大行程高精度微进给系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断发展,在国防工业、航天宇航技术、生物工程、微电子工程、纳米科学与技术等各个领域,对加工精度的要求越来越高,提高制造精度后可以大幅地提高产品的性能和质量,提高其稳定性和可靠性。超精密机床是保证产品加工精度的主要工具,而微进给系统作为超精密机床的核心部件,其性能直接影响超精密机床的加工精度。超精密加工技术的持续发展,要求进给系统能够实现在大行程范围内的超精密微位移,从而可以加工大尺寸的工件,并获得好的加工精度。传统的进给系统受自身结构特点的限制,不能很好地满足要求,因此需要研制一种新型的具有高精度、大行程的超精密进给系统,可以大大提高超精密机床的加工精度。对提高我国国民经济发展、缩短我国与发达国家在超精密加工、检测领域的差距,加快国防工业现代化建设具有重要意义。
     本文基于摩擦学原理,采用压电陶瓷驱动,研制了一种新型的大行程高精度微进给系统,为超精密微进给技术的实现提供了一个经济可靠的手段,对于超精密定位系统的研究和应用具有重要的意义和实用价值。
     该微进给系统由驱动部件与传动部件组成。驱动部件采用压电陶瓷驱动摩擦套筒实现角位移输出;传动部件由滚珠丝杠与空气静压导轨组成,实现直线运动。对系统的可调预压装置、空气静压导轨等关键部件进行设计,采用有限元方法系统地分析了预压装置的刚度、应力、固有频率等静态特性,得出柔性铰链的各几何尺寸对预压装置的静态特性的影响,从而实现优化设计。
     采用模块化方法,建立微进给系统的物理模型和数学模型,为设计系统的控制器打下了基础。为了减少摩擦驱动过程中,微观滑移、非线性等因素对定位系统的动态性能的影响,优化控制系统的控制参数,建立了系统的动力学模型与方程,并基于Karnopp“粘滞——滑移”模型对系统的动态特性进行仿真、实验研究,得出正压力、摩擦系数、转动惯量等参数变化对位移输出的影响规律。
     针对压电陶瓷驱动过程中存在的磁滞、非线性等特性,建立了驱动系统的逆Preisach模型,能够很好的预测压电驱动器在经过一定的随机控制电压序列后的位移输出值,有效地改善输出位移的磁滞非线性,减小了系统的非线性误差,提高了控制精度。
     根据微进给机构的特点,设计了变速积分模糊控制系统。采用二维模糊控制器,在选择模糊变量的隶属函数时采用不均匀划分,在误差较大的区域采用低分辨率的模糊子集,在误差较小的区域采用较高分辨率的模糊子集,从而提高系统的渐进稳定性,并改善了常规模糊控制器存在量化误差和调节死区、稳态性能差的缺点。采用Matlab软件的Simulink工具进行了闭环控制的仿真分析,证明了方案的可行性。
     通过对所设计的微进给机构进行闭环控制的实验研究,能够在150mm的行程上,得到高精度的位移输出,位移分辨率可达到0.01μm,定位精度达到0.0347μm。通过实验研究了实验参数对系统的动态性能的影响规律,验证了仿真结果,得出优化控制参数。
With the development of science and technology, the requirement of machining precision is becoming higher and higher in all kinds of fields, such as national defense industry, navigation technique, biology engineering, micro-electron engineering and nanometer science and technology and so on. The capability and quality, stability and dependability of products can be improved greatly by enhancing fabricate precision. Ultra-precision machine tool is a major tool to ensure machining precision of products. Micro-feed system is the core part of ultra-precision machine tool, whose capability determined directly machining precision. With the development of ultra-precision machining technology, ultra-precision positioning in the range of large displacement needs to be achieved in micro-feed system to machine workpiece with large size and obtain the good machining precision. Traditional feed system can not satisfy requirement of machining precision, which is limited by its characteristic of structure. So a new ultra-precision feed system with high precision and large travel needs to be designed and fabricated, consequently the machining precision of ultra-precision machine tool is improved greatly, which has important significance to improve national economy, shorten the gap of ultra-precision machining and detection between our country and developed countries and accelerate national defense industry modernization construction.
     A new micro-feed system with large-travel and high-precision based on tribology theory is presented, which is driven by piezoelectric actuators. It provides an economy and reliable method for the realization of nanoposition technique, which has important significant and practicality value on the research and application of ultra-precision positioning system.
     The micro-feed system consists of driving parts and transmission parts. The friction column is driven by piezoelectric actuator to obtain the output angle displacement in driving parts; Transmission parts consist of ball screw and air static guide, which achieve linear motion. The key parts of system are devised, which consist of adjustable preload mechanisms and air static guide. The static characteristics of preload mechanisms that consist of stiffness, stress and natural frequency are analyzed by finite element analysis method to obtain the physical dimension of flexibility hinges influence on static characteristics. And optimum design is achieved.
     Physical and mathematic model of micro-feed system are built by modularized method to provide theory basis for devising controller of this system. Dynamics model and equation are built in order to optimize control parameters and reduce influence factors on positioning system during friction drive, such as micro-slip, nonlinear and so on. Simulation and experimental research on dynamic characteristic of system is carried out based on Karnopp“stick-slip”model. The influence rule on dynamical characteristic is obtained which is aroused by normal pressure, friction coefficient and rotary inertia.
     Inverse Preisach model of driving system is built to describe hysteresis and nonlinear characteristic existing in piezoelectricity. The output displacement is predicted perfectly after a series of random voltage path. And hysteresis nonlinear of displacement is improved availably. The nonlinear error is reduced and control precision is increased.
     Fuzzy control system with variable speed integrate is designed according to the features of micro-feed mechanism. Two-dimension fuzzy controller is adopted. Non-homogeneous division is adopted to choose membership function of fuzzy variable. Fuzzy subset with low precision is adopted when the error is large. Otherwise fuzzy subset with high precision is done. The disadvantages of quantization, dead zone and bad steady-state behavior which exist in conventional fuzzy controller will be ameliorated, and stability of the system is improved. The simulation of closed-loop control is done by Simulink in Matlab software, which proves that the project is feasible. Experimental research on closed-loop control is carried on. The precision of
     the micro-feed motion is 0.01μm in the travel of 150mm, and positioning precision is up to 0.0347μm. The impact rules of experimental parameters on dynamic characteristic are investigated by experimental method. The result is same to simulation, and optimizing control parameters are obtained.
引文
1 J. Jeong, Y. M. Choi, J.H. Lee. Design and Control of Dual Servo Actuator forNear Field Optical Recording System. Pro. of SPIE, 2005, 6048: 1~8
    2王立峰,李蓓智,杨建国,王浩林.压电驱动微进给工作台设计与性能研究.压电与声光. 2007, 29(2): 240~242
    3 S. B. Choi, S. S. Han. Position Control System Using ER Clutch andPiezoactuator. Pro. of SPIE, 2003, 5056: 424~431
    4姚贵英,董润滋,卞罡.加工精度对机械零件可靠性的影响.河北工程大学学报. 2007, 24(3): 29~31
    5 N.F.M Aris, K. Cheng. Characterization of the surface functionality onprecision machined engineering surfaces. TInternational Journal of AdvancedManufacturing Technology. 2008,T 38(3-4):T p 402T~T409T
    6王先逵,吴丹,刘承颖.精密加工和超精密加工技术综述.中国机械工程.1999, 10(5): 570~576
    7袁哲俊,周明.加速发展我国的精密和超精密加工技术.工具技术. 1994,28(2): 2~7
    8袁哲俊,王先逵.精密和超精密加工技术.机械工业出版社. 1999: 1~3
    9张顺国,谷志强,龙剑,张恩侨. H T超精密加工技术的发展状况TH.机械工程师.2006, 11:19~22
    10杨福兴. HT非球面光学零件的超精密磨削技术TH.机械工艺师. 1998, 6: 13~15
    11戴一凡,李圣怡.超精密加工精度分析.中国机械工程. 1999, 10(2):203~206
    12 J.H. Mao, H. Tachikawa, A. Shimokohbe. Precision Positioning of aDC-motor-driven Aerostatic Slide System. Precision Engineering. 2003, 27:32~41
    13 A. Woronko, J. Huang, Y. Altintas. Piezoelectric Tool Actuator for PrecisionMachining on Conventional CNC Turning Centers. Precision Engineering.2003, 27: 335~345
    14 Y. Suzuki, K. Tani, T. Sakuhara. Development of a New Type PiezoelectricMicromotor. Sensors and Actuators. 2000, 83: 244~248
    15 C.L.Chao, J.Neou. Model reference adaptive control of air-lubricated capstandrive for precision positioning. Precision Engineering, Journal of theInternational Societies for Precision Engineering and Nanotechnology. 2000, 24:285~290
    16 H. Mizimoto, M. Yabuya, T. Shimizu, Y. Kami. An angstrom-positioning systemusing a twist-roller friction drive. Precision Engineering. 1995, 17: 57~62
    17田军委,王建华,李平,范植坚,王罡岗.扭轮摩擦传动机构动力学分析.工程设计学报. 2003, 4: 93~97
    18戴一帆,李圣怡,罗兵,彭莉.扭轮摩擦驱动系统研究.国防科技大学学报.1999, 2: 85~88
    19初永坤,李益民.摩擦驱动及其应用.新技术新工艺. 1994, 3: 14~15
    20曾彬. H摩擦驱动微位移试验平台的设计和研究H.东华大学硕士学位论文.2007:9~13
    21李尚平,徐永利,苏建华,田苻.驱动器用陶瓷材料发展与展望.压电与声光.1999, 21(6): 483~487
    22 Y.C. HTZhangTH,T G.J. HTTLiuTH, H THesselbach, JTH. TSource. TOn development of arotary-linear actuator using Cs. TIEEE/ASME Transactions on Mechatronics.T2006, 11(5): 647~650
    23 J. Lia, R. Sedaghati, J. Dargahi, D. Waechter. Design and Development of aNew Piezoelectric Linear Inchworm Actuator. Mechatronics. 2005, 15: 651~681
    24 X .HXue,H J. HTangH. Robust and High Precision Control Using PiezoelectricActuator Circuit and Integral Continuous Sliding Mode Control Design. Journalof Sound and Vibration. 2006, 293(1-2): 335~359
    25 J.H. HTKimTH, S.H. HTKimTH, Y.K.HTKwakaTH. Development of a Piezoelectric ActuatorUsing a Three-dimensional Bridge-type Hinge Mechanism. TReview ofScientific Instruments.T 2003, 74(5): T2918T~T2924T
    26 N. Lobontiu, M. Goldfarb, E. Garcia. A Piezoelectric-driven InchwormLocomotion Device. Mechanism and Machine. 2001, 36: 425~443
    27 J. Kim, J.D. Kim, S.B. Choi. A Hybrid Inchworm Linear Motor. Mechatronics.2002, 12(4): 525~542
    28 E. Shamoto, T. Moriwaki. Development of a“walking drive”UltraprecisionPositioner. Precision Engineering. 1997, 20: 85~92
    29 H.W. HZhaoH, J.F. HLiuH, S.M. HHuaH, G.S. HLiuH, G.M. HChengH, B.D. HWuH.Piezoelectric-type Stepping Precision Rotary Actuator. Optics and PrecisionEngineering. 2005, 13(3): 305~310
    30 HF. KatsushiH, HI. KatsuhikoH. A Driving Method of Piezoelectric Actuator byUsing Current Pulses. Measurement Science and Technology. 2006, 17(9):2387~2394
    31 Z. HTHuTH,T D.F. HTTFarsonTH. Design of a Waveform Tracking System for aPiezoelectric Actuator. TJournal of Systems and Control Engineering. T2008,222(1): 11~21
    32 Y.T. Liu, T. Higuchi, R.F. Fung. A Novel Precision Positioning Table UtilizingImpact force of Spring-mounted Piezoelectric Actuator-part I: ExperimentalDesign and Results. Precision Engineering. 2003, 27(1): 14~21
    33 Z.Y. HTDuanTH T, Q.K. HTTWangTH. Development of a Novel High Precision PiezoelectricLinear Stepper Actuator. Sensors and Actuators. 2005, 118(2): 285~291
    34卢秋红,高志军,颜国正,颜德田.压电型惯性微驱动器研究.压电与声光.2004, 26(2): 112~115
    35王皓,凌宁,曾志革.一种高分辨力、大行程微驱动压电马达.光电工程.2003, 30(4): 50~52
    36闫永达,孙涛,董申.采用新型驱动器的微位移工作台设计与实验研究.航空精密制造技术. 2001, 37(5): 5~7
    37许黎明,胡德金,张广鹏,赵晓明.压电陶瓷微位移驱动技术的研究.制造技术与机床. 2003, 9: 31~36
    38 L. Wu, N.K. Ann, L.E. Ng. Concepts for a Class of Novel PiezoelectricSelf-locking Long-stroke Actuators. Precision Engineering. 2002, 26: 141~154
    39张弓,于兰英,柯坚.新颖高频动圈式永磁直线电机的研究.机械科学与技术. 2008, 27(4): 159~164
    40 S.B.Chang, S.H.Wu, Y.C.Hu. Submicrometer Overshoot Control of Rapid andPrecise Positioning. Precision Engineering. 1997, 20(3): 161~170
    41 J.S. Chen, K.C. Chen, Z.C. Lai, et al. Friction characterization andcompensation of a linear-motor rolling-guide stage. International Journal ofMachine Tools & Manufacture. 2003, 43: 905~915
    42 S. Hidenori, H. Hitoshi. Nanometer Positioning of a Llinear Motor-drivenUltraprecision Aerostatic Table System with Electrorheological Fluid Dampers.CIRP Annals- Manufacturing Technology. 1999, 48(1): 289~292
    43 B. Yao, L. Xu Adaptive Robust Motion Control of Linear Motors for PrecisionManufacturing. Mechatronics. 2002, 12: 595~616
    44田军委,王建华,李平,徐萍.超精密驱动机构比较.西安工业学院学报.2002, 22(1): 62~66
    45齐震,朱邦太,张惠娟.超声波马达的原理及发展状况.矿山机械. 2003, 3:41~43
    46张文超.超声马达步进特性和定位控制技术研究与应用.生命科学仪器.2005, 3(1): 38~43
    47 S. HTHashimotoTH, HTO. KiyoshiTH, HTK. KojiTH, HTI. TakeoTH, HTK. HiroshiTH, HTO. TadahiroTH. AFriction Compensation Method in Positioning Control of NonresonantUltrasonic Actuator-driven Precise Stage. TIEEJ Transactions on IndustryApplications, T2006, 126(6): 719~725
    48 HI. AntonioH, HP. LorenzoH, HF. FabioH, HP. MassimoH. A High DisplacementUltrasonic Actuator Based on a Flexural Mechanical Amplifier. Sensors andActuators. A: Physical, 2006, 125(2): 118~123
    49 HTI. HiromiTH,T HTTK. AkiraTH. Motion Error Correction for Non-contact UltrasonicMotor Driven by Multi-layered Piezoelectric Actuators. TMicrosystemTechnologies. T2005, 11(8-10): 970~973
    50 V. Snitka. Ultrasonic Actuators for Nanometre Positioning. Ultrasonics. 2000,38: 20~25
    51杨恒,鲍敏杭,沈绍群,李昕欣,任建军.静电力作用下微机械结构的位移特性分析.复旦学报. 1999, 38(3): 381~387
    52 A.J. Ming, T. HTLi, THP. HTZhou, THY.L. H TWangTH. An Electrostatic MEMS Actuator withLarge Displacement under Low Driving Voltage. TPan Tao Ti HsuehPao/Chinese Journal of Semiconductors.T 2008, 29(9): 1703~1707
    53 L.F. HTWang, THQ.A. HTHuang.TH Design, Analysis, and Simulation of Micro-electroMechanical Digital/Analog Converter Based on Cantilever ElectrostaticActuator. TPan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors.T 2004,25(6): 697~701
    54 M.V. Shutov, D.L.Howard, E.E.Sandoz, J.M.Sirota, R.L.Smith, S.D.Collins.Electrostatic inchworm microsystem with long range translation. Sensors andActuators A. 2004, 114: 379~386
    55 HB. KarelH, HD. IvoH, HD. PavelH, HU. BohusH. Static Characteristic of ActuatorWorking on Principle of Thermoelasticity. Acta Technica CSAV. 2006, 51(4):339~347
    56 HTD. AmyTH T T HTG. JohnTH, HTW.MarcieTH, HTB. JeffTH, H TW. PaulTH. Experimental Study ofThermoelastic Damping in MEMS Gyros. Sensors and Actuators, TA: PhysicalT.2003, 103(1-2): 70~75
    57 P.E.Tenzer, R.Ben Mrad. On Amplification in Inchworm Precision Positioners.Mechatronics. 2004, 14: 515~531
    58 A. Suleman, S. Burns, D. Waechter. Design and Modeling of an ElectrostrictiveInchworm Actuator. Mechatronics. 2004, 14: 567~586
    59 M. Hu, Z.Y. Zhou, Y. Li, H. Du. Development of a Linear Electrostrictive ServoMotor. Precision Engineering. 2001, 25: 316~320
    60 HTI. KazushiTH T HTTY. ChikakoTH. Cantilevered Actuator Using Magnetostrictive ThinFilm. TJournal of Magnetism and Magnetic Materials. T2008, 320(20):T2481T~T2484T
    61 A. Shimokohbe. Development of nano-meter motion control in Japan. Journal ofthe Brazilian Society of Mechanical Sciences. 2002, 24(4): 312~317
    62 A. Sharon, D. Hardt. Enhancement of Robot Accuracy Using EndpointFeedback and Macro-micro Manipulator System. Proceedings of the AmericanControl Conference 3, San Diego, California, June, 1984: 1836~1842
    63 A.T. Elfizy, G.M. Bone, M.A. Elbestawi. Design and control of a dual-stagefeed drive. Journal of Machine Tools & Manufacture. 2005, 45(2): 153~165
    64 J.S. Chen, I.C. Dwang. A Ballscrew Drive Mechanism with Piezo-electric Nutfor Preload and Motion Control. International Journal of Machine Tools andManufacture. 2000, 40: 513~526
    65 S.S. Ku, G. Larsen, S. Cetinkunt. Fast Tool Servo Control for Ultra-precisionMachining at Extremely Low Feed Rates. Mechatronics. 1998, 8: 381~393
    66宋小中,刘正埙,高长水.电致伸缩型电火花微细加工伺服系统的研究.电加. 1995, 3: 7~11
    67孙绍云,曲东升,孙立宁等.宏/微驱动定位系统滑膜变结构控制的研究.机器人. 2004, 26(1): 32~34
    68初永坤,李益民.摩擦驱动及其应用.新技术新工艺. 1994, 3: 14~15
    69 X. Tan, J.S. Baras, Modeling and Control of Hysteresis in MagnetostrictiveActuators. Automatica, 2004, 40(9): 1469~1480
    70 H. Richter, E.A. Misawa, D.A. Lucca, H. Lu. Modeling Nonlinear Behavior in aPiezoelectric Actuator. Precision Engineering, 2001, 25: 128~137
    71 A. HTBenayadTH,T G. HTTSebaldTH, B. HTGuiffardTH, L. HTLebrunTH, D. HTGuyomarTH, E. HTPleskaTH.Temperature Dependence of Piezoelectric Properties of PMN-PT and PZN-PTSingle Crystals. TJournal De Physique. IV : JPT, 2005, 126: 53~57
    72 HTT. Matthew,TH H TM. MischaTH, H TH. ChristopherTH, HTA. DanTH, HTV. DanielTH, H TC. PaulTH, HTR.RichardTH, HTA. Douglas.TH Correction for Ppiezoelectric Creep in Scanning ProbeMicroscopy Images Using Polynomial Mapping. TScanning. T2003, 25(1): T25T~T33T
    73 X.B. Tan, J.S. Baras, P.S. Krishnaprasad. Control of Hysteresis in SmartActuators with Application to Micro-positioning. Systems & Control Letters.2005, 54: 483 ~ 492
    74 T.J. HTYehTH, HTR.F. HungTH, HTS.W. LuTH. An Integrated Physical Model thatCharacterizes Creep and Hysteresis in Piezoelectric Actuators. TSimulationModelling Practice and Theory. T2008, 16(1): T93T~T110T
    75 HTN. MaciejTH,T H TTM. PeterTH, HTK. JerzyTH. A Charge Feedback Controller for aPiezoelectric Voltage Amplifier/driver. TMaterials Research Society SymposiumProceedings. T2007, 969: T99T~T103
    76 HC.H. RuH, HL.N. SunH. Hysteresis and Creep Compensation for PiezoelectricActuator in Open-loop Operation. Sensors and Actuators, A: Physical. 2005,122(1): T124T~T130
    77 HTJ. HewonTH,T D.G. HTTGweonTH. Creep Characteristics of Piezoelectric Actuators.TReview of Scientific Instruments. T2000, 71(4): T1896T~T1900
    78 W.B. H TRong, THX. H TZou,TH M. HTXu,TH L.N. Sun. Piezoelectric Driver Based on CurrentControl. TNanotechnology and Precision Engineering. T2007, 5(1): T38T~T43
    79徐源,李蓓智,张家梁,闫如忠,李诗.基于压电陶瓷的精密进给系统的应用研究.机械设计与制造. 2008, 9: T124T~T126
    80 Y.M. HTFu, THX.Q. HTWang.TH Nonlinear Dynamic Response of Piezoelectric PlatesConsidering Damage Effects. TKey Engineering Materials. T2006, 324-325:T299T~T302
    81张涛,孙立宁,蔡鹤皋.压电陶瓷基本特性研究.光学精密工程. 1998, 6(5):26~32
    82 M.J. HTJangTH, K.C. HTLinTH, C.L. HTChen.TH Modeling and Positioning Control of a BallScrew Driven Stage. TConference Proceeding - IEEE International Conferenceon Networking, Sensing and ControlT. 2004, 2: T943T~T948T
    83 HTJ. GeorgeTH,T HTTB. AlexanderTH. Precise Moves Depend on Ball-screw Threads.TMachine Design. T2005, 77(9): T106T~T108T
    84 L.H. HLuH, Y.C. HLiangH, H. HTachikawaH, Y.F. HGuoH, A. HShimokohbeH. NanometerPositioning System Based on Ball Screw. Key Engineering Materials. 2006,315-316: 710~714
    85 C.L. Chen, M.J. Jang, K.C. Lin. Modeling and High-precision Control of aBall-screw-driven Stage. Precision Engineering. 2004, 28: 483~495
    86王志民,张西忠,厉勇.滚珠丝杠传动使用与发展.机电工程技术.2004,33(9):88~90
    87 HTS. TadaatsuTH,T P. HTTZhaoTH, HTK. DaisukeTH. Study on Positioning Accuracy ofAerostatic Lead Screw. TProceedings of 2006 ASME International MechanicalEngineering Congress and Exposition, T2006
    88 HS. YuichiH. Effect of Lead on the Static Characteristic of A Hydrostatic Screwand Nut. TNippon Kikai Gakkai Ronbunshu. T1986, 52(477): T1666T~T1669
    89王贵林,李圣怡,粟时平.基于超精密应用的高刚度高阻尼空气静压导轨研究.航空精密制造技术. 2001, 37(6): 1~5
    90曹君蓬,杨辉.液体静压导轨及其驱动系统的研究.航空精密制造技术.2002, 38(3): 35~37
    91刘红忠,赵万华,李涤尘等.多坐标激光干涉仪用于纳米定位系统中的研究.光子学报. 2002,31(5):592~594
    92王波,董申,赵万生.超精密定位中的几项相关关键技术.航空精密制造技术. 1998,34(3):13~16
    93刘文超,丁雪梅.基于数字合成和检波技术的电容位移传感器.哈尔滨工业大学学报. 2002,34(5):706~709
    94袁智敏,张江陵,陈勇.电致伸缩陶瓷执行器非线性的数值方法补偿.压电与声光. 1994, 16(5): 16~18
    95 Y.H. Yu, N. Naganathan, R. Dukkipati. Preisach Model of Hysteresis forPiezoelectric Actuator System. Mechanism and Machine Theory. 2002, 37:49~59
    96 C.C. New, I. Flinn Improving the Linearity of PZT Piezoelectric CeramicActuators. Electron Lett. 1982, 18(1): 422~444
    97刘珺,张荣.一种不确定离散时间系统的变结构控制.洛阳理工学院学报.2008, 18(1): 75~78
    98 M.Y. HSungH, S.J. HHuangH. Fuzzy Logic Motion Control of a PiezoelectricallyActuated Table. Proceedings of the Institution of Mechanical Engineers. Part I:Journal of Systems and Control Engineering. 2004, 218(5): 381~397
    99张金龙,余玲玲,刘京南.超精密定位的模糊神经网络控制.计量学报.2006, 27(2): 113~116
    100刘丽娜,李德雄.专家控制系统的理论分析.石家庄铁路职业技术学院学报. 2006, 5(5): 72~75
    101蒋凯,陈杭,周怀阳,蒋春跃,叶树明.非线性系统的梯度变分迭代自学习控制.浙江大学学报. 2008, 42(8): 1365~1369
    102 S. Mekid. A Non-linear Model for Pre-rolling Friction Force in PrecisionPositioning. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology. 2004,218(4):305~311
    103 C. Hsieh, Y.C. Pan. Dynamic Behavior and Modelling of the Pre-sliding StaticFriction. Wear. 2000,242(1):1~17
    104 T.Y. Lin, Y.C. Pan, C. Hsieh. Precision-limit positioning of direct drive systemswiththe existence of friction. Control Engineering Practice. 2003,11(3):233~244
    105 R.H. Wu, P.C. Tung. Study of Stick-slip Friction, Presliding Displacement, andHunting. Journal of Dynamic Systems, Measurement and Control, Transactionsof the ASME. 2002,124(1):111~117
    106 J.F. HTCuttinoTH T,T T.A. HTDowTH, B.F. HTKnightTH. Analytical and ExperimentalIdentification of Nonlinearities in a Single-nut, Preloaded Ball Screw. TJournalof Mechanical Design, Transactions of the ASME. T1997, 119(1): T15T~T19
    107卢志伟,刘波,张君安,魏明明.精密空气静压导轨组件的设计与分析.润滑与密封. 2006, 32(2): 165~167
    108李树森,刘暾,张鹏顺.小孔节流方式对气体静压轴承工作刚度影响的分析.润滑与密封. 2000, 4: 6~7
    109 S.C. Kim, S.H. Kim. A precision Linear Actuator Using PiezoelectricallyDriven Friction Force. Mechatronics. 2001,11: 969-985
    110 D. Karnopp. Computer Simulation of Stick-Slip Friction in MechanicalDynamic System. ASME Journal of Dynamic System, Measurement, andControl. 1985, 107(1):100~103
    111 D.A. Haessig, B. Friedland. On the Modeling and Simulation of Friction.ASME Journal of Dynamic System, Measurement, and Control. 1991, 113(3):354~362
    112李士勇.模糊控制·神经控制和智能控制论.哈尔滨工业大学出版社. 1999:254~279
    113章卫国,杨向忠.模糊控制理论与应用.西北工业大学出版社. 1999: 73~95
    114崔玉国,孙宝元.基于纳米定位的压电陶瓷执行器控制方法的研究进展.中国机械工程. 2003, 14(2): 164~167
    115 J. Hewon. Enhancement of AFM Image by Compensating the Hysteresis andCreep Effect within PZT. SPIE, 1999, 3740: 327~330
    116 P. Ge, J. Musa. Modeling Hysteresis in Piezoceramic Actuators. PrecisionEngineering. 1995, 17(3): 211~221
    117贾振元,王福吉,张菊,郭丽莎. T超磁致伸缩执行器磁滞非线性建模与控制.T机械工程学报. 2005, 7: 25-29