重型数控机床多学科设计优化若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重型数控机床是由多个部件和子系统组成的复杂系统,相互之间存在不同程度的耦合关系,这给该产品设计带来了很大的困难。将多学科设计优化方法(MDO)应用到该类产品的设计之中,则能充分考虑复杂系统各学科之间的关联,得到满足设计要求的全局优解;这对于提高重型数控机床设计水平和创新能力,具有较大的实际意义。
     本课题受国家“863”高技术研究发展计划项目2007AA04Z136、国家自然科学基金项目60573178和60736019支持,对重型数控机床MDO应用中的的若干关键难点进行研究。研究内容包括总体设计的MDO模型建立、学科建模和MDO问题求解。
     对多学科设计优化方法与技术进行了较全面的介绍。对重型数控机床设计优化发展情况进行了阐述。以重型数控双柱立式车床为例,对机床总体设计的MDO建模进行了研究,给出了总体设计的MDF、IDF、CO、BLISS模型。
     针对空间受力复杂的多油垫静压导轨的静压计算这一静不定问题求解困难甚至无法求解的现状,以静压导轨及其连接部分刚性足够大为前提,提出一种以油腔中心点共面/共线方程为协调条件的新的近似方法。用该近似计算方法建立了某重型数控立车横梁—滑座导轨静压计算的学科分析模型。在此基础上,采用元模型方法,对该横梁—滑座静压导轨系统进行了设计优化。
     将导轨静压近似计算新方法用于该重型数控立车刀架系统设计中,建立了刀架系统精加工精度计算模型,进而建立了刀架系统的MDO模型。此优化问题具有高阶、多峰、非线性的特点,且全局优解位于狭窄不规则的区域,导致基于元模型技术和启发式探索的优化迭代困难。对此,提出了基于元模型的设计空间轮换(DSA)策略,即:先在位于该约束边界上的子空间进行试验设计,建立元模型;在随后的每轮优化迭代循环中,以元模型为分析代理,顺序进行子设计空间上的启发式全局探索、整个设计空间上的局部寻优算法搜索、系统分析和更新元模型的操作,直至收敛。采用DSA策略,得到了该多学科优化问题的全局优解。
     进行了考虑静压—结构耦合的重型数控立车工作台导轨静压计算的数学建模与工作台MDO研究。在工作台主轴z向浮动情况下,用有限元法求解工作台变形时,它的z向约束较难处理。针对此问题,提出一种计算工作台刚性位移的方法和新的用于静压迭代计算求解的校正改进法,由此求出各油腔的油膜厚度和静压。新的校正改进法还可用于工作台中心卸荷或限制浮升起作用的情况。在此基础上,建立了包括结构和静压两个强耦合学科的工作台优化模型,采用并行子空间设计(CSD)方法求得了该优化模型的全局优解。
Heavy-duty CNC machine tools are complex systems with some coupled components and subsystems, which leads to great difficulties in their design optimizations. This problem may be solved by applying multidisciplinary design optimization (MDO) methods that can consider the interactions between coupled disciplines. Using MDO approaches in Heavy-duty CNC machine tool design has real significance in promoting the designers' capabilities in design and creation.
     Supported by the National "863" High-Tech Development Project of China under the grant No. 2007AA04Z136 and National Natural Science Fund under the grant No. 60573178 and 60736019, some key problems are studied in the MDO applications to heavy-duty CNC machine tool designs. The researches involve establishment of MDO model of the overall design, disciplinary mathematical modeling and MDO problem solving.
     The MDO methods and technologies are reviewed. The development situation of heavy-duty CNC machine tools is also discussed. Taking heavy duty CNC vertical turning mill as the research object, MDO modeling problem of the overall design is introduced and studied, and its MDF, IDF, CO and BLISS models are given subsequently.
     Aiming at the difficulty of statically indeterminate problem, i.e., the hydrostatic pressure calculation of multipad hydrostatic guideways sustained complex spatial forces, under an assumption that stiffnesses of guideways and their jointing structure are sufficiently large, a new approximation method is presented by taking co-planarity/co-linearity equations that constrains pocket centers as compatibility conditions. Then, the disciplinary analytical model is constructed by the approximation method for hydrostatic pressure calculation of beam & slide-rest guideways in a heavy duty CNC vertical turning mill. Based on this, hydrostatic system of the beam & slide-rest guideways is optimized by metamodeling technology.
     The new approximation method of hydrostatic pressure calculation is also used for tool head system design of the machine tool, and an accuracy calculation model of finish machining is constructed for the tool head. On the basis of this, MDO model of the tool head system is set up. The MDO problem is high-order, multimodal and nonlinear whose global optimum is only located in such a narrow and irregular area that it is difficult to find the solution using metamodeling technology and heuristic methods. To solve this problem, a metamodel-based design space alternation (DSA) strategy is proposed. In this strategy, metamodels are created in the narrow area of interest; then, heuristic exploration in the narrow area and local search in global design space with metamodels, system analysis and metamodel updating are sequentially executed in every iteration cycle until the convergence criterion is met. The DSA strategy is applied successfully to the tool head MDO problem and its global solution is obtained.
     Mathematical modeling of hydrostatic pressure calculation for worktable guideway considering fluid-structure coupling and MDO of worktable in a heavy duty CNC vertical turning mill are studied. In the case that the worktable spindle is in a state of floating in z direction, it is difficult to set the constraint of the spindle part in z direction when finite element methods are used to analyze its deformations. To address this issue, a new method is proposed to predict the rigid displacement of the worktable and a novel correction-improvement method is presented to iteratively calculate hydrostatic pressures. Thus, the oil film thickness and hydrostatic pressure in each pocket are obtained. The new correction-improvement method is also suitable for the case that central unloading device or floating restriction device is active. Then, an optimization model is built including structural analysis and hydrostatic pressure calculation disciplines which are coupled bi-directionally. The optimization problem is solved using the concurrent subspace design (CSD) method and its global optimum is attained.
引文
[1]我国数控机床品开发现状.中国新技术新产品,2007,8:72-73
    [2]徐宁安.我国重型机床制造业面临的发展机遇与挑战.数控机床市场,2007,7:34-35
    [3]王奕首,史彦军,滕弘飞.多学科设计优化研究进展.计算机集成制造系统,2005,11(6):751-756
    [4]Current state of the art:Multidisciplinary design optimization.AIAA White Paper,Washington:AIAA Technical Committee on MDO,1991
    [5]Sobieski J S.Sensitivity of complex,internally coupled systems.AIAA Journal,1990,28(1):153-160
    [6]http://www.aiaa.org/portal/index.cfm?GetComm=80&tc=tc
    [7]Balling R J,Sobieski J S.Optimization of coupled systems:A critical overview of approaches.AIAA Journal,1996,34(1):6-17
    [8]Bailing R J,Wilkinson C A.Execution of multidisciplinary design optimization approaches on common test problems.6th NASA and ISSMO,Symposium on Multidisciplinary Analysis and Optimization,Bellevue,Washington,1996,AIAA- 1996-4033
    [9]陈柏鸿.机械产品多学科综合优化设计中的建模、规划及求解策略[博士学位论文].武汉:华中科技大学,2001
    [10]余雄庆,姚卫星,薛飞,等.关于多学科设计优化计算框架的探讨.机械科学与技术,2004,23(3):286-289
    [11]Sobieski J S,Haftka R T.Multidisciplinary aerospace design optimization:Survey of recent developments.Structural Optimization,1997,14(1):1-23
    [12]Sobieski J S.A linear decomposition method for large optimization problems- blueprint for development.NASA-TM-83248,1982
    [13]王振国,陈小前,罗文彩.飞行器多学科设计优化理论与应用研究.北京:国防工业出版社,2006
    [14]Giesing J P,Barthelemy J M.A summary of industry MDO applications and needs.AIAA White Paper,1998
    [15]Padula S L,Korte J J,Dunn H J,et al.Multidisciplinary optimization branch experience using iSIGHT software.NASA-TM-1999-209714
    [16]Townsend J C,Salas A O.Managing MDO software development projects.AIAA-2002-5442
    [17]李哲,马忠辉.多学科优化设计在航空航天领域的应用及发展.航天返回与遥感,2004,25(3):65-70
    [18]Stewart J R,Edwards H C.A framework approach for developing parallel adaptive multiphysics applications.Finite Elements in Analysis and Design,2004,40(12):1599-1617
    [19]Carty A.An approach to multidisciplinary design,analysis & optimization for rapid conceptual design.AIAA-2002-5438
    [20]Staubach B.Multidisciplinary design optimization,MDO,the next frontier of CAD/CAE in the design of aircraft propulsion systems,AIAA-2003-2803
    [21]Yang R J,Gu L,Tho C H,et al.Multidisciplinary design optimization of a full vehicle with high performance computing.42nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference and Exhibit,Seattle,Washington,2001,AIAA-2001-1273
    [22]Yang R,Gu L,Tho C,et al.Reliability-Based Multidisciplinary Design Optimization of a Full Vehicle System.43rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,Denver,Colorado,2002,AIAA-2002-1758
    [23]Yang R,Tho C,Gu L,et al.Recent development in multidisciplinary design optimization of vehicle structures.9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,Atlanta,Georgia,2002,AIAA-2002-5606
    [24]Egorov I N,Kretinin G V,Leshchenko I A,et al.The main features of IOSO technology usage for multi-objective design optimization,10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,Albany,New York,2004,AIAA-2004-4610
    [25]余雄庆,丁运亮.多学科设计优化算法及其在飞行器设计中应用.航空学报,2000,21(1):1-6
    [26]薛飞,余雄庆,姚卫星,等.协同优化在机翼气动结构一体化设计中初步应用.航空计算技术,2004,34(1):82-86
    [27]Chen Q F,Dai J H.Distributed coevolutionary multidisciplinary design optimization:A flexible approach.9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,Atlanta,Georgia,2002,AIAA 2002-5582
    [28]陈琪锋,戴金海.卫星星座系统多学科设计优化研究.宇航学报,2003,24(5):502-533
    [29]陈琪锋,戴金海,李晓斌.分布式协同进化MDO算法及其在导弹设计中应用.航空学报,2002,23(3):245-248
    [30]李响.多学科设计优化方法及其在飞行器设计中的应用[博士学位论文].西安:西北工业大学,2003
    [31]卜广志,张宇文.鱼雷总体设计中的MDO方法应用研究.舰船科学技术,2004,26(1):27-34
    [32]王书河,何麟书,张玉珠.飞行器多学科设计优化软件系统.北京航空航天大学学报,2005,31(1):51-55
    [33]钟毅芳,陈柏鸿,肖人彬,等.复杂机械产品协同寻优相关技术的研究.中国机械工程,2002,13(6):515-517
    [34]Chen B H,Zhong Y F,Liu J H,et al.Research on approaches of multidisciplinary design optimization for non-hierarchic systems.CADDM,2000,10(1):84-94
    [35]王周宏,钟毅芳,陈义保.不可微优化的捆集法及其在工程优化设计中的应用.机械工程学报,2002,38(4):11-16
    [36]陈建江.面向飞航导弹的多学科稳健优化设计方法及应用[博士学位论文].武汉:华中科技大学,2004
    [37] De Weck O, Agte J, Sobieski J S, et al. State-of-the-art and future trends in multidisciplinary design optimization. 48th AIAA /ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, 2007, AIAA-2007-1905
    [38] Sobieski J S. Multidisciplinary design optimization: an emerging, new engineering discipline.NASA-TM-107761, 1993
    [39] Storaasli O O, Sobieszczanski J. Design oriented structural analysis. 14th AIAA/ASME/SAE Structures, Structural Dynamics, and Materials Conference, Williamsburg, Virginia, 1973, AIAA Paper 73-338
    [40] Sobieski J S. Higher order sensitivity analysis of complex, coupled systems. AIAA Journal, 1990,28(4):756-758
    [41] Sobieski J S, Barthelemy J F, and Riley K M. Sensitivity of optimum solutions to problem parameters,AIAA Journal, 1982,20(9): 1291-1299
    [42] Barthelemy J F, Sobieski J S. Optimum sensitivity derivatives of objective functions in nonlinear programming, AIAA Journal, 1983, 21(6):913-915
    [43] Vanderplaats G N, Yoshida N. Efficient calculation of optimum design sensitivity. AIAA Journal,1985,23(11):1798-1803
    [44] Rodriguez D L. Response surface based optimization with a Cartesian CFD method. 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2003, AIAA-2003-465
    [45] Hosder S, Watson L T, Grossman B, et al. Polynomial response surface approximations for the multidisciplinary design optimization of a high speed civil transport. Optimization and Engineering,2001, 2(4): 431-452
    [46] Simpson T W, Mauery T M, Korte J J, et al, Kriging metamodels for global approximation in simulation-based multidisciplinary design optimization. AIAA Journal, 2001, 39(12): 2233-2241
    [47] Sobester A, Leary S J, Keane A J. On the design of optimization strategies based on global response surface approximation models. Journal of global optimization, 2005,33(1): 31-59
    [48] McDonald D B, Grantham W J, Tabor W L, et al. Global and local optimization using radial basis function response surface models. Applied Mathematical Modelling, 2007, 31(10): 2095-2110
    [49] Regis R G, Shoemaker C A. Parallel radial basis function methods for the global optimization of expensive functions. European Journal of Operational Research, 2007, 182(2): 514-535
    [50] Papadrakakis M, Lagaros M, Tsompanakis Y. Structural optimization using evolution strategies and neural networks. Computer Methods in Applied Mechanics and Engineering, 1998, 156(1-4):309-333
    [51] Breitkopf P, Naceur H, Rassineux A, et al. Moving least squares response surface approximation:Formulation and metal forming applications. Computers and Structures, 2005, 83(17-18): 1411-1428
    [52] Yang R J, Wang N, Tho C H, et al. Metamodeling development for vehicle frontal impact simulation.Journal of Mechanical Design, Transactions of the ASME, 2005, 127(5):1014-1020
    [53] Clarke S M, Griebsch J H, Simpson T W. Analysis of support vector regression for approximation of complex engineering analyses. Journal of Mechanical Design, Transactions of the ASME, 2005, 127(6):1077-1087
    [54]Crino S,Brown D E.Global optimization with multivariate adaptive regression splines.IEEE Transactions on Systems,Man,and Cybernetics,2007,37(2):333-340
    [55]Turner C J,Crawford R H,Campbell M I.Multidimensional sequential sampling for NURBs-based metamodel development.Engineering with Computers,2007,23(3):155-174
    [56]Wang G G,Shan S.Review of metamodeling techniques in support of engineering design optimization.Journal of Mechanical Design,2007,129(4):370-380
    [57]Krishnamurthy T.Comparison of response surface construction methods for derivative estimation using moving least squares,kriging and radial basis functions.46th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference,Austin,Texas,2005,AIAA-2005-1821
    [58]苏金明,张莲花,刘波.MATLAB工具箱应用.北京:电子工业出版社,2004
    [59]Craig K J,Stander N,Dooge D A,et al.Automotive crashworthiness design using response surface-based variable screening and optimization.Engineering Computations.2005,22(1):38-61
    [60]胡良平.现代统计学与SAS应用.北京:军事医学科学出版社,2000
    [61]李响,李为吉.复杂工程系统优化设计面临的问题及解决方法.机械工程学报,2006,42(6):156-160
    [62]Sobieski J S,Agte J S,Sandusky R J.Bi-level integrated system synthesis(BLISS).7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,St.Louis,Missouri,1998,AIAA-1998-4916
    [63]龚春林,袁建平,谷良贤,等.基于响应面的变复杂度气动分析模型.西北工业大学学报,2006,24(4):532-535
    [64]Simpson T W,Peplinski J D,Koch P N,et al.Metamodels for computer-based engineering design:survey and recommendations.Engineering with Computers,2001,17(2):129-150
    [65]赵敏,崔维成.多学科设计优化研究应用现状综述.中国造船,2007,48(3):63-72
    [66]第一机械工业部北京机床研究所.机床行业综述.北京:第一机械工业部技术情报所,1979
    [67]Rao S B.Metal cutting machine tool design - A review.Journal of Manufacturing Science and Engineering,Transactions of the ASME,1997,119(4B):713-716
    [68]Lin C W,Tu J F,Kamman J.An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation.International Journal of Machine Tools and Manufacture,2003,43(10):1035-1050
    [69]Li H,Shin Y C.Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermo-mechanical spindle model.International Journal of Machine Tools and Manufacture,2004,44(4):347-364
    [70]Whalley R,Ebrahimi M,Abdul-Ameer A A.Hybrid modelling of machine tool axis drives.International Journal of Machine Tools and Manufacture,2005,45(14):1560-1576
    [71]Kima M S,Chungb S C.A systematic approach to design high-performance feed drive systems.International Journal of Machine Tools and Manufacture,2005,45(12-13):1421-1435
    [72] Lin C W, Tu J F, Kamman J. An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation. International Journal of Machine Tools and Manufacture, 2003, 43(10): 1035-1050
    [73] Li J, Li J C M. Temperature distribution in workpiece during scratching and grinding. Materials Science and Engineering A, 2005,409(1-2): 108-119
    [74] Yang H, Ni J. Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error. International Journal of Machine Tools and Manufacture, 2005, 45(4-5): 455-465
    [75] Ratchev S, Liu S, Huang W, et al. An advanced FEA based force induced error compensation strategy in milling. International Journal of Machine Tools and Manufacture, 2006, 46(5): 542-551
    [76] Dassanayakea K M M, Tsutsumib M, Saitoc A. A strategy for identifying static deviations in universal spindle head type multi-axis machining centers. International Journal of Machine Tools and Manufacture, 2006, 46(10): 1097-1106
    [77] Sencer B, Altintas Y, Croft E. Feed optimization for five-axis CNC machine tools with drive constraints. International Journal of Machine Tools and Manufacture, 2008,48(7-8): 733-745
    [78] Zaeh M, Siedl D. A New Method for Simulation of Machining Performance by Integrating Finite Element and Multi-body Simulation for Machine Tools. CIRP Annals - Manufacturing Technology,2007, 56(1): 383-386
    [79] Neugebauer R, Drossel W G, Harzbecker C, et al. Method for the optimization of kinematic and dynamic properties of parallel kinematic machines. CIRP Annals - Manufacturing Technology, 2006,55(1): 403-406
    [80] Dhupia J, Powalka B, Katz R, et al. Dynamics of the arch-type reconfigurable machine tool.International Journal of Machine Tools and Manufacture, 2007,47(2): 326-334
    [81] Kroo I. Distributed multidisciplinary design and collaborative optimization. http://aero.stanford.edu/Reports/VKI_CO_Kroo_A.pdf
    
    [82] Sobieski I, Kroo I. Aircraft design using collaborative optimization. 34th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1996, AIAA-1996-715
    [83] Kroo I, Altus S, Braun R, et al. Multidisciplinary optimization methods for aircraft preliminary design. 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,Panama City Beach, Florida, 1994, AIAA-1994-4325
    [84] Braun R D, Gage P, Kroo I. Implementation and performance issues in collaborative optimization.6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue,Washington, 1996, AIAA Paper 96-4017
    [85] Braun R D, Moore A A, Kroo I M. Use of the collaborative optimization architecture for launch vehicle design. 6th NASA and ISSMO Symposium on Multidisciplinary Analysis and Optimization,Bellevue, Washington, 1996, AIAA-1996-4018
    [86] Alexandrov N M, Kodiyalam S. Initial results of an MDO method evaluation study. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis,Missouri, 1998, AIAA-1998-4884
    [87]韩明红.ICO多学科设计优化方法.北京航空航天大学学报,2007,33(8):963-967
    [88]李响,李为吉.利用协同优化方法实现复杂系统分解并行设计优化.宇航学报,2004,25(3):300-304
    [89]余雄庆,薛飞,穆雪峰,等.用遗传算法提高协同优化方法的可靠性.中国机械工程,2003,14(21):1808-1812
    [90]Sobieski I P,Kroo I M.Collaborative optimization using response surface estimation.36th Aerospace Sciences Meeting and Exhibit,Reno,Nevada,1998,AIAA-1998-915
    [91]Sobieski I P,Manning V M,Kroo I M.Response surface estimation and refinement in collaborative optimization.7~(th) AIAA/USAF/NASA/ISSMO Symposium on Multidiseipiinary Analysis and Optimization,St.Louis,Missouri,1998,AIAA-1998-4753
    [92]Zadeh P M,Toropov V V,Wood A S.Use of global approximations in the collaborative optimization framework.10th AIAA/ISSMO Multidiseiplinary Analysis and Optimization Conference,Albany,New York,2004,AIAA-2004-4654
    [93]Jun S,Jeon Y,Rho J,et al.Application of collaborative optimization using response surface methodology to an aircraft wing design.10th AIAA/ISSMO Multidiseiplinary Analysis and Optimization Conference,Albany,New York,2004,AIAA-2004-4442
    [94]Sobieski J S.Optimization by decomposition:A step from hierarchic to non-hierarchic systems.Second NASA/Air Force Symposium on Recent Advances in Multidiseiplinary Analysis and Optimization,Hampton,Virginia,1988
    [95]Renaud J E,Gabriele G A.Improved coordination in nonhierarchic system optimization.AIAA Journal,1993,31(12):2367-2373
    [96]Sellar R S,Batill S M,Renaud J E.Response surface based,concurrent subspace optimization for multidiseiplinary system design.34th AIAA Aerospace Sciences Meeting and Exhibit,Reno,Nevada,1996.AIAA-96-0714
    [97]Rodriguez J F,Perez V M,Padmanabhan D,et al.Sequential approximate optimization using variable fidelity response surface approximations.Structural and Multidiseiplinary Optimization,2001,22(1):24-34
    [98]Batill S M,Stelmaek MA,Yu X Q.Multidisciplinary Design Optimization of an Electric-powered Unmanned Air Vehicle.Aircraft Design,1999,2(1):1-18
    [99]Tedford N,Martins J.On the Common Structure of MDO Problems:A comparison of architectures.11th AIAA/ISSMO Multidiseiplinary Analysis and Optimization Conference,Portsmouth,Virginia,2006,AIAA-2006-7080
    [100]Kodiya[am S,Sobieski J S.Bilevel Integrated System Synthesis with Response Surfaces.AIAA Journal,2000,38(8):1479-1485
    [101]Sobieski J S,Altus T D,Phillips M,et al.Bi-level integrated system synthesis for concurrent and distributed processing.AIAA Journal,2003,41(10):1996-2002
    [102]Kim H,Malone B,Sobieski J S.A distributed,parallel,and collaborative environment for design of complex systems.AIAA-2004-1848
    [103]De Baets P,Mavris D.Aeroelastic design by combining conventional practice with bi-level integrated system synthesis(BLISS).AIAA-2004-4431
    [104]Kim H,Ragon S,Mullins J,et al.A web-based collaborative environment for bi-level integrated system synthesis(BLISS).AIAA 2006-1618
    [105]Michelena N,Kim H M,Papalambros P Y.A system partitioning and optimization approach to target cascading.In Proceedings of the 12th International Conference on Engineering Design,Munich,Germany,1999
    [106]Allison J,Waish D,Kokkolaras M,et al.Analytical target cascading in aircraft design.44th AIAA Aerospace Sciences Meeting,2006,v21,16112-16120
    [107]Kim M H,Michelena N F,Papalambros P Y,et al.Target cascading in optimal system design.Source:Journal of Mechanical Design,Transactions of the ASME,2003,125(3):474-480
    [108]Allison J,Kokkolaras M.Zawislak M,et al.On the use of analytical target cascading and collaborative optimization for complex system design.6th World Conference on Structural and Multidisciplinary Optimization,Rio de Janeiro,Brazil,2005
    [109]Sobieski J S.Integrated system-of-systems synthesis(ISSS).11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,Portsmouth,Virginia,2006,AIAA-2006-7064
    [110]李晓斌,陈小前,张为华.多学科设计优化中搜索策略研究.战术导弹技术,2004,2:1-6
    [111]袁晓辉,袁艳斌,张勇传.电力系统中机组组合的现代智能优化方法综述.电力自动化设备,2003,23(2):73-78
    [112]邢文训,谢金星.现代优化计算方法.北京:清华大学出版社,1999
    [113]Yuan W Z,Chang H L,Li W J,et al.Application of an optimization methodology for multidisciplinary system design of microgyroscopes.Microsystem Technologies,2006,12(4):315-323
    [114]Yoshimura M,lzui K.Hierarchical parallel processes of genetic algorithms for design optimization of large-scale products.Journal of Mechanical Design,2004,126(3):217-224
    [115]Jilla C D,Miller D W.Assessing the performance of a heuristic simulated annealing algorithm for the design of distributed satellite systems.Acta Astronautica,2001,48(5-12):529-543
    [116]Venter G,Sobieski J S.Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization.Journal of Structural Multidisciplinary Optimization,2004,26:121-131
    [117]胡迎春,李尚平,廖廷华.基于Hopfield神经网络的结构优化算法研究.中国机械工程,2007,18(12):1456-1459
    [118]钟毅芳,陈柏鸿,王周宏.多学科综合优化设计原理与方法.武汉:华中科技大学出版社,2006
    [119]Hajela R Soft computing in multidisciplinary aerospace design - New directions for research.Progress in aerospace sciences,2002,38(1):1-21
    [120]Huang H Z,Tao Ye,Liu Yu.Multidisciplinary collaborative optimization using fuzzy satisfaction degree and fuzzy sufficiency degree model.Soft Computing,2007,12(10):995-1005
    [121]周瑞英,顾军华,李娜娜,等.一种基于免疫和Hopfield神经网络的多峰值优化算法.计算机应 用,2007,27(7):1751-1756
    [122]Kalogirou S A.Optimization of solar systems using artificial neural-networks and genetic algorithms.Applied Energy,2004,77(4):383-405
    [123]Kaveh A,Shahrouzi M.Optimal structural design family by genetic search and ant colony approach.Engineering Computations,2008,25(3):268-288
    [124]Wang X H,Li J J.Hybrid particle swarm optimization with simulated annealing.In Proceedings of 2004 International Conference on Machine Learning and Cybernetics,2004,v4,2402-2405
    [125]Javadi A A,Farmani R,Tan T P.A hybrid intelligent genetic algorithm.Advanced Engineering Informatics,2005,19(4):255-262
    [126]王爱玲,白恩远,赵学良,等.现代数控机床.北京:国防工业出版社,2003
    [127]蔡厚道,吴暐.数控机床构造.北京:北京理工大学出版社,2007
    [128]王东锋.液体静压导轨及其在机床导轨设计中的应用研究.液压气动与密封,2003,101(5):26-28
    [129]朱德志.恒流静压技术在刨改铣中的应用.制造技术与机床,2005,7:106-109
    [130]邱勇.工作台导轨静压改造.重型机械科技,2005,1:23-26
    [131]陈燕生.液体静压支承原理和设计.北京:国防工业出版社,1980
    [132]许晓畅.专用机床设备设计.重庆:重庆大学出版社,2003
    [133]Cagan J,Campbell M I,Finger S,et al.A framework for computational design synthesis:model and applications.Journal of Computing and Information Science in Engineering,2005,5(3):171-181
    [134]Pardalos P M,Romeijn H E,Tuy H.Recent developments and trends in global optimization.Journal of Computational and Applied Mathematics,2000,124(1-2):209-228
    [135]Saitou K,Izui K,Nishiwaki S,et al.A survey of structural optimization in mechanical product development.Journal of Computing and Information Science in Engineering,2005,5(3):214-226
    [136]江洁,李华威,胡于进.CKX53200型立车工作台静刚度有限元分析.湖北工学院学报,1996,11(3):50-53
    [137]江洁.CKX53200型20米数控立车工作台静刚度有限元分析[硕士学位论文].武汉:华中理工大学,1996
    [138]蒋惟朴,石峰.用恒流静压导轨改造十米立车.制造技术与机床,1990,6:40-41
    [139]Logan D L.有限元方法基础教程.第3版.伍义生,吴永礼译.北京:电子工业出版社,2003
    [140]李庆杨,关治,白峰杉.数值计算原理.北京:清华大学出版社,2000
    [141]韩明红,邓家提.面向工程的优化算法性能实验研究.中国机械工程,2007,18(12):1460-1464