光栅刻划机摩擦驱动机构动力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光栅刻划机历来在精密机械领域内称之为“精密机械之王”,自第一台光栅刻划机问世后在相当长的历史时期内,光栅刻划机的系统结构与技术进步始终标志着精密机械技术领域的发展与进步。为达到高精度定位和高精度的分辨力,并考虑国内现有的加工和检测技术,驱动方式选为摩擦驱动。
     摩擦驱动机构是由驱动轴和从动杆间的压紧力所产生的摩擦力使从动杆产生运动,连续的展成从动杆的直线运动,从而实现运动和动力的传递。传统的丝杠螺母机构、齿轮齿条机构与摩擦传动相比,有很多不足之处,主要是在当前技术条件下,运动精度无法达到要求,如丝杠螺距误差、齿轮的齿距误差等都是影响传动精度的重要因素。此外,传动中的间隙、摩擦发热等也是造成传动误差不可忽视的因素。摩擦传动则可以克服上述传动中的不足,因其元件形状简单,易于保证加工精度,传动无间隙,因而能降低电机及测速机的频率波动。所以在超精密机床中采用摩擦传动,能较好地实现高精度传动[38]。
     但摩擦驱动自身的驱动方式也有不足之处,在运动过程中会出现爬行和打滑的现象,而打滑现象通过相应的增加预压力即可消除其影响,所谓爬行即在摩擦副中从动件在匀速驱动和一定摩擦条件下产生的周期性时停时走或时慢时快的运动现象。本文针对爬行现象从理论上通过应用matlab中的simulink部分进行理论的分析,通过对摩擦驱动机构的实验数据整理讨论摩擦驱动的爬行对实际的定位精度的影响大小。
     通过实验的整理证明,摩擦驱动在预压力100N的工作过程中爬行现象并不能对其定位精度产生影响。
Grating ruling machines have always been in the field of precision machinery iscalled "the king of precision machinery, since the first grating ruling machines available inquite long period in history, grating ruling machines system structure and technicalprogress always marks the development and progress in the field of precision machinerytechnology. To achieve high precision positioning and high resolution, and considering thedomestic existing processing and detection technology, drive way elected friction drive.
     Friction drive mechanism is made up of the drive shaft and the driven compactionforce generated by the friction between the rod in the follower lever to produce movement,continuous exhibition into the linear motion of the follower lever, thus realizing movementand power transmission. Traditional screw nut mechanism, gear rack mechanism comparedwith friction drive, there are a lot of shortcomings, mainly in the current technicalconditions, the motion precision can't meet the requirements, such as the screw pitch error,pitch error of gear and so on are the important factors affecting the transmission accuracy.In addition, the transmission of the clearance and friction heat is caused by transmissionerror factors cannot be ignored. Friction drive can overcome the above shortcomings, inthe transmission because of its simple element shape, easy to guarantee machiningaccuracy, the transmission zero clearance, thus can reduce the frequency fluctuation ofmotor and speed measuring machine. So in the ultra precision machine tool using frictiondrive, can achieve high precision transmission.
     But the friction drive drive mode has the defects of his own, will appear in the processof movement crawl and skid phenomenon, and skid phenomenon through thecorresponding increase of preloading can eliminate the influence, So-called crawling thefollower in friction pair under the condition of uniform friction drive and must be producedby the periodically when the continual walk or slow fast movement phenomenon.crawlingphenomenon in theory, the author of this paper by using matlab simulink part of theory analysis, through the discussion of experimental data of friction drive mechanism offriction drive creep influence on positioning precision of the actual size.
     Through experiments prove, friction drive in the process of the work of100Npre-pressure crawling phenomenon does not affect the positioning accuracy.
引文
[1]曹君蓬,杨辉.液体静压导轨及其驱动系统的研究[J].航空精密制造技术.2002,38(3):35-37.
    [2]曾彬,杨建国,李蓓智等.摩擦轮驱动微位移实验平台的设计和研究[J].工艺与装备.2007,79-82.
    [3]苑文瑛.浅谈摩擦驱动机构[J].航空精密制造技术.1991.
    [4]李圣怡,戴一帆,彭小强.超精密加工机床及其新技术发展[J].国防科技大学学报.2000,22(2):95-100.
    [5]黎永明,刘建国.超精密机床的发展及其关键技术[J].上海机械学院学报.1994,16(2):57-62.
    [6]刚本纯三.球轴承的设计计算[M].黄志强,译.北京:机械工业出版社,2003.
    [7]刘国平.机械系统中的摩擦模型及仿真[D].西安:西安理工大学,2007.
    [8]文浩,薛开.实验转台设计及摩擦补偿研究[D].哈尔滨:哈尔滨工程大学,2011.
    [9]Henrik Olsson.ControlSystems with Frictio[M].Department of Automatic Control,1996.
    [10]D. P. Hess,A. Soom.Friction at a Lubricated Line Contact Operating at OscillatingSliding Velocities[J].Journal of Tribology.1990,147-152.
    [11]Karl J. str m.CONTROL OF SYSTEMS WITH FRICTION[J].EngineeringScience.1998:95-103.
    [12]韩继光.车辆ABS系统最大纵向附着系数估计算法研究[D].昆明:昆明理工大学,2007.
    [13]J.Wang,S.S.Ge,T.H.Lee.Adaptive Friction Compensation for ServoMechanisms[J].National University of Singapore:212-246.
    [14]刘慧慧.基于速度相关和LuGre摩擦模型的滑动稳定性分析[D].西安:西安理工大学,2008.
    [15]曾彬,张家梁.摩擦驱动微位移试验平台的设计和研究[D].上海:东华大学,2007.
    [16]C.Canudas de Wit.A New Model for Control of Systems with Friction[J].IEEETRANSACTIONS ON AUTOMATIC CONTROL.1995,VOL40(3):419-424.
    [17]陈剑锋.基于LuGre摩擦模型的气缸摩擦力实验研究[D].杭州:浙江大学,2011.
    [18]王喜明,高伟.基于LuGre模型的摩擦力矩补偿研究[D].北京:中国科学院研究生院,2007,5.
    [19]张剑,梁清.含摩擦伺服系统的建模与控制研究[D].合肥:中国科学技术大学,2011.
    [20]李泉,路长厚. X-Y工作台的摩擦建模与仿真研究[D].山东:山东大学,2005.
    [21]路向明.基于模糊整定PID的海浪运动模拟实验台控制系统设计[D].哈尔滨:哈尔滨工业大学,2008.
    [22]陈伟光,廖力清.跑道辨识算法在飞机防滑刹车中的应用研究[D].长沙:中南大学,2011.
    [23]张丹,黄进.含摩擦环节伺服系统的补偿控制[D].西安:西安电子科技大学,2008.
    [24]苑海涛.变频调速液压电梯单片机控制器的研究[D].杭州:浙江大学,2006.
    [25]李振宇,卢泽生.大行程微进给机构模糊控制系统的研究[D].哈尔滨:哈尔滨工业大学,2007.
    [26]韩宝江,张伟,康尔良.基于MATLAB的模糊参数自整定PID控制器的仿真研究[J].黑龙江水专学报.2009,1.
    [27]王利平.摩擦驱动微进给系统静动态特性的研究[D].哈尔滨:哈尔滨工业大学,2007.
    [28]Armstrong, Brian S R. New results in NPID control: Tracking, integral control, frictioncompensation and experimental results[J].Control Systems Technology,IEEE Transactionson.2001,9(2):399-406.
    [29]徐大伟,崔峰,程国锋等.无级变速摩擦轮机构传动比确定[J].机电设备.2002,6:9-12.
    [30]Guomin Wang, Lisheng Ma, Zhengqiu Yao. Experiment study on friction drive[J].SPIE.2004,54(95):419-428.
    [31]李勇,周聘.采用步进电机驱动的摩擦传动微进给机构[J].清华大学学报.2004,44(2):170-173.
    [32]罗兵,李圣怡,李艾利.超精密扭轮摩擦传动动力学研究[J].国防科技大学学报.1998,(20)3:99-102.
    [33]初永坤,李益民.摩擦驱动及其应用[J/OL]. http://www.cqvip.com.
    [34]陈德生,潘浓芬.摆动齿轮箱自动压紧摩擦驱动旋转舞台[J/OL].2004,28(6):59-60.http://www.cqvip.com.
    [35]吴鹰飞,周兆英.超精密定位工作台[J].微细加工技术.2002,2:41-46.
    [36]何远新.大速比摩擦传动结构设计和精度测试[D].哈尔滨:哈尔滨工业大学,2006.
    [37]姜文锐.大行程高精度微进给系统的研究[D].哈尔滨:哈尔滨工业大学,2009.
    [38]初永坤,李益民.摩擦驱动及其应用[J].新技术新工艺.1994.
    [39]钟俊,竺长安.宏观尺度的纳米级定位控制技术研究[D].合肥:中国科技大学,2011.
    [40]刘海涛,卢泽生.基于压电陶瓷的步进式进给机构的研制[D].哈尔滨:哈尔滨工业大学,2006.
    [41]刘英超,常丽.基于ARM的大行程精密工作台控制系统[D].沈阳:沈阳工业大学,2012.
    [42]王占彬,林彬.基于气体润滑静压工作台的若干关键技术[D].天津:天津大学,2009.
    [43]胡小文,龚发云.工作台微定位特性分析及误差补偿研究[D].武汉:湖北工业大学,2009.
    [44]刘班,王洪滨.一类具时滞反馈控制的摩擦模型的稳定性和Hopf分支分析[D].哈尔滨:哈尔滨工业大学,2009.
    [45]杨松,苏宝库.高精度机械轴承转台摩擦补偿研究[D].哈尔滨:哈尔滨工业大学,2009.