Al_2O_3基大型结构陶瓷导轨材料及其摩擦磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次将透辉石和Al-Ti-B中间合金用于增韧补强无压烧结Al_2O_3基陶瓷材料,通过注浆—冷等静压—液相反应—温度梯度无压烧结工艺,研制成功两种新型Al_2O_3基大型结构陶瓷导轨材料。对其组分设计、力学性能、微观结构、增韧机理、摩擦磨损特性和机理等进行了系统的研究;提出了透辉石和Al-Ti-B中间合金对Al_2O_3基陶瓷材料的晶粒细化机理;建立了Al_2O_3基大型结构陶瓷导轨材料的烧结动力学模型。
     提出了Al_2O_3基大型结构陶瓷导轨材料的设计目标和添加相的选择原则,确定透辉石和Al-Ti-B中间合金为增强相;分析了添加相与基体材料之间的物理化学相容性,计算了添加相的极限体积含量。利用X射线衍射分析了Al_2O_3基大型结构陶瓷导轨材料的相组成;根据复合陶瓷材料烧结模型和晶粒变化模型,初步确定了Al_2O_3基大型结构陶瓷导轨材料的烧结温度和保温时间。
     通过注浆—冷等静压—液相反应—温度梯度无压烧结工艺,研制成功两个系列的新型Al_2O_3基大型结构陶瓷导轨材料:Al_2O_3/透辉石(AD)和Al_2O_3/Al-Ti-B/透辉石(ABD)。AD陶瓷导轨材料的最佳力学性能参数为:硬度15.57 GPa、抗弯强度417 MPa、断裂韧性5.2 MPa·m~(1/2)。ABD陶瓷导轨材料的最佳力学性能参数为:硬度16.02 GPa、抗弯强度370 MPa、断裂韧性5.11 MPa·m~(1/2)。
     试验研究了添加相含量对AD和ABD陶瓷导轨材料力学性能的影响,AD陶瓷导轨材料中透辉石的最佳含量为3 vol.%;ABD陶瓷导轨材料中透辉石和Al-Ti-B中间合金的最佳含量分别为6 vol.%和4 vol.%。探讨了烧结温度和保温时间对AD和ABD陶瓷导轨材料力学性能的影响,得出了AD和ABD陶瓷导轨材料的最佳烧结工艺参数:即烧结温度为1520℃、保温时间分别为140 min和180min。
     对无压烧结Al_2O_3基结构陶瓷导轨材料的微观结构及其增韧机理进行了研究,探讨了烧结工艺及透辉石含量对AD和ABD陶瓷导轨材料微观结构的影响,研究结果表明,烧结温度对Al_2O_3基结构陶瓷导轨材料微观结构的影响较明显,主要表现为其断口晶粒出现异常长大;随着烧结温度提高,陶瓷导轨材料的晶粒生长驱动力增加,其断口平均晶粒尺寸增大。延长保温时间,Al_2O_3基结构陶瓷导轨材料晶粒尺寸基本不变,但其断裂模式发生变化。纯Al_2O_3陶瓷材料晶粒形状规则,基本呈现圆形,晶粒发育不完善,晶粒间存在较多的空隙或孔洞,晶界结合强度较弱,其断口断裂模式以沿晶断裂为主。AD和ABD陶瓷导轨材料的微观组织均匀细化,结构致密,晶粒为不规则的角状,断口出现韧窝,呈现明显的韧性断裂方式,空隙或孔洞基本已经消除。透辉石和Al-Ti-B中间合金的加入改变了Al_2O_3基结构陶瓷导轨材料的断裂模式,在其烧结过程提供液相,液相通过流动填补基体空隙或孔洞,降低了陶瓷导轨材料的孔隙率;同时,添加相与Al_2O_3基体之间界面反应的发生使其晶粒之间的结合力加强;AD陶瓷导轨材料增韧机制为晶粒细化强化以及裂纹偏转、弯曲和分支,ABD陶瓷导轨材料增韧机制主要包括晶粒细化效应、分散相小颗粒对裂纹的钉扎、裂纹弯曲和扭转以及微裂纹增韧和裂纹分岔。
     分析并讨论了透辉石和Al-Ti-B中间合金对Al_2O_3基结构陶瓷导轨材料的晶粒细化机理。透辉石中的MgO在烧结过程中与Al_2O_3发生界面反应生成镁铝尖晶石薄层,包裹在Al_2O_3粒子表面,使Al_2O_3晶粒之间的质点扩散受到抑制,从而抑制晶界移动,达到晶粒细化的效果。过多的尖晶石相易使Al_2O_3晶粒异常长大,并造成陶瓷导轨材料坯体气孔率高。本文中透辉石添加量小于6 vol.%时能够形成适量镁铝尖晶石,并有效抑制Al_2O_3晶粒的发育生长。Al-Ti-B中间合金的晶粒细化作用主要来自于其对金属Al优良的晶粒细化特性,微小的Al颗粒在氮化之前有充分的时间聚集在Al_2O_3颗粒周围,抑制Al_2O_3晶粒发育生长。同时AlN、TiN相是在制备过程中原位生成的,而且粒度小至纳米级,分布在Al_2O_3晶粒周围,抑制其发育生长。
     提出了Al_2O_3基大型结构陶瓷导轨材料液相—反应烧结致密化物理模型。通过绘制1gΔL/L_0~1gt图,用最小二乘法计算了Al_2O_3基大型结构陶瓷导轨材料的表观激活能,并判断其液相烧结机理为扩散机制控制。根据烧结温度和保温时间对陶瓷导轨材料线收缩率的影响,建立了Al_2O_3基大型结构陶瓷导轨材料的烧结动力学方程;纯Al_2O_3陶瓷材料的烧结特征指数n约为2.5,其烧结过程中的物质迁移机制由体扩散控制;AD和ABD陶瓷导轨材料的烧结特征指数n值介于2.5与3.0之间,其烧结过程中的物质迁移机制既有体扩散,也有晶界扩散。采用温度梯度无压烧结工艺试制了规格为900 mm×70 mm×70 mm的Al_2O_3基大型结构陶瓷导轨。
     对Al_2O_3基大型结构陶瓷导轨材料摩擦磨损特性进行理论预测,建立了基于拉伸应力的摩擦磨损模型;对无压烧结制备的Al_2O_3基大型结构陶瓷导轨材料的摩擦磨损性能进行了试验研究,并对其磨损表面微观形貌进行了观察和分析,探讨了Al_2O_3基大型结构陶瓷导轨材料的磨损机理。研究结果表明,透辉石和Al-Ti-B中间合金的加入有利于改善复合陶瓷导轨材料的摩擦特性和耐磨损性能;干摩擦条件下,AD和ABD陶瓷导轨材料的摩擦系数均随着载荷和转速的增加而降低;AD和ABD陶瓷导轨材料的摩擦系数低于纯Al_2O_3陶瓷;油润滑条件下,纯Al_2O_3陶瓷的摩擦系数为0.02~0.07,AD和ABD陶瓷导轨材料的摩擦系数为0.01~0.05,能够获得塑料导轨材料在油润滑条件下的摩擦系数。纯Al_2O_3陶瓷磨损率的数量级为10~(-15) m~3/N·m,AD和ABD陶瓷导轨材料磨损率的数量级为10~(-16) m~3/N·m;纯Al_2O_3陶瓷的磨损机理为脆性断裂和晶粒剥落,AD和ABD陶瓷导轨材料的磨损机理为机械冷焊、塑性变形、微断裂和晶粒剥落。
As a vitally important innovation in this dissertation, diopside and Al-Ti-B master alloys are introduced in pressureless sintered alumina matrix ceramic materials to improve their performances. The author develops two series of new composites, which are Al_2O_3/diopside (AD) and Al_2O_3/Al-Ti-B/diopside (ABD), respectively, by using the technology of vacuum slip casting, isostatic cool pressing, liquid sintering, reactive sintering, and temperature gradient pressureless sintering in turn. The mechanical properties, microstructures and wear behaviors of the new fabricated composites are discussed and analyzed. The toughening mechanisms and wear mechanisms are researched as well as the grain refining performance of diopside and Al-Ti-B master alloys towards alumina matrix ceramic materials. Sintering kinetics models of large-scale advanced alumina matrix structural ceramic guideway materials are presented.
     The design objectives of large-scale advanced alumina matrix structural ceramic guideway materials and selecting principles for additives are proposed. Diopside and Al-Ti-B master alloys are chosen as additives. Gibbs free energy of the reactions taken place between additives and alumina are calculated in order to analyze the chemical compatibility of large-scale advanced alumina matrix structural ceramic guideway materials. The compositions of the new fabricated composites are analyzed by using the technology of X-ray diffraction analysis. The maximum volume content of additives are predicted as well as the sintering temperature and holding time of large-scale advanced alumina matrix structural ceramic guideway materials.
     Vacuum slip casting and isostatic cool pressing are used to shape the guideway green bodies The technology of liquid sintering, reactive sintering, and temperature gradient pressureless sintering are used to fabricate large-scale advanced alumina matrix structural ceramic guideway materials. The sintering processing parameters to prepare large-scale advanced alumina matrix structural ceramic guideway products are optimized. The experimental results, obtained by testing mechanical properties of typical specimens, indicate that by using sintering processing parameters of 1520°C and 140min, composite with introduction of 3 vol.% diopside shows better comprehensive performances, the hardness, bending strength and fracture toughness of the composite reach 15.57 GPa, 417 MPa and 5.2 MPa·m~(1/2), respectively. At the sinter temperature of 1520℃and with the holding time of 140min, composite with addition of 4 vol.% Al-Ti-B master alloys and 6 vol.% diopside shows better comprehensive performances, the hardness, bending strength and fracture toughness of which reach 16.02 GPa, 370 MPa and 5.11 MPa·m~(1/2), respectively.
     Microstructures and toughening mechanisms of pressureless sintered large-scale advanced alumina matrix structural ceramic guideway materials are studied by using scanning electron microscopy (SEM) technology. The influences of sintering processing parameters and diopside content on microstructures of AD and ABD composites are discussed and analyzed. It can be discovered from the investigation that, the grain size of large-scale advanced alumina matrix structural ceramic guideway materials increases with increasing the sintering temperature. The grain size, however, retains unchanged when given an extended holding time and the fracture mode changes with increasing the holding time. The grain shapes of pure alumina are regular and almost circular. There appear interspaces or cavities among the grains owing to incomplete developing of alumina grains. The grain boundaries of pure alumina are observable and the fracture mode is mainly intergranular failure, most likely resulting from the interfacial weakness. There are significant microstructural differences among ceramic guideway materials and pure alumina. Evidently, AD and ABD composites show a finer and more homogeneous distribution of alumina grains and additive particles compared with pure alumina, which indicates the introduction of diopside and Al-Ti-B master alloys may restrain the growth of alumina grains. The grain shapes of ceramic guideway materials are irregular and almost like an anvil horn. Interspaces or cavities almost are almost eliminated. The introduction of diopside and Al-Ti-B master alloys changes the fracture mode of large-scale advanced alumina matrix structural ceramic guideway materials, provides liquid phases in the sintering process, decreases air holes or interspaces in bodies, increases the binding energy of grain boundaries in virtue of interface reactions with alumina. The toughening mechanisms of AD composites are grain-refining effect, crack deflection, crack inflection and crack branch. The toughening mechanisms of ABD composites are grain-refining effect, pin of finely particles to cracks, deflection and torsion of cracks, microcrack toughening and divarication of cracks.
     The refining performances of diopside and Al-Ti-B master alloys are discussed and analyzed. MgO will react with alumina and produce MgO·Al_2O_3, which will enwrap alumina grains and restrain alumina grain boundaries form moving. Small amount of MgO·Al_2O_3 (less than 6 vol.%) can be beneficial to refine alumina grains effectively, while superfluous MgO·Al_2O_3 will bring on the abnormal grain growth of alumina and increased degree of porosity. The grain refining performance of Al-Ti-B master alloys maybe mainly attribute to its good grain refining performance towards Al. Before being nitrided, small grain size of Al may surround alumina grains and prevent them form growing with increasing the sintering temperature. At the end of the sintering process, Al is almost entirely transformed into A1N. A1N and TiN, which is produced by in situ synthesis and has a grains size of nanometer, distribute evenly over advanced alumina matrix structural ceramic guideway materials and contribute to the refining effect.
     Physical model about liquid sintering and reactive sintering of large-scale advanced alumina matrix structural ceramic guideway materials are proposed. The sintering densification behaviors are investigated. The apparent activated energy of large-scale advanced alumina matrix structural ceramic guideway materials is calculated by using the method of least squares. Results show that the densification of large-scale advanced alumina matrix structural ceramic guideway materials may be controlled by diffusion of ion in liquid phase. The sintering kinetic equations are deduced according to the influences of sintering temperature and holding time on linear shrinkage rate of the new fabricated composites. The sintering mechanisms are analyzed by comparing the characteristic exponent n. It is indicated that the main sintering mechanism of pure alumina may be volume diffusion (n=2.5), and that of AD and ABD composites may be volume diffusion and grain boundary diffusion (2.5     According to the tensile crack model, a simple model for tribological behaviors of large-scale advanced alumina matrix structural ceramic guideway materials, predicting the relationship between load and wear rate, is presented. The wear mechanisms of pressureless sintered large-scale advanced alumina matrix structural ceramic guideway materials are discussed by analyzing SEM micrographs of wear tracks on typical specimens. It is indicated that the introduction of diopside and Al-Ti-B master alloys in alumina matrix ceramic guideway materials improves their friction and wear properties. There shows a general decrease in friction coefficient of AD and ABD composites with increasing the normal load or rotation speed in unlubricated conditions and at room temperature. The friction coefficient of AD and ABD composites is lower than that pure alumina. The friction coefficient of pure alumina is in the range of 0.02~0.07, and that of large-scale advanced alumina matrix structural ceramic guideway materials, toughened by diopside and Al-Ti-B master alloys, is in the range of 0.01~0.05 in oil-lubricated conditions. The wear rate of pure alumina is in the order of 10~(-15)m~3/N·m while that of alumina matrix ceramic composites toughened by Al-Ti-B master alloys and diopside (AD and ABD composites) is in the order of 10~(-16)m~3/N·m. Abrasive wear may occur during dry sliding tests of pure alumina, and the wear mechanisms of which may be brittle fracture and grain pull-out. The dominant wear mechanisms of pressureless sintered large-scale advanced alumina matrix structural ceramic guideway materials may be mechanical interlocking and plastic deformation combined with a little micro-fracture and grain pull-out.
引文
1 田增英 (美国).来自西方的知识—精密陶瓷及应用.北京:科学普及出版社,1993:1~2.
    2 徐维新,薛文龙编译.精细陶瓷技术.上海:上海交通大学出版社,1989:35~87.
    3 南京化工学院,清华大学,华南工学院.陶瓷材料研究方法.北京:中国建筑工业出版社,1985:1~2.
    4 张希华.氧化铝基结构陶瓷材料设计及其性能研究.博士学位论文.济南:山东大学,2005:1~2.
    5 宁金威,张俊计,潘裕柏等.Al_2O_3/金属多相材料研究进展.硅酸盐通报.2003,(5):57~63.
    6 方文淋,左洪波,吕利泰.Al_2O_3 陶瓷刀具材料的研究和发展.机械工程材料.1995,19(2):1~25.
    7 张长瑞,郝元恺.陶瓷基复合材料原理、工艺、性能与设计.湖南:国防科技大学出版社。2001:105~106
    8 Sornakumar T. Advanced ceramic- ceramic composite tool materials for metal cutting applications. Key Eng Mater. 1996, 114(1): 73~88.
    9 Sigl L S. Microcrack toughening in brittle materials containing weak and strong interfaces. Acta Materialia. 1996, 44(9): 3599~3609.
    10 Lange F F. Transformation toughening. Part Ⅰ size effects associated with the thermodynamics of constrained transformations. J Mater Sci. 1982, 17: 225~234.
    11 Prewo K M. Fiber reinforced ceramics. New opportunities for composite materials. Am Ceram Soc Bull. 1989, 68(2): 395~405.
    12 Dogan C P, Hawk J A. Influence of whisker reinforcement on the abrasive wear behavior of silicon nitride and alumina-based composites. Wear. 1997, 203-204: 267~277.
    13 Gong S X. On the formation of near-tip microcracking and associated toughening effects. Engineering Fracture Mechanics. 1995, 50(1): 29~39.
    14 Aghajanian M K. Properties and microstructures of lanxide Al_2O_3/Al ceramic composite materials. J Mater. Sci. 1989, (24): 658~670.
    15 Chou W B, Tuan W H. Toughening and strengthening of alumina with silver inclusions. J Eur Ceram Soc. 1995, (15): 291~295.
    16 Sung-Tagoh, Sekino T. Fabrication and mechanical properties of 5vol% copper dispersed alumina nanocomposites. J Eur Ceram Soc. 1998, (18): 31~37.
    17 Sekino T, Yu Ji-hun. Reduction and sintering of alumina/tungsten nanocomposites powder processing, reduction behaviour and microstructural characterization. J Ceram Soc Jpn. 2000, 108(6): 541~547.
    18 Rankin D T, Stigsich J J. Hot pressing and mechanical properties of with a Mo-dispersed phase. J Am Ceram Soc. 1971, (54): 277~288.
    19 Tuan W H, Brook R J. The toughening of alumina with nickel inclusion. J Eur Ceram Soc. 1990, (6): 31~37.
    20 Garcia D E, Claussen N. Nb and Cr- Al_2O_3 composites with interpenetrating network. J Eur Ceram Soc.1998, (18): 601~605.
    21 茅东升,郭绍义.新型 Al_2O_3/Co 陶瓷的力学性能及其断裂行为.稀有金属材料与工程.1997,26(5):23~25.
    22 Garcia D E, Claussen N. Processing and mechanical properties of pressureless sintered niobium-alumina matrix composites. J Am Cerma Soc. 1998, 81(2): 429~432.
    23 金卓仁.陶瓷刀具的性能及应用.机械工程材料.1991,(6):1~23.
    24 许崇海,黄传真,李兆前等.含碳添加剂 Al_2O_3 基陶瓷符合材料的增韧机理.无机材料学报.2001,16(2):257~262
    25 Cai K F, McLachlan D S, Axen N, et al. Preparation, microstructures and properties of Al_2O_3-TiC composites. Ceramics International. 2002, 28(2): 217~222.
    26 You X Q, Si T Z, Liu N, et al. Effect of grain size on thermal shock resistance of Al_2O_3-TiC ceramics. Ceramics International. 2005, 31(1): 33~38.
    27 Raymond A, Cutler and Andrew C, HurfordAnil V Virkar. Pressureless-sintered Al_2O_3-TiC composites. Materials Science and Engineering. 1988, 105-106(1): 183~192.
    28 Jung-Soo Ha, Chang-Sung Lim, Chang-Sam Kim, et al. A new process for Al_2O_3/SiC nanocomposites by polycarbosilane infiltration. Materials Chemistry and Physics. 2002, 75 (1-3): 241~245.
    29 B Baron, C S Kumar, G Le Gonidec, et al. Comparison of different alumina powders for the aqueous processing and pressureless sintering of Al_2O_3-SiC nanocomposites. Journal of the European Ceramic Society. 2002, 22 (9-10): 1543~1552.
    30 S Maensiri, S G Roberts. Thermal shock of ground and polished alumina and Al_2O_3/SiC nanocomposites. Journal of the European Ceramic Society. 2002, 22 (16): 2945~2956.
    31 R I Todd, B Derby. Thermal stress induced microcracking in alumina-20% SiC_p composites. Acta Materialia. 2004, 52 (6): 1621~1629.
    32 S Ananthakumar, K Prabhakaran, U S Hareesh, et al. Gel casting process for Al_2O_3-SiC nanocomposites and its creep characteristics. Materials Chemistry and Physics. 2004, 85 (1): 151~157.
    33 S Bajwa, W M Rainforth, W E Lee. Sliding wear behaviour of SiC-Al_2O_3 nanocomposites. Wear. 2005, 259 (1-6): 553~561.
    34 M Belmonte, M I Nieto, M I Osendi, et al. Influence of the SiC grain size on the wear behaviour of Al_2O_3/SiC composites. Journal of the European Ceramic Society. 2006, 26(7): 1273~1279.
    35 王宏志,高濂,归林华等.晶内型 Al_2O_3-SiC 纳米复合陶瓷的制备.无机材料学报.1997,12(5):672~674.
    36 刘玉先等.Al_2O_3-(W、Ti)C 系陶瓷的组织结构与性能.机械工程材料.1993,17(4):40~45.
    37 许崇海,黄传真,李兆前等.Al_2O_3/SiC/(W,Ti)C 多相复合陶瓷材料的研究.硅酸盐学报. 2000,28(6):538~544.
    38 李沐山.一种新型工程材料—超强度赛隆陶瓷.机械工程材料.1989,(3):56~59.
    39 杨明辉,郝春云,杨海涛等.无压烧结 Al_2O_3/Si_3N_4纳米复合陶瓷的力学性能.山东陶瓷.2004,(5):3~5。
    40 张宁,茹红强,唐学原等.Al_2O_3/TiB_2复合材料组织与性能的研究.黄金学报.2000,2(4):253~255.
    41 刘苏.Al_2O_3/TiB_2复相陶瓷刀具的力学性能及切削特性.机械工程材料.1998,22(1):48~50.
    42 邓建新,艾兴,郑芸芳.Al_2O_3/TiB_2陶瓷刀具材料的研制及其耐磨性能研究.现代技术陶瓷.1994,(2):8~13.
    43 Hanlian Liu, Chuanzhen Huang, Jun Wang, et al. Fabrication and mechanical properties of Al_2O_3/Ti(C_(0.7)N_(0.3)) nanocomposites. Materials Research Bulletin. 2006, 41(7): 1215~1224.
    44 许崇海,黄传真,丁文亮.SiC和Ti(C,N)颗粒弥散陶瓷材料的力学性能与微观结构.粉末冶金技术.2001,19(3):153~157.
    45 谢根生.陶瓷刀具材料的发展概论.中国陶瓷.1992,(11):61~65.
    46 P G Rao, M Iwasa, T Tanaka, et al. Preparation and mechanical properties of Al_2O_3-15wt.%ZrO_2 composites. Scripta Materialia. 2003, 48(4): 437~441.
    47 W H Tuan, R Z Chen, T C Wang, et al. Mechanical properties of Al_2O_3/ZrO_2 composites. Journal of the European Ceramic Society. 2002, 22(16): 2827~2833.
    48 Deuk Yong Lee, Dae-Joon Kim, Bae-Yeon Kim. Influence of alumina particle size on fracture toughness of (Y, Nb)-TZP/Al_2O_3 composites. Journal of the European Ceramic Society. 2002, 22(13): 2173~2179.
    49 Jinsheng Hong, Lian Gao, S D D L Torre, et al. Spark plasma sintering and mechanical properties of ZrO_2 (Y_2O_3)-Al_2O_3 composites. Materials Letters. 2000, 43(1-2): 27~31.
    50 P Y Lee, T Yano. Influence of alumina powder size on mechanical properties of in-situ coated alumina fiber-reinforced alumina composites. Journal of the European Ceramic Society. 2004, 24(12): 3359~3365.
    51 C Kaya, F Kaya, A R Boccaccini, et al. Fabrication and characterisation of Ni-coated carbon fibre-reinforced alumina ceramic matrix composites using electrophoretic deposition. Acta Materialia. 2001, 49(7): 1189~1197.
    52 B Wilshire, F Carreno. Deformation and failure processes during tensile creep of fibre and whisker reinforced SiC/Al_2O_3 composites. Materials Science and Engineering A. 1999, 272(1):38~44.
    53 Claudia P Ostertag. Influence of fiber and grain bridging on crack profiles in SiC fiber-reinforced alumina-matrix composites. Materials Science and Engineering A. 1999, 260 (1-2) 124~131.
    54 G Vekinis, E Sofianopoulos, W J Tomlinson. Alumina toughened with short nickel fibres. Acta Materialia. 1997, 45(11): 4651~4661.
    55 J Chandradass, M Balasubramanian. Sol-gel based extrusion of alurnina-zirconia fibres. Materials Science and Engineering: A. 2005, 408(1-2): 165~168.
    56 Wataru Nakao, Masato Ono, Sang-Kee Lee, et al. Critical crack-healing condition for SiC whisker reinforced alumina under stress. Journal of the European Ceramic Society. 2005, 25 (16): 3649~3655.
    57 G R Sarrafi-Nour, T W Coyle. Temperature dependence of crack wake bridging stresses in a SiC-whisker-reinforced alumina. Acta Materialia. 2001, 49(17): 3553~3563.
    58 F Ye, T C Lei, Y Zhou. Interface structure and mechanical properties of Al_2O_3-20vol%SiC_w ceramic matrix composite. Materials Science and Engineering A. 2000, 281(1-2): 305~309.
    59 D S Lim, D S Park, B D Han, et al. Temperature effects on the tribological behavior of alumina reinforced with unidirectionally oriented SiC whiskers. Wear. 2001, 251(1-12): 1452~1458.
    60 Yongqing Fu, Y W Gu, Hejun Du. SiC whisker toughened Al_2O_3-(Ti, W) C ceramic matrix composites. Scripta Material. 2001, 44(1): 111~116.
    61 兰俊思,丁培道,黄楠.SiC_w晶须和Ti(C,N)颗粒协同增韧Al_2O_3陶瓷刀具的研究.材料科学与工程学报.2004,22(1):59~64.
    62 邓建新,艾兴,郑芸芳.TiB_2和SiC_w对Al_2O_3陶瓷材料力学性能及微观结构的影响.硬质合金.1998,15(3):129~132.
    63 邓建新,艾兴.Al_2O_3/TiB_2/SiC_w三元复合材料的力学性能及显微结构.复合材料学报.1996,13(3):27~32.
    64 Eric Laarz, Mats Carlsson, Benoit Vivien, et al. Colloidal processing of Al_2O_3-based composites reinforced with TiN and TiC particulates, whiskers and nanoparticles. Journal of the European Ceramic Society. 2001, 21(8): 1027~1035.
    65 G Y Lin, T C Lei. Microstructure, mechanical properties and thermal shock behaviour of Al_2O_3+ZrO_2+SiC_w composites. Ceramics International. 1998, 24(4): 313~326.
    66 L Mariappan, T S Kannan, A M Umarji. In situ synthesis of Al_2O_3-ZrO_2-SiC_w ceramic matrix composites by carbothermal reduction of natural silicates. Materials Chemistry and Physics. 2002, 75(1-3): 284~290.
    67 T C Lei, Q L Ge, Y Zhou, et al. Microstructure and fracture behavior of an Al_2O_3-ZrO_2-SiC_w ceramic composite. Ceramics International. 1994, 20(2): 91~97.
    68 T C Wang, R Z Chen, W H Tuan. Effect of zirconia addition on the oxidation resistance of Ni-toughened Al_2O_3. Journal of the European Ceramic Society. 2004, 24(5): 833~840.
    69 C Kaya, E G Butler, M H Lewis. Co-extrusion of Al_2O_3/ZrO_2 bi-phase high temperature ceramics with fine scale aligned microstructures. Journal of the European Ceramic Society. 2003, 23(6): 935~942.
    70 Bo Zhang, Freddy Boey. The phases and the toughening mechanisms in(Y) ZrO_2-Al_2O_3-(Ti,W) C ceramics system. Materials Letters. 2000, 43(4): 197~202.
    71 H Z Wang, L Gao, J K Guo. Fabrication and microstructure of Al_2O_3-ZrO_2(3Y)-SiC nanocomposites. Journal of the European Ceramic Society. 1999, 19(12): 2125~2131.
    72 D Ostrovoy, N Orlovskaya, V Kovylyaev, et al. Mechanical properties of toughened Al_2O_3-ZrO_2-TiN ceramics. Journal of the European Ceramic Society. 1998, 18(4): 381~388.
    73 Masahiro Nawa, Noriko Bamba, Tohru Sekino, et al. The effect of TiO_2 addition on strengthening and toughening in intragranular type of 12Ce-TZP/Al_2O_3 nanocomposites. Journal of the European Ceramic Society. 1998, 18(3): 209~219.
    74 L Tian, Y Zhou, T C Lei. Mechanical properties of Al_2O_3+ZrO_2+nano-SiC_p ceramic composites. Ceramics International. 1996, 22(6): 451~456.
    75 R Z Chen, Y T Chiu, W H Tuan. Toughening alumina with both nickel and zirconia inclusions. Journal of the European Ceramic Society. 2000, 20(12): 1901~1906.
    76 Fahrenholtz W G, Ellerby D T. Al_2O_3-Ni composites with high strength and fracture toughness. J Am Ceram Soc. 2000, 83(5): 1297~1280.
    77 蔡克峰,南策文,袁润章.Al_2O_3-AlN-TiC 复合陶瓷的制备与微观结构.硅酸盐学报.1995,23(4):430~433.
    78 王宏志,高濂,郭景坤.SiC颗粒尺寸对 Al_2O_3-SiC 纳米复合陶瓷的影响.无机材料学报.1999,14(4):679~683.
    79 王宏志,高濂,归林华等.Al_2O_3-ZrO_2(3Y)-SiC 纳米复合材料的制备及性能.无机材料学报.1999,14(2):280~286.
    80 S Bhaduri, S B Bhaduri. Enhanced low temperature toughness of Al_2O_3-ZrO_2 nano/nano composites. Nanostructured Materials. 1997, 8(6): 755~763.
    81 吴义权,张玉峰,黄校先等.原位生长棒晶氧化铝陶瓷的制备.硅酸盐学报.2000,28(6):585~88.
    82 Tarlar J, Messing G L. Anisolopic grain growth in α-Fe_2O_3-doped alumina. Europ Ceram Soc. 1997, 17: 719~725.
    83 郭景坤.陶瓷材料的强化与增韧新途径的探索.无机材料学报.1998,13(1):23~26.
    84 郭景坤.陶瓷晶界应力设计.无机材料学报.1995,10(1):515~519.
    85 尹衍生,张景德.氧化铝基陶瓷及其复合材料.北京:化学工业出版社,2001:65~69.
    86 刘国祥.影响氧化铝陶瓷烧结的因素分析.江苏陶瓷.2000,33(1):19~21.
    87 李县辉,孙永安,张永乾.陶瓷材料的烧结方法.陶瓷学报.2003,24(2):120~124.
    88 刘志国.特种陶瓷烧结技术.佛山陶瓷.2002,(9):37~37.
    89 李江,潘裕柏,宁金威等.陶瓷低温烧结的研究及展望.硅酸盐通报.2003,(2):66~69.
    90 高濂,洪金生,宫本大树.放电离子超快速烧结氧化铝力学性能和显微结构研究.无机材料学报.1998,13(6):904~907.
    91 D H Riu, Y M Kong, H E Kim. Effect of Cr_2O_3 addition on microstructural evolution and mechanical properties of Al_2O_3. Journal of the European Ceramic Society. 2000, (20): 1475~1481.
    92 V M Sglavo, F Marino, B R Zhang, et al. Ni_3Al intermetallic compound as second phase in Al_2O_3 ceramic composites. Materials Science and Engineering A. 1997, 239-240: 665~671.
    93 R Z Chen, W H Tuan. Toughening alumina with silver and zirconia inclusions. Journal of the European Ceramic Society. 2001, 21 (16): 2887~2893.
    94 Y G Liu, D C Jia, Y Zhou. Microstructure and mechanical properties of a lithium tantalate-dispersed-alumina ceramic composite. Ceramics International. 2002, 28 (1): 111~114.
    95 S Jiao, M L Jenkins, R W Davidge. Interfacial fracture energy-mechanical behavior relationship in Al_2O_3/SiC andAl_2O_3/TiN nanocomposites. Acta Mater. 1997, 45 (1): 149-156.
    96 N Nawa, T Sekino, K Niihara. Fabrication and mechanical behaviour of Al_2O_3/Monanocomposites. J. Mater. Sci. 1994, 29: 3185~3192.
    97 Eugene Medvedovski. Alumina-mullite ceramics for structural applications. Ceramics Intemationa.2006, 32(4): 369~375.
    98 D W Lee, B K Kim. Nanostructured Cu-Al_2O_3 composite produced by thermochemical process for electrode application. Materials Letters.2004, 58(3-4): 378~383.
    99 G S Huang, Y Xie, X L Wu, et al. Formation mechanism of individual alumina nanotubes wrapping metal (Cu and Fe) nanowires. Journal of Crystal Growth.2006, 289(1): 295~298.
    100 Mi Jung, Hyun-Gi Kim, Jae-Kyoung Lee, et al. EDLC characteristics of CNTs grown on nanoporous alumina templates. Electrochimica Acta. 2004 50(2-3): 857~862.
    101 T Thu Huong, T Kim Anh, M Hoai Nam, et al. Preparation and infrared emission of silica-zirconia-alumina doped with erbium for planar waveguide. Journal of Luminescenc. 2007, 122-123: 911~913.
    102 J H Yuan, W Chen, R J Hui, et al. Mechanism of one-step voltage pulse detachment of porous anodic alumina membranes. Electrochimica Acta. 2006, 51(22): 4589~4595.
    103 Alberto Aguilera, Vivekanand Jayaraman, Srikalyan Sanagapalli, et al. Porous alumina templates and nanostructured CdS for thin film solar cell applications. Solar Energy Materials and Solar Cells. 2006, 90(6): 713~726.
    104 Svetlana Ivanova, Corinne Petit, Veronique Pitchon. Application of alumina supported gold-based catalysts in total oxidation of CO and light hydrocarbons mixture. Catalysis Today. 2006, 113 (3-4): 182~186.
    105 S Alini, A Bottino, G Capannelli, et al. Preparation and characterisation of Rh/Al_2O_3 catalysts and their application in the adiponitrile partial hydrogenation and styrene hydroformylation. Applied Catalysis A: General. 2005, 292: 105~112.
    106 Yi Zhang, Masahiko Koike, Ruiqin Yang, et al. Multi-functional alumina-silica bimodal pore catalyst and its application for Fischer-Tropsch synthesis. Applied Catalysis A: General. 2005, 292: 252~258.
    107 Anthony Garron, Karoly Lazar, Florence Epron. Effect of the support on tin distribution in Pd-Sn/Al_2O_3 and Pd-Sn/SiO_2 catalysts for application in water denitration. Applied Catalysis B: Environmental. 2005, 59(1-2): 57~69.
    108 B Kasprzyk-Hordem, U Raczyk-Stanistawiak, J Swietlik, et al. Catalytic ozonation of natural organic matter on alumina. Applied Catalysis B: Environmental. 2006, 62(3-4): 345~358.
    109 Chao-Shuan Chang, Shing-Yi Suen. Modification of porous alumina membranes with n-alkanoic acids and their application in protein adsorption. Journal of Membrane Science. 2006, 275(1-2): 70~81.
    110 王零森.特种陶瓷.长沙:中南工业大学出版社,1998:20~41.
    111 A Senthil Kumar, A Raja Durai, T Sornakumar. Development of alumina-ceria ceramic composite cutting tool. International Journal of Refractory Metals & Hard Materials. 2004, 22: 17~20.
    112 Y Choi, K Tajima, W Shin, et al. Combustor of ceramic Pt/alumina catalyst and its application for micro-thermoelectric hydrogen sensor. Applied Catalysis A: General. 2005, 287(1): 19~24.
    113 R M Li, Sunil C Joshi, H W Ng. Radiation properties modeling for plasma-sprayed-alumina-coated rough surfaces for spacecrafts. Materials Science and Engineering: B. 2006, 132(1-2): 209~214.
    114 H Kim, M Chen, Q Yang, et al. Sol-gel alumina environmental barrier coatings for SiC grit. Materials Science and Engineering: A. 2006, 420(1-2): 150~154.
    115 E Turunen, T VaNs, S P Hannula, et al. On the role of particle state and deposition procedure on mechanical, tribological and dielectric response of high velocity oxy-fuel sprayed alumina coatings. Materials Science and Engineering: A. 2006, 415(1-2): 1~11.
    116 张春梅,刘亚玲.保持机床导轨持久精度的技术探讨.润滑与密封.2004,(5):91~96.
    117 高磊.聚四氟乙烯基软带导轨及在机床导轨修复中的应用.武钢矿业文集.248~250.
    118 林亨耀.塑料导轨与机床维修.北京:机械工业出版社,1989:1~57.
    119 天津拖拉机厂导轨磨床制造三结合小组编.大型静液压导轨磨床.天津:天津人民出版社,1971:31~32.
    120 叶瑞汶.塑料导轨应用技术.北京:机械工业出版社,1998:1~100.
    121 智体桂.机床导轨感应加热淬火的质量控制.机械科学与技术.1995,(1):42~44.
    122 刘松.热喷涂电刷镀修复机床导轨大面积碰伤.表面技术.1997,26(3):44~45.
    123 高家诚,张亚平,刘继全.喷涂感应重熔在机床导轨修复中的应用.粉末冶金材料科学与工程.1996,1(2):59~63.
    124 宋红岩,马进,焦文祥等.材料铸铁冷焊方法修复机床导轨面.锅炉制造.2002,(2):70~80.
    125 连为民,刘恩沧,唐小琦.用等离子淬火技术处理机床导轨.组合机床与自动化加工技术.2002,(7):76~77.
    126 王进举.耐磨涂料在机床导轨修复中的应用.有色设备.2005,(1):16~18.
    127 郭毅存.机床中的氟塑贴面导轨.机械工程师.2004,(2):84~85.
    128 李进强,张玉萍.塑料导轨软带在机床维修与改造中的应用.轴承.1996,(4):43~47.
    129 田中久一朗.不二越技报.1976,32(1-2):1~11.
    130 林亨耀.润滑与密封.1981,(5):48~50.
    131 王东锋.液体静压导轨及其在机床导轨设计中的应用研究.液压气动与密封.2003,(5):26~28.
    132 覃学东,徐冠.数控机床导轨的选用.桂林航天工业高等专科学校学报.2004,(3):36~37.
    133 方坚,候曾育.浅谈提高导轨耐磨性的方法及材料.现代机械.1997,(3):33~35.
    134 吴剑锋,张钢,杨新洲.机床磁悬浮导轨的动力学分析.机械科学与技术.2004,23(9):1099~1102.
    135 H H Song, O De Haas, Z Y Ren, et al. Magnetic interaction between multiple seeded YBCO bulks and the permanent magnet guideway. Physica C. 2004, (407): 82~87.
    136 张钢,白华,王春兰等.磁悬浮支承技术在机床中的应用.机械工程师.2005,(8):15~20.
    137 黄德中.磁悬浮数控机床导轨的设计.组合机床与自动化加工技术.2004,(1):77~80.
    138 张建生,张钢,吴国庆等.磁悬浮导轨的开发与研究.电气技术与自动化.2004,33(6):127~129.
    139 第一机械工业部情报所编.机床导轨表面高中频淬火.北京:机械工业出版社,1975:1~10
    140 C Limmaneevichitr, W Eidhed. Fading mechanism of grain refinement of aluminum-silicon alloy with Al-Ti-B grain refiners. Materials Science and Engineering A. 2003, 349: 197~206.
    141 A L Greer, A M Burro, A Tronche, et al. Modelling of inoeulatiaon of metallic melts application to grain refinement of alurninium by Al-Ti-B. Acta mater. 2000, 48: 2823~2835.
    142 尹奎波,边秀房,赵岩等.Al-5Ti-1B 中间合金对铸造Al-10Mg 合金的细化行为.铸造.2005,54(2):138~140.
    143 R W 卡恩,P 哈森,E J 克雷默主编.材料科学与技术丛书(第11卷)——陶瓷的结构与性能[M].北京:科学出版社,1998:87~92.
    144 M Sathiyaloumar, F D Gnanam. Role of wollastonite additive on density, microstructure and mechanical properties of alumina[J]. Ceramics International. 2003, 29(8): 869~873.
    145 李祥明,刘德浚,戴振东.金属陶瓷摩擦材料中的润湿性问题,1999,23(1):36~38.
    146 许崇海.复相陶瓷刀具材料设计、仿真及其应用研究.博士学位论文.济南:山东工业大学,1998:24~25.
    147 叶大伦,胡建华.实用无机物热力学数据手册(第二版).北京:冶金工业出版社,2002:1~1055.
    148 孙世清,铝热离心法制备莫来石陶瓷内衬钢管.材料保护.1999,32(7):31~32.
    149 靳喜海,梁波,陈玉茹.烧成温度和热失配对莫来石-氧化锆-钛酸铝陶瓷结构及性能的影响.硅酸盐通报.1999,(1):52~57.
    150 高陇桥.大功率真空电子器件实用的高热导率陶瓷的进展.真空电子技术.1999,(2):27~31.
    151 邓建新.添加 TiB_2 的新型陶瓷刀具材料的开发及其摩擦磨损行为和应用研究.博士学位论文.济南:山东工业大学,1995.
    152 Selsing J. Internal stress in ceramics. J Am Ceram Soc. 1961, 44(8): 419.
    153 Taya M. Toughening of a particulate reinforced ceramic matrix composite by thermal residual stress. J Am Ceram Soc. 1990, 73(5): 1382.
    154 奚同庚.无机材料热物性学.上海:上海科学技术出版社,1981.
    155 冯衍霞.陶瓷刀具材料热压工艺过程的计算机仿真.硕士学位论文.济南:山东工业大学,1998.
    156 F. Tetard, D. Bemache Assollant, E. Champion, et al. Grain growth kinetics of Li_3PO_4-doped calcium carbonate. Solid State Ionic. 1997, (101-103): 517~525.
    157 P. A. Marchlewski, A. R. Olszyna, K. J. Kurzydlowski, et al. Grain growth in high-purity alumina ceramics sintered from mixtures of particles of different sizes. Ceramics International. 1999, (25): 157~163.
    158 Messing G L, Kumagai M. Low-temperature sintering of a-alumina-seeded boehmite gels. American Ceramic Society Bulletin. 1994, 73(10): 88~91.
    159 金志浩,高积强,乔冠华.工程陶瓷材料.西安:西安交通大学出版社,2000:187~191.
    160 Fukuhara M, Fukuham K, Fukuhara A. Physical Properties and Cutting Performance of Silicion Nitride Ceramic[J]. Wear. 1985, 102: 195~207.
    161 Eugene Medvedovski. Alumina-mullite ceramics for structural applications. Ceramics International. 2006, 32(4): 369~375.
    162 G. M. Bond, O. T. Inal. Shock-compacted Aluminurn/boron Carbide Composites[J]. Composites Engineering. 1995, 5(1): 9~15.
    163 Kim H-W, Koh Y-H, Kim H-E. Densification and mechanical properties of B_4C with Al_2O_3 as a sintering aid[J]. J Am Ceram Soc. 2000, 83(11): 2863~2865.
    164 W. C. Johnson, R. L. Coble, A test of the second phase and impurity segregation models for magnesia enhanced densification of sintered alumina, J. Am. Ceram. Soc. 61(1978) 110-114.
    165 S. J. Bennison and M. P. Harmer, Effect of MgO solute on the kinetics of grain growth in Al_2O_3, J. Am. Ceram. Soc. 66(5) (1983) C90-C92.
    166 K. A. Berry and M. P. Harmer, Effect of MgO solute on microstructure development in Al_2O_3, J. Am. Cemm. Soc. 69(2)(1986)143-149.
    167 S. J. Bennison, M. P. Harmer, Effect of magnesia solute on surface diffusion in sapphire and the role of magnesia in the sintering of alumina, J. Am. Ceram. Soc. 73(4) (1990) 833-837.
    168 S. Baik, J. H. Moon, Effect of magnesium oxide on grain-boundary segregation of calcium during sintering of alumina, J. Am. Ceram. Soc. 74(4) (1991) 819-822.
    169 S. I. Bae, S. Baik, Critical concentration of MgO for the prevention of abnormal grain growth in alumina,J.Am.Ceram.Soe.77(10)(1994)2499-2504.
    170 王新元,尹显森,周芳辉等.MgO 对 95Al_2O_3 瓷性能的影响.陶瓷工程.1997,31(2):20~23.
    171 韩亚苓,线全刚,蒋玉齐等.无压烧结 Al_2O_3/SiC 纳米复相陶瓷的研究.硅酸盐学报.2001,29(1):76~79.
    172 刘大成.氧化铝陶瓷及其烧结.中国陶瓷.1998,31(5):13~15.
    173 张翠,艾春廷,陈作炳等.计算机模拟生物陶瓷烧结的方法研究.武汉理工大学学报.2002,24(5):26~28.
    174 Singh V K. Densification of alumina and silica in the presence of a liquid phase[J] J Am Ceram Soc. 1981, (64): 133~136.
    175 Kingery W D. Densification during sintering in the presence of a liquid phase. I theory[J]. J Appl Phys. 1959, 30(3): 301~306.
    176 黄晓巍.Al_2O_3/3Y-TZP 复相陶瓷的液相烧结机理.福州大学学报(自然科学版).2005,33(5):624~627.
    177 赵群,孙志昂.对氧化铝陶瓷液相烧结的研究.轻金属.1996,(8):13~16.
    178 Kingery W D, Narasimhan MD. Densification during sintering in the presence of a liquid phase. Ⅱ experimental[J]. J Appl Phys. 1960: 307~310.
    179 黄培云.粉末冶金原理(第二版)[M].北京:冶金工业出版社,1997.276~282.
    180 Lange R G, Munir Z A, Holt J B. Sintering kinetics of pure and doped boron carbide[J]. Mater Sci Res. 1980, 13: 311~320.
    181 R. M. German, S. Farooq and C. M. Kipphut. Kinetics of liquid sintering. Materials Science and Engineering, 1988, 105-106(1): 215~224.
    182 X. H. Zhang, C. X. Liu, J. H. Zhang, Research on the Sintering Process and Performance of Large-scale Alumina Matrix Ceramic Products. Materials Science Forum. 2004, 471~472: 821~824.
    183 A. G. Evans, D. B. Marshall. Wear mechanisms in ceramics, in: Fundamentals of Friction and Wear of Materials. American Society of Metals. Metals Park. OH, 1980, 439.
    184 Yushu Wang, Stephen M. Hsu. Wear and wear transition modeling of ceramics. Wear. 1996, 195: 35~46.
    185 S. M. Hsu, M. C. Shen. Ceramic wear maps. Wear. 1996, 200: 154.
    186 Kuznetsov. A transition from the Russian. Her Majesty's Stationery Office. Surface Energy of Solids. 1957.
    187 J. E. Blendell, R. L. Coble. Measurement of stress due to thermal expansion anisotropy in alumina. Journal of American Ceramic Society. 1981, 65(3): 174
    188 K. L. Johnson. Contact mechanics. Cambridge: Cambridge university publication. 1990.
    189 S. S. Chiang, A. G. Ecans. Influence of a Tangential on the Fracture of Two Contacting Elastic Bodies. J. Am. Ceram Soc. 1983, 66(1): 210.
    190 高彩桥,刘家浚.材料的粘着磨损与疲劳磨损.北京:机械工业出版社.1989:80~243.
    191 G. M. Hamilton. Explicit equations for the stresses beneath a sliding spherical contact. Process Institute Mechanical Engineer. 1983, 197c: 53.
    192 G. M. Hamilton and L. E. Goodmann. The stress field created by a circular sliding contact. J. Appl. Mech. 1996, 33: 371~376.
    193 T. L. Anderson. Fracture Mechanics: Fundamentals and Applications. CRC Press. Boca Raton, FL. 1991, 79.
    194 K. Kato. Wear maps of ceramics, Proc. Int. Tribology Conf., Yohohama. 1995, Japanese Society of Tribologists, Japan. 1996,1: 421~426.
    195 孙洪库,王伟顺.高分子复合材料在机床中的应用.机械工人(冷加工).2003,(10):58~59.
    196 李丽荣.电刷镀技术在高原地区机械设备修复中的应用.青海科技(研究与开发).2005,(2):42~43.
    197 孙兴伟,李包顺,黄莉萍.氧化锆陶瓷的摩擦磨损性能.硅酸盐学报..1996,24(2):166~168.
    198 谭业发,王耀华,于爱兵等.氧化锆增韧莫来石复相陶瓷的摩擦磨损行为与磨损机制.摩擦学学报.2000,20(2):94~98.
    199 童幸生.陶瓷摩擦副磨损机理的研究.华南理工大学学报(自然科学版).2001,29(4):94~97.
    200 曾杰.无润滑条件下氧化铝基陶瓷材料与钢结硬质合金 GT35 的磨损特性对比.硬质合金.2004,21(2):89~93.
    201 张永胜,陈建敏,胡丽天.纳米复相陶瓷及其摩擦学研究进展.摩擦学学报.2006,26(3):284~288.
    202 宋显辉,陈立耀.工程陶瓷疲劳裂纹扩展的实验研究.硅酸盐通报.1997,16(4):70~74.
    203 曾杰,丁厚福,尤显卿等.粗颗粒 Al_2O_3 陶瓷在无润滑条件下磨损特性的探讨.理化检验—物理分册.1997,33(5):26~28.
    204 陈晓虎.材料转移层对 Al_2O_3 基自润滑陶瓷/铸铁摩擦副摩擦的影响.陶瓷科学与艺术.2002,(3):5~7.
    205 Semenov A P, Katsura A A. Wear of Materials[J]. Proc Int Conf on Wear of Materials. ASME, 1977, 551~555.
    [1] S. K. C. Pillai, B. Baron, M. J. Pomeroy, S. Hampshire, Effect of oxide dopants on densification, microstructure and mechanical properties of alumina-silicon carbide nanocomposite ceramics prepared by pressureless sintering, Joumal of the European Ceramic Society 24(2004) 3317-3326.
    [2] J Chandradass, M Balasubramanian, Sol-gel based extrusion of alumina-zirconia fibres, Materials Science and Engineering: A 408(1-2) (2005) 165-168.
    [3] Wataru Nakao, Masato Ono, Sang-Kee Lee, et al, Critical crock-healing condition for SiC whisker reinforced alumina under stress, Journal of the European Ceramic Society 25(16)(2005) 3649-3655.
    [4] Erie Laarz, Mats Carlsson, Benoit Vivien, et al, Colloidal processing of Al_2O_3-based composites reinforced with TiN and TiC particulates, whiskers and nanoparticles, Journal of the European Ceramic Society21(8)(2001) 1027-1035.
    [5] Bo Zhang, Freddy Boey, The phases and the toughening mechanisms in(Y) ZrO_2-Al_2O_3-(Ti, W) C ceramics system, Materials Letters43(4)(2000) 197-202.
    [6] R. F. Cook, B. R. Lawn, A modified indentation toughness technique, J. Am. Ceram. Soc. 66(11) (1983) 200-201.
    [7] D. L. Ye, J. H. Hu, Handbook of The Thermodynamic Data of Inorganic Substances, Metallurgical Industry Press, Peking of China, 2002, pp. 57-1061.
    [8] Eugene Medvedovski, Alumina-mullite ceramics for structural applications, Ceramics Internationa32(4)(2006) 369-375.
    [9] K. A. Berry and M. P. Harmer, Effect of MgO solute on microstructure development in Al_2O_3, J. Am. Ceram. Soc. 69(2)(1986)143-149.
    [10] S. Balk, J. H. Moon, Effect of magnesium oxide on grain-boundary segregation of calcium during sintering ofalurnina, J. Am. Ceram. Soc. 74 (4) (1991) 819-822.
    [11] S. I. Bae, S. Baik, Critical concentration of MgO for the prevention of abnormal grain growth in alumina, J. Am. Ceram. Soc. 77(10) (1994) 2499-2504.
    [1] Changxia Liu, Jianhua Zhang, Junlong Sun, et al. Pressureless sintering of large-scale fine structural alumina matrix ceramic guideway materials, Materials Science and Engineering A444(2007) 58-63.
    [2] C. Limmaneevichitr, W. Eidhed. Fading mechanism of grain refinement of aluminum-silicon alloy with Al-Ti-B grain refiners, Materials Science and Engineering A 349(2003) 197-206.
    [3] A. L. Greer, A. M. Burro, A. Tronche, P. V. Evans and D. J. Bristow, Modelling of inoculatiaon of metallic melts application to grain refinement of aluminiurn by Al-Ti-B, Acta mater 48(2000) 2823-2835.
    [4] K. Poser, K. -H. Zum Gahr, J. Schneider, Development of Al_2O_3 based ceramics for dry friction systems, Wear 259(2005) 529-538.
    [5] Bas Kerkwijk, Monserrat Garc ya, Werner E. van Zyl, et al. Friction behaviour of solid oxide lubricants as second phase in α-Al_2O_3 and stabilised ZrO_2 composites, Wear 256(2004) 182-189.
    [6] V. Ucar, A. Ozel, A. Mimaroglu, et al. Influence of SiO_2 and MnO_2 additives on the dry friction and wear performance of Al_2O_3 ceramic, Materials and Design 22(2001) 171-175.
    [7] L. Esposito, A. Tucci, Microstructure dependence of friction and wear behaviours in low purity alumina ceramics, wear205(1997) 88-96.
    [8] S. Taktak, M. S. Baspinar, Wear and friction behaviour of alumina/mullite composite by sol-gel infiltration technique, Materials and Design 26(2005) 459-464.
    [9] Jianghong Gong, Hezhuo Miao, Zhe Zhao, Effect of TiC-particle size on sliding wear of TiC particulate reinforced alumina composites, Materials Letters 53(2002) 258-261.
    [10] R. F. Cook, B. R. Lawn, A modified indentation toughness technique, J. Am. Ceram. Soc. 66(11) (1983) 200-201.
    [11] Caiqiao Gao, Jiajun Liu, Adhesive Abrasion and Fatigue Wear of Material. Mechanical Industry Press, Peking of China, 1989, pp80-243.
    [12] A. G. Evans, D. B. Marshall, Wear mechanisms in ceramics, in: Fundamentals of Friction and Wear of Materials, American Society of Metals, Metals Park, OH, 1980, p. 439.
    [13] Y. Wang, S. M. Hsu, Wear and wear transition modeling of ceramics, Wear 195 (1996) 35-46.
    [14] S. M. Hsu, M. C. Shen, Ceramic wear maps, Wear 200(1996) 154.
    [15] K. L. Johnson, Contact mechanics, Cambridge: Cambridge university publication, 1990.
    [16] S. S. Chiang, A. G. Ecans. Influence of a Tangential on the Fracture of Two Contacting Elastic Bodies. J. Am. Ceram Soc. 1983, 66(1): 210.
    [17] AG. Evans, The Science of Ceramic Machining and Surface Finishing Ⅱ, National bureau of Standard Special Publication No. 562, 1979.
    [18] Yushu Wang, Stephen M. Hsu, The effects of operating parameters and environment on the wear and wear transition of alumia, wear195(1996) 90-99.