W R, et al. Assessment of the safety of foods derived fromgenetically modified (GM) crops. Food and Chemical Toxicology,2004,42(7):1047-1088
    [121]程楠.我国转基因食品标准与法规的研究[J].中国科技财富,2012,12:434
    [122] Tsumura K, Saito T, Tsuge K, et al. Functional properties of soy protein hydrolysates obtained byselective proteolysis. LWT-Food Science and Technology,2005,38(3):255-261
    [123] Bajpai S, Sharma A, Gupta M N. Removal and recovery of antinutritional factors from soybeanflour. Food Chemistry,2005,89(4):497-501
    [124] Song Y S, Frias J, Martinez-Villaluenga C, et al. Immunoreactivity reduction of soybean meal byfermentation, effect on amino acid composition and antigenicity of commercial soy products. FoodChemistry,2008,108(2):571-581
    [125]张瑞岩,李晓东.豆基婴儿配方粉氨基酸的母乳化研究[J].中国食品添加剂,2009,6:58,72-75
    [126]中华人民共和国卫生部. GB10765-2010.食品安全国家标准婴儿配方食品[S].北京:2010
    [127]国际食品法典委员会. Codex Stan72-1981(2007修订).婴儿配方及特殊医用婴儿配方食品标准[S]. FAO/WHO,2007
    [128] Wei Y P, Wang C S, Wu J S B. Flow properties of fruits fillings. Food Research International,2007,34(5):377-381
    [129] Igarashi A, Kawasaki M, Nomura, S, et al. Sensory and motor responses of normal young adultsduring swallowing of foods with different properties. Dysphagia.2010,25(3):198-206
    [130] Gupta P, Elkins C, Long T E, et al. Electrospinning of linear homopolymers of poly (methylmethacrylate): exploring relationships between fiber formation, viscosity, molecular weight andconcentration in a good solvent. Polymer,2005,46(13):4799-4810
    [131] You J M, Sun P, Li D F, et al. A novel method using immunoaffinity chromatography for isolatingβ-conglycinin from soybean proteins. Food Chemistry,2009,117(2):371-374
    [132]牛天贵,贺稚非.食品免疫学[M].北京:中国农业大学出版社,2010
    [133] Pennington S R, Dunn M J. Proteomics: from protein sequence to function. London: Bios scientificpublisher limited,2001
    [134]牛屹东,冯捷,崔恒等.蛋白质双向电泳实验手册[M].北京:北京大学医学出版社,2006
    [135]龚四堂.小儿食物过敏的消化道表现[J].中国实用儿科杂志,2007,22(1):17-18
    [136]杨珍,陈同辛,周纬.上海地区720例特应质儿童食物过敏临床分析[J].临床儿科杂志,2009,27(5):458-461
    [137]胡燕,黎海芪.0-24个月儿童食物过敏的流行病学研究[J].中华儿科杂志,2000,38(7):431-434
    [138]王念蓉,黎海芪.食物过敏婴儿和健康儿肠道菌群分析[J].中国微生态学杂志,2006,18(2):110-111
    [139]刘晓毅,薛文通,李林峰.大豆制品中致敏蛋白的识别[J].食品科学,2007,28(12):122-124
    [140] S derstr m L, Kober A, Ahlstedt S, et al. A further evaluation of the clinical use of Specific IgEantibody testing in allergic diseases. Allergy,2003,58(9):921-929
    [141] Sampson H A. Utility of food-specific IgE concentrations in predicting symptomatic food allergy.Journal of Allergy and Clinical Immunology,2001,107(5):891-897
    [142] Zeece M G, Beardslee T A, Markwell J P, et al. Identification of an IgE-binding region in Soybeanacidic glycinin G1. Food and Agricultural Immunology, l999,11(1):83-90
    [143] Helm R M, Coekerll G, Connauhgton C, et al. A soybean G2glycinin allergenⅠidentification andcharacterizationⅡEpitope mapping and three-dimensional modelling. International Archives ofAllergy and Immunology,2000,123(3):205-219
    [144] Rihs H P, Chen Z, Rueff F, et al. IgE binding of the recombinant allergen soybean profilin (rGly m3) is mediated by conformational epitopes. Journal of Allergy and Clinical Immunology,1999,104(6):1293-1301
    [145] Codina R, Lockey R F, Fernandez-Caldas E, et al. Purification and characterization of a soybeanhull allergen responsible for the Barcelona asthma outbreaks.Ⅱ. Purification and sequencing of theGly m2allergen.Clinical and Experimental Allergy,1997,27(4):424-430
    [146] Gonzalez R, Polo F, Zapatero L, et al. Purification and characterization of major inhalant allergensfrom soybean hulls. Clinical and Experimental Allergy,1992,22(8):748-755
    [147] Franck P, Vautrin M D A, Dousset B, et al.The allergenicity of soybean-based products is modifiedby food technologies. International Archives of Allergy and Immunology,2002,128(3):212-219
    [148] http://www.ncbi.nlm.nih.gov
    [149] Lis H, Sharon N. Lectins: carbohydrate-specific proteins that mediate cellular recognition. ChemicalReviews,1998,98(2):637-674
    [150] Molla A R, Mandal D K. Trifluoroethanol-induced conformational change of tetrameric andmonomeric soybean agglutinin: Role of structural organization and implication for protein foldingand stability. Biochimie,2012, http://dx.doi.org/10.1016/j.biochi.2012.09.011
    [151] Ramesh S. Food Allergy Overview in Children. Clinical Reviews in Allergy and Immunology,2008,34(2):217-230
    [152] Mondoulet L, Paty E, Drumare M F, et al. Influence of thermal processing on the allergenicity ofpeanut proteins. Journal of Agricultural and Food Chemistry,2005,53(11):4547-4553
    [153] Pe as E, Préstamo G, Baeza M L, et al. Effects of combined high pressure and enzymatic treatmentson the hydrolysis and immunoreactivity of dairy whey proteins. International Dairy Journal,2006,16(8):831-839
    [154]沈丽燕.食品过敏原压电型免疫传感快速检测技术的研究[D]:[硕士学位论文].无锡:江南大学,2008
    [155] Beveridge T, Toma S J, Nakai S. Determination of SH-and SS-groups in some food proteins usingEllman’s reagent. Journal of Food Science,1974,39(1):49-51
    [156] Tang C H, Sun X. A comparative study of physicochemical and conformational properties in threevicilins from Phaseolus legumes: Implications for the structure-function relationship. FoodHydrocolloids,2011,25(3):313-324
    [157] Bradford M M. A rapid and sensitive method for quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72(7):248-254
    [158] Whitmore L, Wallace B A. DICHROWEB, an online server for protein secondary structure analysesfrom circular dichroism spectroscopic data. Nucleic Acids Research,2004,32(2): W668-W673
    [159] Myers H R, Montgomery C D, Anderson-Cook M C. Response surface methodology: process andproduct optimization using designed experiments.3rd ed. New York: Wiley,2009
    [160] Grar H, Kaddouri H, Gourine H, et al. Microwave irradiation under different pH conditions induceda decrease in β-lactoglobulin antigenicity. European Food Research Technology,2009,229(5):779-783
    [161] Kaddouri H, El Mecherw K E, Kheroua O, et al. Microwave treatment modify antigenicityproperties of bovine milk proteins. African Journal of Biotechnology,2006,5(13):1267-1270
    [162] Li Z X, Caolimin L, Jamil K. Reduction of allergenic properties of shrimp (Penaeus Vannamei)allergens by high intensity ultrasound. European Food Research and Technology,2006,223(5):639-644
    [163] Zhong J Z, Liu C M, Liu W, et al. Effect of dynamic high-pressure microfluidization at differenttemperatures on the antigenic response of bovine β-lactoglobulin. European Food Research andTechnology,2011,233(1):95-102
    [164] Ohlsson T, Bengtsson N. Microwave technology and foods. Advances in Food and NutritionResearch,2001,43:65-140
    [165] Stathpulos P B, Scholz G A, Hwang Y, et al. Sonication of proteins causes formation of aggregatesthat resemble amyloid. Protein Science,2004,13(11):3017-3027
    [166] Soria A C, Villamiel M. Effect of ultrasound on the technological properties and bioactivity of food:a review. Trends in Food Science and Technology,2010,21(7):323-331
    [167] Floury J, Desrumaux A, Legrand J. Effect of ultra-high pressure homogenization on structure andon rheological properties of soy protein stabilized emulsions. Journal of Food Science,2002,67(9):3388-3395
    [168] Omi Y, Katto T, Ishida K I, et al. Pressure-induced release of basic7S globulin from cotyledondermal tissue of soybean seeds. Journal of Agricultural and Food Chemistry,1996,44(22):3763-3767
    [169] Yang J, Dunker A K, Powers J R, et al. β-Lactoglobulin molten globule induced by high pressure.Journal of Agricultural and Food Chemistry,2001,49(7):3236-3243
    [170] Gekko K. Flexibility of globular proteins in water as revealed by compressibility. In Levine H, Slade L, eds.; Water Relationships in Foods. New York: Plenum Press,1991.753-771
    [171] Li Y Q, Chen Z X, Mo H Z. Effects of pulsed electric fields on physicochemical properties ofsoybean protein isolates. LWT-Food Science and Technology,2007,40(7):1167-1175
    [172] Zhao X Y, Chen F S, Xue W T,et al. FTIR spectra studies on the secondary structures of7S and11Sglobulins from soybean proteins using AOT reverse micellar extraction. Food Hydrocolloids,2008,22(4):568-575
    [173] Breitenede H, Radauer C. A classification of plant food allergens. Jounal of Allergy and ClinicalImmunology,2004,113(5):821-830
    [174]王璋,许时婴,汤坚.食品化学[M].北京:中国轻工业出版社,2009
    [175]杨慧,陈红兵,程伟等.大豆主要过敏原及其脱敏方法的研究进展[J].食品科学,2011,32(21):273-277
    [176]邓成萍,薛文通,孙晓琳等.双酶水解制备大豆多肽的研究[J].粮油食品科技,2006,14(1):23-24
    [177]肖怀秋,李玉珍,兰立新等.双酶协同作用对大豆分离蛋白酶解的影响[J].中国酿造,2008(11):28-30
    [178] Marsman G J P, Gruppen H, Mul A J, et al. In vitro accessibility of untreated, toasted and extrudedsoybean meals for proteases and carbohydrates. Journal of Agricultural and Food Chemistry,1997,45(10):4088-4095
    [179] Tsumura K, Saito T, Kugimiya W, et al. Selective proteolysis of the glycinin and β-conglycininfractions in a soy protein isolate by pepsin and papain with controlled pH and temperature. Journalof Food Science,2004,69(5):363-367
    [180] Luo D H, Zhao Q Z, Zhao M M, et al. Effects of limited proteolysis and high-pressurehomogenization on structural and functional characteristics of glycinin. Food Chemistry,2010,122(1):25-30
    [181] Silva J L, Fogel K, Royer C A. Pressure provides new insights into proteins folding, dynamics andstructure. Trends in Biochemical Science,2001,26(10):612-618
    [182] Tang C H, Wang X S, Yang X Q. Enzymatic hydrolysis of hemp (Cannabis sativa L.) protein isolateby various proteases and antioxidant properties of the resulting hydrolysates. Food Chemistry,2009,114(4):1484-1490
    [183] Kong X Z, Guo M M, Hua Y F, et al. Enzymatic preparation of immunomodulating hydrolysatesfrom soy proteins. Bioresource Technology,2008,99(18):8873-8879
    [184] Adler-Nissen J. Enzymatic hydrolysis of food proteins. London, U.K.: Applied Science Publishers,1986:427
    [185] Chen L, Chen J S, Ren J Y, et al. Modifications of soy protein isolates using combined extrusionpre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties. FoodHydrocolloids,2011,25(5):887-897
    [186] Marangoni A G. Enzyme Kinetics: A Modern Approach. NewYork: John Wiley&Sons Inc.,2003
    [187] Whijaker J R. Principles of enzymology for the food sciences. NewYork: Marcel Dekker Inc.,2007
    [188] Bisswanger H. Practical Enzymology. Weinheim: Wiley-VCH Verlag GmbH&Co. KGaA,2004
    [189]赵新淮,徐红华,姜毓君.食品蛋白质:结构、性质与功能[M].北京:科学出版社,2009,294-297
    [190]逯昕.酶改性制备专用大豆分离蛋白的研究[D]:[硕士学位论文].无锡:江南大学,2008
    [191]高梅娟,刘平,兰小红等.双酶酶解豆粕蛋白制备低苦味肽[J].食品工业科技,2010,31(2):193-197
    [192]朱海峰,班玉凤,赵惠.内切酶与端肽酶协同水解大豆蛋白的研究[J].食品科技,2004(4):29-32
    [193] Olsen K, Kristiansen K R, Skibsted L H. Effect of high hydrostatic pressure on the steady-statekinetics of tryptic hydrolysis of β-lactoglobulin. Food Chemistry,2003,80(2):255-260
    [194] Stapelfeldt H, Skibsted L H. Pressure denaturation and aggregation of β-lactoglobulin studied byintrinsic fluorescence depolarization, Rayleigh scattering, radiationless energy transfer andhydrophobic fluroprobing. Journal of Dairy Research,1999,66(4):545-558
    [195] Zhang T, Jiang B, Miao M, et al. Combined effects of high-pressure and enzymatic treatments onthe hydrolysis of chickpea protein isolates and antioxidant activity of the hydrolysates. FoodChemistry,2012,135(3):904-912
    [196] Toldrà M, Parés D, Saguer E, et al. Hemoglobin hydrolysates from porcine blood obtained throughenzymatic hydrolysis assisted by high hydrostatic pressure processing. Innovative Food Science andEmerging Technologies,2012,12(4):435-442
    [197] Pe as E, Snel H, Floris R, et al. High pressure can reduce the antigenicity of bovine whey proteinhydrolysates. International Dairy Journal,2006,16(9):969-975
    [198] Quirós A, Chichón R, Recio I, et al. The use of high hydrostatic pressure to promote the proteolysisand release of bioactive peptides from ovalbumin. Food Chemistry,2007,104(4):1734-1739
    [199] Zeece M, Huppertz T, Kelly A. Effect of high-pressure treatment on in-vitro digestibility ofβ-lactoglobulin. Innovative Food Science and Emerging Technologies,2008,9(1):62-69