基于滚珠丝杠的大行程纳米定位系统建模和控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超精密加工与纳米加工技术是现代制造技术的前沿,随着加工精度的不断提高,对超精密加工机床的性能要求也随之提高。伺服定位系统是超精密机床的核心部件,其性能直接决定了超精密机床的加工精度。超精密加工技术的持续发展,要求伺服定位系统能够在数百毫米的行程范围内实现纳米级的定位分辨率。由于机械摩擦的影响,基于滚珠丝杠的纳米定位系统的行程一般比较小。采用双重驱动或者静压技术可以获得大行程的纳米定位,但是系统非常复杂和昂贵。
     本文通过对超精密滚珠丝杠驱动机构的机械结构、摩擦特性进行理论和实验研究,推导控制器算法,建立了计算机闭环控制定位系统,采用单个控制器实现了大行程纳米定位,避免了摩擦辨识和补偿以及双模控制策略的应用。该研究为纳米定位技术的实现提供了一个经济可靠的手段,对于超精密定位系统的研究和应用具有重要的理论意义和实用价值。
     本文首先设计和组建了基于滚珠丝杠副的定位系统,该系统采用DC伺服电机驱动,直线滚珠导轨导向,滚珠轴承支撑,激光干涉仪测量反馈。通过结合实体单元和弹簧单元建立滚珠丝杠驱动机构模型,采用有限元方法对机械系统进行动力学分析,包括模态分析和谐响应分析,得到了其低阶固有频率和在外扰动作用下的频率响应,为定位系统的设计和改进提供了理论指导和依据。
     通过理论推导得到了滚珠丝杠驱动机构的线性数学模型,它可以很好的描述驱动机构在宏观运动范围内的动力学特性。然而,在微小的运动范围内,摩擦等非线性因素极大地影响定位系统的响应性能,是实现纳米定位的关键因素。通过微驱动特性实验和频率响应特性实验对系统在静摩擦阶段的运动特性进行研究,分析微动特性对定位精度的影响,辨识系统在微观范围内的动力学特性,建立了驱动机构微动特性的数学模型。为滚珠丝杠定位系统实现纳米定位提供了理论和实验依据。
     闭环控制系统的结构和算法是定位系统设计的主要环节,对定位系统的性能起着决定性的作用。通过将摩擦等非线性因素作为系统的外部扰动,在定位系统的线性数学模型基础上,设计了高增益PID闭环控制算法,并对其进行了理论分析和仿真。在此基础之上,编写了计算机控制程序,构建了计算机闭环控制系统,对大行程范围内纳米精度的点位控制进行了实验研究,实现了10nm~10mm范围内的阶跃响应。并对实验结果和定位系统的鲁棒性进行了分析。
     由于存在功率放大器的饱和,采用抗积分饱和算法可以保证高增益PID闭环控制滚珠丝杠定位系统的稳定性,却无法解决大幅值阶跃响应的超调现象。通过将轨迹规划思想和Bang-Bang控制理论与PID闭环系统结合起来,针对滚珠丝杠定位系统设计变结构控制来消除饱和导致的超调现象,实现了时间最优的无超调纳米定位。
Ultra-precision machining and nanotechnology are at the forefront of modern manufacturing industry. When the accuracy of machined part approaches nanoscale, machine tools have to be improved gradually. Positioning system is the key technology for realizing high accuracy. Precision positioning system with nanometer resolution and long stroke are becoming more important in industrial applications. Usually nanometer positioning systems based on ballscrews are of short stroke because of friction. Even positioning systems with dual-model control strategy or aerostatic mechanism can realize nanometer positioning with long strok, it is every expensive because of suppression or elimination of mechanical friction.
     In this thesis, a positioning system based on ballscrew and linear ball guides is designed and constructed. The mechanism, friction phenomenon and control strategy of the system are investigated. Experimental and simulated results indicate that the sigle-step nanometer positioning with long stroke can be realized on such a cheap frictional system with computer control closed-loop system, friction identification and compensation or dual-model control strategy are avoided. The fulfillment of this study proposes a simple and inexpensive method for realizing nanometer positioning. It will contribute to the improvement of theoretic and experimental method of nanotechnology for its further development.
     The precision positioning system based on ballscrew consists of ballscrew, linear ball guides, DC-motor and ball bearings, et al. Combining solid elements and spring elements, accurate model of the mechanism is built and Finite Element Analysis is carried out for calculating the system dynamics. The modal analysis and frequency response analysis are performed. The first four modals and natural frequencies are obtained. The frequency analysis of the positioning system under motor output is also obtained. The computation results provide theoretical basis for mechanism design and improvement.
     For ballscrew mechanism, models that do not account for friction can only be used to describe the macrodynamic behavior. However, because of friction, the behavior of the system prior to continuous slipping at the friction interface is completely different from that of its macrodynamics. Friction becomes the main obstacle for realizing nanometer positioning. The torque/displacement experiments and frequency response analysis experiments are executed for studying friction phenomenon and identifying the microdynamic characteristics of the positioning system. The theoretic model is founded including microdynamics of the mechanism. This provides the basis of controller design and theoretical analysis for nanometer positioning.
     Control strategy is the most important for nanometer positioning system design and it determines performance of the system. Based on the macrodynamics of the ballscrew mechanism alone, a high-gain PID control structure with proportional and derivative items placed in the feedback path is designed. Friction is considered as the outer disturbance of the closed-loop system. The controller is implemented on a personal computer. Experiment and simulation of point-to-point (PTP) positioning for step height from10nm to 10mm are examined and analyzed. Robustnes of the positioning system also be researched.
     Because of saturation of the amplifier in the system, even the anti-windup technique can guarantee stability of long stroke positioning, overshoot appeared in long stroke PTP positioning is unavoidable with the high-gain PID controller. Input trajectory design method and Bang-Bang control strategy are combined with the PID closed-loop system respectively. Time optimum nanometer positioning is realized without overshoot.
引文
1 袁哲俊,王先逵. 精密超精密加工技术. 机械工业出版社. 1999
    2 Funahashi, M.Yamada. Zero phase error tracking controllers with optimal gain characteristics. Journal of dynamic systems, measurement, and contol. 1993,115(9):311~318
    3 N.Taniguchi. On the Basic Concept of Nanotechnology. Proceeding of ICPE. 1974:1~3
    4 盖玉先,董申. 超精密加工机床的关键部件技术.制造技术与机床. 2000,(1):7~10
    5 A. Shimokohbe. Development of nano-meter motion control in Japan. Journal of the Brazilian Society of Mechanical Sciences. 2002,24(4): 312~317
    6 徐峰,文贵林. 纳米定位技术的进展. 机电工程. 2001,18(3):1~2
    7 戴蓉,谢铁邦,常素萍. 纳米级定位精度一维位移工作台. 中国机械工程. 2006,17(2):115~118
    8 H.J. Pahk, D.S.T TLee, J.H. Park. Ultra precision positioning system for servo motor-piezo actuator using the dual servo loop and digital filter implementation. International Journal of Machine Tools & Manufacture. 2001,41(1):51~63
    9 A.T. Elfizy, G.M. Bone, M.A. Elbestawi. Design and control of a dual-stage feed drive. Journal of Machine Tools & Manufacture. 2005,45(2):153~165
    10 孙绍云,曲东升,孙立宁等. 宏/微驱动定位系统变结构滑模控制的研究. 机器人. 2004,26(1):32~34
    11 王建林,胡小唐,杨勇等. 压电陶瓷用于纳米定位系统的研究. 航空精密制造技术. 1997,33(2):8~10
    12 J.S. Chen,T TI.C. Dwang. Ballscrew drive mechanism with piezo-electric nut for preload and motion control. International Journal of Machine Tools and Manufacture. 2000,40(4):513~526
    13 戴一帆,李圣怡. 超精密加工精度分析.中国机械工程. 1999,10(2):203~206
    14 C.L.Chao, J.Neou. Model reference adaptive control of air-lubricated capstan drive for precision positioning. Precision Engineering, Journal of theInternational Societies for Precision Engineering and Nanotechnology. 2000,24:285~290
    15 H. Mizumoto, M. Yabuya, T. Shimizu, et al. An angstrom positioning system using a twist-roller friction drive. Precision Engineering. 1995,17(1):57~62
    16 H. Mizumoto, S. Arii, A.Yoshimoto, et al. Twist-roller friction drive for nanometer positioning - simplified design using ball bearings. CIRP Annals - Manufacturing Technology. 1996,45(1):501~504
    17 戴一帆,李圣怡,罗兵等. 扭轮摩擦驱动系统研究. 国防科技大学学报. 1999,21(2):85~88
    18 S.B.Chang, S.H.Wu, Y.C.Hu. Submicrometer overshoot control of rapid and precise positioning. Precision Engineering. 1997,20(3):161~170
    19 J.S. Chen, K.C. Chen, Z.C. Lai, et al. Friction characterization and compensation of a linear-motor rolling-guide stage. International Journal of Machine Tools & Manufacture. 2003,43:905~915
    20 S. Hidenori, H. Hitoshi. Nanometer positioning of a linear motor-driven ultraprecision aerostatic table system with electrorheological fluid dampers. CIRP Annals- Manufacturing Technology. 1999,48(1):289~292
    21 Shamoto, Eiji. Moriwaki, Toshimichi. Development of a walking drive ultraprecision positioner. Precision Engineering. 1997,20(2):85~92
    22 Y. Egashira, K. Kosaka, S. Takada, et al. Development of nonresonant untrasonic motor with Sub-nanometer resolution. Proceedings of the IEEE Ultrasonics Symposium. 2002,1:637~640
    23 Y.T. Liu, R.F. Fung, T.K. Huang. Dynamic responses of a precision positioning table impacted by a soft-mounted piezoelectric actuator. Precision Engineering. 2004,28:252~260
    24 Y.T. Liu, T. Higuchi, R.F. Fung. A novel precision positioning table utilizing impact force of spring-mounted piezoelectric actuator - part I:experimental design and results. Precision Engineering. 2003,27:14~21
    25 H.P. Chun , E.S. Lee. A review on research in ultra precision engineering at KIMM. International Journal of machine Tools &Manufacture. 1999,39:1793
    26 J.H. Mao, H. Tachikawa, A. Shimokohbe. Double-integrator control for precision positioning in the presence of friction. Precision Engineering. 2003,27:419~428
    27 J.H. Mao, H. Tachikawa, A. Shimokohbe. Precision positioning of a DC-motor -driven aerostatic slide system. Precision Engineering. 2003,27:32~41
    28 王志民,张西忠,厉勇. 滚珠丝杠传动使用与发展. 机电工程技术. 2004,33(9):88~90
    29 佐藤海二,古屋学,進士忠彦,そのほか.各種制御法を用いた送りねじ位置決め系の性能評価(第1報).精密工学会誌,1997,63(11): 1614~1619
    30 佐藤海二,科野文男,進士忠彦,そのほか.各種制御法を用いた送りねじ位置決め系の性能評価(第2報).精密工学会誌,1997,63(12): 1759~ 1763
    31 刘强,尔联洁,刘金琨. T摩擦非线性环节的特性、建模与控制补偿综述.T 系统工程与电子技术. 2002,24(11):45~52
    32 P.Y. Huang, Y.Y. Chen, M.S. Chen. Position-dependent friction compensation for ballscrew tables. In Proceedings of the 1998 IEEE International Conference on Control Applications. 1998:863~867
    33 C. Canudas de Wit, H. Olsson, K.J. ?str?m, et al. A new model for control of systems with friction. IEEE transactions on automatic control. 1995,40(3): 419~425
    34 Ro Paul I.T, TShim Wonbo, Jeong Sanghwa. Robust friction compensation for submicrometer positioning and tracking for a ball-screw-driven slide system. Precision Engineering. 2000,24(2):160~173
    35 R.H.A. Hensen, M.J.G. van de Molengraft, M. Steinbuch. Friction induced hunting limit cycles: A comparison between the LuGre and switch friction model. Automatica. 2003,39(12):2131~2137
    36 Y. Zhang. Investigation of friction compensation based on velocity estimation method and high-accuracy laser sensor. Thesis for the degree of masters. University of Toronto. 2002.
    37 M.S. Kang. Robust digital friction compensation. Control Engineering Practice. 1998,6(3):359~367
    38 E.G. Papadopoulos, G.C. Chasparis. Analysis and model-based control of servomechanisms with friction. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME. 2004,126(4):911~915
    39 蒋培军,齐国生,徐端颐等. 微进给工作台伺服控制技术. 清华大学学报(自然科学版). 2004,44(5):657~660
    40 S. Mekid. A non-linear model for pre-rolling friction force in precision positioning. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 2004,218(4):305~311
    41 R.H. Wu, P.C. Tung. Study of stick-slip friction, presliding displacement, and hunting. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME. 2002,124(1):111~117
    42 C. Hsieh, Y.C. Pan. Dynamic behavior and modelling of the pre-sliding static friction. Wear. 2000,242(1):1~17
    43 T.Y. Lin, Y.C. Pan, C. Hsieh. Precision-limit positioning of direct drive systems with the existence of friction. Control Engineering Practice. 2003, 11(3):233~244
    44 T. Hatazawa, T. Kawaguchi, J. Kagami. Application of micro-displacement characteristics to nanoscale positioning. Wear. 2004,257(12):1226~1229
    45 王波,赵万生,董申. 超精密车床伺服机构的微动特性的研究. 哈尔滨工业大学学报. 1999,31(2):133~136
    46 王波,董申,赵万生. 利用滚珠丝杠的微动特性实现纳米级定位. 航空精密制造技术. 1998,34(6):8~10
    47 J.F. Cuttino, T.A. Dow, B.F. Knight. Analytical and experimental identification of nonlinearities in a single-nut, preloaded ball screw. Journal of Mechanical Design. 1997,119(1):15~19
    48 S. Futami, A. Furutani, S.Yoshida. Nanometer positioning and its microdynamics. Nanotechnology. 1990,1:31~37
    49 王洪祥,董申,王波. 自适应微动控制器在超精密车床中的应用. 机械设计与制造工程. 1999,28(4):47~49
    50 郑子文,李圣怡. 滚珠丝杠的微动特性及轨迹跟踪控制. 光学精密工程. 2001,9(4):360~363
    51 E.C. Park, H. Lim, C.H. Choi. Position control of X-Y table at velocity reversal using presliding friction characteristics. IEEE Transactions on Control Systems Technology. 2003,11(1):24~31
    52 S.J. Huang, J.Y. Yen, S.S. Lu. Dual model control of a system with friction. IEEE Transactions on Control systems Technology. 1999,7(3):306~314
    53 Y.T. Tseng, J.H. Liu. High-speed and precise positioning of an X–Y table.Control Engineering Practice. 2003,11(4):357~365
    54 J.H. Mao, H. Tachikawa, A. Shimokohbe. On-line controller tuning using genetic algorithms for precision positioning with friction. 2002 Japan-USA Symposium on flexible automation. Hiroshima, Japan, July, 2002:14~19
    55 Y. Takahashia, H. Takahashi. Precise positioning control with double feedback loop for ultralarge scale integrated manufacturing machine. Review of Scientific Instruments. 2002,73(7):2791~2796
    56 C.L. Chen, M.J. Jang; K.C. Lin. Modeling and high-precision control of a ball-screw-driven stage. Precision Engineering. 2004,28(4):483~495
    57 J.H. Ryu, J. Song, D.S. Kwon. A nonlinear friction compensation method using adaptive control and its practical application to an in-parallel actuated
    6-DOF manipulator. Control Engineering Practice. 2001,9(2):159~167
    58 M.R. Ropovic, G.M. Gorinevsky, A.A. Goldenberg. High-precision positioning of a mechanism with nonlinear friction using a fuzzy logic pulse controller. IEEE Transaction on control systems technology. 2000,8(1):151~158
    59 J.O. Jang, G.J. Jeon. A parallel neuro-controller for DC motors containing nonlinear friction. Neurocomputing. 2000,30:238~248
    60 C.C. Cheng, C.Y. Chen, George T.-C. Chiu. Predictive control with enhanced robustness for precision positioning in frictional environment. IEEE/ASME Transactions on Mechatronics. 2002,7(3):385~392
    61 K. Sato, K. Nakamoto, A. Shimokohbe. Practical control of precision positioning mechanism with friction. Precision Engineering. 2004,28(4): 426~434
    62 K.J. ?str?m, T. H?gglund. The future of PID control. Control Engineering Practice. 2001,9(11):1163~1175
    63 M.T. Ho, C.Y. Lin. PID controller design for robust performance. IEEE Transactions on automatic control. 2003,48(8):687~692
    64 刘金琨. 先进PID控制及其Matlab仿真. 电子工业出版社. 2003
    65 L. H. Keel, J. I. Rego, S. P. Bhattacharyya. A new approach to digital PID controller design. IEEE Transactions on automatic control. 2003,48(4): 687~692
    66 A. Karimi, M. Kunze, R. Longchamp. Robust PID controller design by linearprogramming. American Control Conference, Minneapolis, Minnesota, USA, June 14-16, 2006.
    67 O. Lequin, M. Givers, M. Mossberg, et al. Iterative feedback tuning of PID parameters: comparison with classical tuning rules. Control Engineering Practice. 2003,11(9):1023~1033
    68 曹君蓬,杨辉. 液体静压导轨及其驱动系统的研究. 航空精密制造技术. 2002,38(3):35~37
    69 王贵林,李圣怡,粟时平. 基于超精密应用的高刚度高阻尼空气静压导轨研究. 航空精密制造技术. 2001,37(6):1~5
    70 孙宝玉,梁淑卿,宋文荣,等 . 直线驱动磁悬浮进给机构的研究 . 2003,11(4):338~342
    71 宋文荣,于国飞,王延风等. 磁悬浮微进给机构的PID控制. 哈尔滨工业大学学报. 2004,36(1):28~31
    72 刘红忠,赵万华,李涤尘等. 多坐标激光干涉仪用于纳米定位系统中的研究. 光子学报. 2002,31(5):592~594
    73 王向朝. 激光干涉仪与纳米精度检测. 中国计量学院学报. 2001,12(2): 73~76
    74 王波,董申,赵万生. 超精密定位中的几项相关关键技术. 航空精密制造技术. 1998,34(3):13~16
    75 刘文超,丁雪梅. 基于数字合成和检波技术的电容位移传感器. 哈尔滨工业大学学报. 2002,34(5):706~709
    76 A. Dequidt,T J.M.T Castelain, E. Valdes. Mechanical pre-design of high performance motion servomechanisms. Mechanism and Machine Theory. 2000,35(8):1047~1063
    77 杨星. 双坐标动静态双频激光测量系统的研制. 博士学位论文. 哈尔滨工业大学. 1997:11-30
    78 吴南星,胡如夫,孙庆鸿. 数控车床丝杠进给系统刚度对定位精度的影响. 中国工程科学. 2004,6(9):46~49
    79 刘桂芹,江进国,段成龙等.有限元法及其在现代机械工程中的应用. 机械研究与应用. 2005,18(2):15~16
    80 安琦瑜,冯平法,郁鼎文. 基于FEM的滚珠丝杠进给系统动态性能分析. 制造技术与基础. 2005,(10):85~88
    81 M.F. Zaeh, Th. Oertli, J. Milberg. Finite element modelling of ball screwfeed drive systems. CIRP Annals-Manufacturing Technology. 2004,53(1): 289~293
    82 车仁炜,陆念力. 多刚体系统动力学建模的一种新方法. 汽轮机技术. 2003,45(6):364~365
    83 杨潇,唐恒龄,廖伯瑜编. 机床动力学. 机械工业出版社. 1983
    84 R.C. Dorf, R.H.Bishop. 现代控制系统. 谢红卫等. 高等教育出版社. 2001
    85 周宇. 定位自动调节系统的位置调节器综述. 电气传动. 1994,(1):2~11
    86 王伟,张晶涛,柴天佑. PID 参数先进整定方法综述. 自动化学报. 2000, 26(3):347~355
    87 K. Sato, A. Shimokohbe, Wahyudi. Characteristics of practical control for point-to-point (PTP) positioning systems-Effect of design parameters and actuator saturationon positioning performance. Precision Engineering. 2003, 27(2):157~169
    88 Y.Y Cao, Z. Lin. Stability analysis of discrete-time systems with actuator saturation by a saturation-dependent Lyapunov function. Automatica. 2003,39(7):1235~1241
    89 C. Bohn, D.P. Atherton. Analysis package comparing PID anti-windup strategies. IEEE Control Systems Magazine. 1995, 15(2):34~40
    90 A. Visioli. Modified anti-windup scheme for PID controllers. IEE Proceedings: Control Theory and Applications. 2003,150(1):49~54
    91 A.S. Hodel, C.E. Hall. Variable-structure PID control to prevent integrator windup. IEEE Transactions on Industrial Electronics. 2004,51(3):736~739
    92 杨明,徐殿国,贵献国. T控制系统Anti-Windup设计综述T. 2006,10(6): 622~631
    93 M.T. Ho, C.Y. Lin. PID controller design for robust performance. IEEE Transactions on Automatic Control. 2003,48(8):1404~1409
    94 胡学武,盛小明. 电液位置控制系统的鲁棒性分析. 苏州大学学报(工科版). 2005,25(4):26~27
    95 Wahyudi, K. Sato, A. Shimokohbe. Robustness evaluation of three friction compensation methods for point-to-point (PTP) positioning systems. Robotics and Autonomous Systems. 2005,52:247~256
    96 J.S. Park. Motion profile planning of repetitive point-to-point control for maximum energy conversion efficiency under acceleration conditions.Mechatronics. 1996,6(6):649~663
    97 从爽,尚伟伟. 运动控制中点到点控制曲线的性能研究. 机械与电子. 2005,(7):16~19
    98 曹剑中,吴胜雄. 位置伺服系统实现快速定位及跟踪的一种新方法. 光子学报. 1995,24(4):362~365
    99 荆海英. 最优控制理论与方法. 东北大学出版社. 2002.
    100 周永清. 雷达伺服快速调转Bang-Bang控制的数字实现. 系统工程与电子技术. 1989,(5):41~47
    101 张寅孩,张仲超. 用 Bang-Bang 控制策略实现快速定位最优系统. 电力电子技术. 2003,31(1):22~24
    102 C.J. Kempf. A step and settle positioning algorithm for electro-mechanical systems with damping. International Workshop on Advanced Motion Control, AMC. 1996,1:47~52
    103 K. Furuta, S. Kobayashi. Bang-bang position control of direct drive motor. IECON Proceedings (Industrial Electronics Conference). 1990,1:148~153