球体研磨机双油膜转子系统开发及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双自转研磨盘球体研磨机是用于批量加工高精度球的重要装备。双转子转盘的轴承作为旋转支承件,对球体研磨机的加工精度具有重要影响。现有的双自转研磨盘球体研磨机都采用滚动轴承,具有摩擦磨损大、精度寿命有限、寿命分布离散、减振性差等固有缺点。液体静压轴承由于具有精度高、寿命长、减振性好等优异性能,是替代滚动轴承的理想方案,但应用于双自转球体研磨机还存在整体结构布局困难、双层供油难以实现、立式结构油液密封困难、双油膜轴承流场性能和承载特性优化困难等技术难题,迫切须要进行针对性的系统深入地研究。
     本文根据球体研磨机双自转研磨盘独特结构,开发了双油膜静压转子系统。该系统为外主轴采用空心结构,内主轴位于外主轴内;外轴承紧固于壳体内,内轴承嵌于外主轴内壁。针对内轴承随外主轴同步旋转,供油难以形成的难题,提出了在外主轴外表面开设环形油槽以实现内轴承四个油腔同时供油的新方法。针对球磨机采用双转子立式结构,提出利用高压气流的屏障作用有效克服回油槽的油向下渗漏的气密封方式,弥补了传统机械密封方式难以实现有效密封的弱点。
     建立了利用CFD方法的小孔节流无周向回油槽静压径向轴承计算模型和小孔节流环形油腔静压止推轴承油膜流场数值计算模型;探讨了符合无周向回油槽静压径向轴承和环形腔静压止推轴承油膜几何尺度特征的离散网格划分与边界条件及计算参数选择的方法,采用非结构网格与分块划法及网格尺寸函数确保了径向轴承和止推轴承三维油膜网格的协调性,以实现计算效率与计算精度的综合最优。利用所建立的模型和CFD计算方法系统研究了径向轴承供油压力、偏心率和进油孔径对流场分布的影响规律;研究了轴承间隙、节流孔径和供油压力对轴承承载能力、刚度和流量的影响规律;揭示了供油压力和节流孔径等对低速重载环形腔静压止推轴承油膜流场形态与静态特性的影响规律。
     对现有文献工程计算方法和本课题提出的双油膜静压转子动态特性数值研究方法进行了比较研究。研究表明,根据本课题数值模拟方法计算的结果能够反映双油膜静压转子的工程特征,可以作为双油膜静压转子系统动态性能分析和优化的基本方法。
     本文提出的研究方法和研究的相关结果为球体研磨机双油膜静压转子系统设计和动态性能分析提供了重要参考。
The dual-plate lapping machine is the important equipment for mass producing of high precision balls. The bearing of dual rotors plate act as whirling support member, which has important influence on the machining precision of the dual-plate lapping machine. The existing dual-plate lapping machine uses rolling bearing, so it has following inherent shortcomings, the big friction and wear, the limited precision life, discrete life distribution, and poor vibration damping. The hydrostatic bearing has the high precision, long life, excellent performance and good vibration damping, so it is the ideal program for replacing rolling bearings. But the overall structure and layout of the dual-plate lapping machine is very difficult, the double oil supply is difficult to achieve, the oil seal is difficult, and the optimization of the double film performance and load characteristics of the flow field’s bearing are difficult and existing other technical problems, so it is urgent to further study.
     According to the unique structure of double rotation grinding plate in the ball grinding machine, developed a double oil film external static pressure bearing rotor system. Which the outer spindle is a hollow structure, and the inner spindle is located in the outer spindle; the outer bearing is located in the box, and the inner bearing is located in the outer spindle. Because of the problem of oil supply within the spindle bearing in synchronization, the new method is applied which opening oil groove in outer spindle face for the inner bearing. According to the ball grinding machine with double rotor vertical structure, the high pressure gas is used for sealing oil leakage, which making up for the traditional mechanical seal to realize the effective way of seal weakness.
     The hydrodynamic lubrication model of hydrostatic bearings based on finite volume method and computational fluid dynamics is established. And the discrete method, discrete scheme, and solution of algebraic equations of basic equations in fluid dynamics are discussed, aiming at the classical hydrodynamic lubrication problems, the comparative study on the three-dimensional numerical simulation based on CFD and one-dimensional and two-dimensional theoretical calculation based on Reynolds assumptions is carried out. In order to ensure the bearing performance meet the design requirements, the performance of dual-oil-film bearings is analyzed. The radial bearing system model and the thrust bearing system model are built. The built models are used to study the flow field distribution and the static characteristics of bearings.
     Comparing the existing literature of engineering calculation method and the dynamic characteristics numerical research of a Dual-Oil-Film static pressure Rotor that were proposed by this topic. Research shows that, according to the result of numerical simulation method of this topic ,it can reflect the engineering features of Dual-Oil-Film static pressure Rotor, also can be used as a basic method of dynamic characteristics analysis and optimizationa of Dual-Oil-Film static pressure Rotor system。
     The work offers important reference and effective approaches for the structure design and dynamic performance of hydrostatic spindle for the rotated dual-plates lapping machine.
引文
[1]袁巨龙,吕冰海,王志伟.高精度球双自转研磨盘高效研磨装置[P].中国专利: CN200910097082.5,2009-03-31
    [2]吕冰海,袁巨龙,王志伟.精密陶瓷球研磨成球机理的研究[A].中国科协第二届优秀博士生学术年会论文集[C],苏州:中国计算机学会, 2004: 783-787
    [3]陶宝春,王志伟,吕冰海.陶瓷球双自转盘研磨方式下研磨均匀性的研究[J].金刚石与磨料磨具工程, 2006(4): 43-47
    [4]袁巨龙,王志伟,文东辉.超精密加工现状综述[J].机械工程学报, 2007, 43 (1): 35-48
    [5]袁巨龙,张飞虎,戴一帆.超精密加工领域科学技术发展研究[J].机械工程学报, 2010, 46 (15): 161-177
    [6]袁巨龙,邓朝晖,熊万里.高效磨削技术装备进展及展望[J].航空制造技术, 2010(5): 66-70
    [7]丁振乾.我国机床液体静压技术的发展历史与现状[J].精密制造与自动化, 2003(3): 19-21
    [8]广州机床研究所静压技术室.国外机床应用液体静压技术的概况[J].机床与液压, 1973(2): 34-70
    [9]陈克栋.液体静压支承的发展趋势及商品化过程中有待进一步解决的问题[J].机床与液压, 1995(2): 63-71
    [10]周兆忠,赵萍,陈苗青.精密球体研磨技术的现状与发展方向[J].新技术新工艺, 2005(5): 25-28
    [11]吕冰海.陶瓷球双转盘研磨方式及成球机理的研究. [D]: [博士学位论文].黑龙江:哈尔滨工业大学, 2007: 5-10
    [12]聂兰芳,赵学军.钢球加工成圆条件及其影响因素探讨.轴承, 2001(1): 16-18
    [13]朱晨.两种钢球研磨方式的力学分析.轴承, 2000(9): 11-13
    [14] B. Zhang and A Nakajima. Spherical surface generation mechanism in the grinding of balls for ultraprecision ball bearing. Proc. Instn. Mech Engr. 214 Part J: 351-35
    [15] Shigeki. Ichikawa. Proposal of new lapping method for ceramic balls. Annals of the CIRP. 1993, 42 (1): 421-424
    [16] J.L Yuan, Z.W. Wang, B.H. Lv. Simulation Study on the Developed EccentricV-grooves Lapping Mode for Precise Ball. Key Engineering Material. 2006, 304-305: 300-304
    [17]王志伟.精密球研磨技术的基础研究. [D]: [硕士学位论文].浙江:浙江工业大学, 2005: 27-35
    [18] Kurobe. T, Kakuta. H, Onoda. M. Spin angle control lapping of balls (1st report) - theoretical analysis of lapping mechanism. Journal of the Japan Society for Precision Engineering. 1996, 62(12): 1773-1777
    [19] Kurobe. T, Kakuta. H, Onoda. M. Spin angle control lapping of balls (2nd report) - theoretical analysis of lapping mechanism. Journal of the Japan Society for Precision Engineering. 1997, 63(5): 726-730
    [20] Wasson, Kevin L. Hydrostatic machine tool spindles. Ph.D, Massachusetts Institute of Technology. 1996: 8-13, 182-201
    [21] Hasan, Syed Viqas, Hydrostatic lubrication of large spring-supported thrust bearings. Ph.D, University of Waterloo. 2007: 10-29, 4-42
    [22] Deng, Dingfeng. H, A numerical and experimental investigation of Taylor flow instabilities in narrow gaps and their relationship to turbulent flow in bearings. Ph.D, The University of Akron. 2007, 8-13, 182-201
    [23] HELLER S. Static and dynamic performance of externally pressurized fluid film bearings in turbulent regime. Journal of Lubrication Technology, 1974, 381-9
    [24] DEGUERCE B, NICHOLAS D. Turbulent externally pressurized bearings—analytical and experimental results. Proc. IMechE. 1975, 228-33
    [25] ARTILES A, WALOWIT J, SHAPIRO W. Analysis of hybrid journal bearings with turbulence and inertial effects. Advances in Computer Aided Bearing Design. 1982, 25-52
    [26] GUHA S K, GHOSH M K, MAJUMDAR B C. Rotordynamic coefficients of multirecess hybrid journal bearing: II. Fluid inertia effect. Wear, 1989, 129: 261-272
    [27] IVES D, ROWE W B. The performance of hybrid journal bearings in the superlaminar flow regimes. Tribology Transactions. 1992, 35(4): 627-634
    [28] SAN ANDRES L. Approximate analysis of turbulent hybrid journal bearings. Static and dynamic performance for centered operation. Journal of Tribology, 1990, 112: 692-698
    [29] SAN ANDRES L. Analysis of turbulent hydrostatic bearings with barotropic cryogenic fluid. Journal of Tribology, 1992, 114: 755-763
    [30] FRACHEK N M, CHILDS D W, SAN ANDRES L. Theoretical and experimental comparisons for rotordynamic coefficients of a high-speed, high-pressure, orfice-compensated hybrid bearing. Journal of Tribology. 1995, 117: 285-290
    [31] SAN ANDRES L, CHILDS D W. Angled injection-hydrostatic bearings analysis and comparison to test results. Journal of Tribology, 1997, Vol.119: 179-89
    [32] FAYOLLE P, CHILDS D W. Rotordynamic evaluation of roughened-land hybrid bearings. Journal of Tribology, 1999, Vol.121: 133-138
    [33]陈佩江.液体静压导轨油膜厚度的控制方案[J].制造技术与机床,2008 (5):46~48
    [34]邵俊鹏,张晓彤.液体静压导轨油膜厚度的控制方案研究[J].节能科技,2006, 24(6):558~561
    [35] Junpeng Shao, Limin Zhou, Hongmei Li. Influence of the oil cavity depth on dynamic pressure effect of hydrostatic thrust bearing[C], International Conference on Intelligent Human-Machine Systems and Cybernetics. 2009, Hangzhou, China. 11 ~ 14
    [36]张晓彤.开式液体静压导轨油膜厚度的控制方案的研究[D]: [硕士学位论文].黑龙江:哈尔滨理工大学, 2007: 7~15
    [37]北京工业大学.一种具有阻尼流道油腔和阻尼型封油边的静压油垫[P].中国专利. 2009100907179, 2010-01-13
    [38]赵明,黄正东,王书亭.重型数控立车工作台静压计算[J].机械工程学报, 2009, 45(9): 120-125
    [39] C. K. Singh, D. V. Singh. Stiffness Optimization of a Variable Restrictor-Compensated Hydrostatic Thrust Bearing . Wear. 1977, (44): 223-230
    [40] T. J. Prabhu, N. Ganesan. Effect of Tilt on the Characteristics of Multirecess Hydrostatic Thrust Bearings under Conditions of no Rotation. Wear. 1983, (92): 269~277
    [41]熊万里,阳雪兵,吕浪.液体动静压电主轴关键技术综述[J].机械工程学报, 2009, 45(9): 120-125
    [42]武弘毅,冯明. WMB型动静压混合轴承.设备管理与维修. 1991, (6): 14-16.
    [43]丁叙生.磨床液体静压轴承长径比合理设计探讨[J].磨床与磨削, 1986(3): 16-18
    [44] Cheng Hsien Chen, Yuan Kang, Yeon-Pun Chang, Yea-Ping Wang, Hsing-HanLee. Journal of Sound and Vibration. 2006, 297: 635-648
    [45]北京第二机床厂.小孔节流式液体静压轴承在高效率磨床上的应用[J].机床与液压, 1973(3): 42-47
    [46]施永安,朱民龙.双油膜浮动轴承均载行星齿轮传动技术研究[J].传动技术,1994(3): 32-42
    [47]熊万里,纪宗辉,冯春亚.高速机床主轴浮环轴承内外油腔独立供油结构[P].中国专利: CN200810143492.4,2008-11-04
    [48]李鹏举,郭红,岑少起.内外膜独立供油径推浮环动静压轴承静特性研究[J].机床与液压, 2010, 38 (3): 7-8
    [49] (英)斯坦斯菲尔德(F.M.Stansfield)著;重庆大学镗铣床研制组译.流体静压轴承及其应用[M].北京:科学技术文献出版社, 1975
    [50] (英)罗(Rowe, W.D.),奥多诺霍(O'Donognue, J.P.)著;郑州工学院机械系译.液体静压轴承设计步骤[M].郑州:郑州工学院机械系资料室, 1975
    [51] (英)斯坦斯菲尔德(F.M.Stansfield)著;险峰机床厂译.静压支承在机床上的应用[M].北京:机械工业出版社, 1978
    [52]广州机床研究所编.液体静压技术原理及应用[M].北京:机械工业出版社, 1978
    [53]陈燕生.液体静压支承原理和设计[M].北京:国防工业出版社, 1980
    [54]余鸿钧.流体静压主轴[M].北京:机械工业出版社, 1985
    [55]许尚贤.液体静压和动静压滑动轴承设计[M].南京:东南大学出版社, 1989
    [56]丁振乾.流体静压支承设计[M].上海:上海科学技术出版社, 1989
    [57]郭力,李波.液体静压轴承原理与应用[J].磨床与磨削, 2000(2): 61-64
    [58]钟洪,张冠坤.液体静压动静压轴承设计使用手册[M].北京:电子工业出版社, 2007
    [59]许尚贤.液体静压轴承的特性分析和优化设计[J].南京工学院学报,1980(1): 97-115.
    [60]许尚贤,陈宝生.周向无回油槽油腔式静压轴承优化设计[J].南京工学院学报,1986(6): 9-19
    [61]丁叙生,唐寿刚.无周向回油液体静压轴承优化设计[J].制造技术与机床,2001, (1): 31-33
    [62]许德明,吉桂英.压缩机用无周向回油槽腔式静压轴承的分析[J].流体工程, 1988(1): 20-25
    [63]王瑜,王涛,马玉林.无回油槽双列内节流液体静压轴承的研究[J].哈尔滨工业大学学报, 2000, 38 (3): 71-73
    [64]刘基博,刘浪飞.球磨机开式静压轴承的液压参数计算和油腔结构优化探讨[J].矿山机械, 2000(4): 25-29
    [65]方燕然.液体静压轴承在重型机床改造中的应用[J].制造技术与机床, 2002, (9): 54-55
    [66]陈国琛.小孔节流静压轴承制造中的几点体会[J].机床与液压, 1984(6): 42-44
    [67]广州机床研究所静压技术室.小孔节流液体静压轴承油温与节流比的关系[J].机床与液压,1973(2): 31-34
    [68]李传乾,柏冬元.液体静压轴承—主轴系统静态性能的研究[J].机床与液压, 1987(5): 30-33
    [69]王致清,沙宝森.静压支承摩擦副的一种最优化设计法[J].机床与液压, 1983(1): 30-35
    [70]孟心斋.液体静压支承静态性能新表达式探索[J].精密制造与自动化, 2002, 4 (5): 63-66
    [71]高维亮,丁叙生,李尧忠.利用不等封油边提高液体静压轴承刚度的探讨[J].机床与液压, 1981(2): 42-51
    [72]丁叙生.以主轴系统刚度与总功耗之比值为目标函数的液体静压轴承优化设计方法[J].南昌航空工业学院学报, 2000, 14 (3): 26-29
    [73]王海涛,韩晓玲.温升对液体静压主轴加工精度的影响及改进措施[J].制造技术与机床,2010, (9): 119-122
    [74] (美)约翰D.安德森(John D. Anderson)著;吴颂平,刘赵淼译.计算流体力学基础及其应用[M].北京:机械工业出版社, 2007
    [75]李勇,刘志友,安亦然.介绍计算流体力学通用软件--Fluent[J].水动力学研究与进展A辑, 2001 , 16 (2): 255-259
    [76]赵萍,邓乾发,王志伟.精密球新型研磨方式的仿真研究[J].航空精密制造技术, 2005, 41 (3): 9-12
    [77]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社, 2004
    [78]韩占忠,王敬,兰小平. Fluent流体工程仿真计算实例与应用[M].北京:北京理工大学出版社, 2004
    [79]王瑞金,张凯,王刚. Fluent技术基础与应用实例[M].北京:清华大学出版社, 2008