长螺旋钻机提钻力学行为及提钻液压控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,长螺旋钻孔机凭借其适应性广,施工环保等优势在桩基础领域获得了广泛的应用,成为当前极具市场潜力的桩工机械。但是,由于是新兴的桩基础施工机械,对其提钻力认识不足,经常发生现场施工设备选型不当而造成所选设备难以适应施工作业的现象。同时还存在着向大功率发展困难以及自动化程度低、质量不可靠等问题,阻碍其进一步发展,影响其未来的市场竞争力。
     本文以土力学为基础,基于地质参数对长螺旋钻机提钻力学行为进行分析,推导得出两种提钻方式下的提钻力和能耗理论计算公式。并以现场实验数据对此提钻力理论计算公式进行了论证。此提钻过程力学行为研究是比较深入而全面的,为设计长螺旋钻机确定绞车主要参数以及桩基础施工设备选型提供了理论依据。
     针对具体工程条件,本文以提钻力学理论计算求出的结果为设定参数的依据,设计了适合工况要求的液压绞车控制系统。此提钻驱动控制系统具有自动卸荷功能;由于采用了压力流量复合控制的负载敏感泵,流量控制精度高,不受负荷压力变化的影响,并具有明显的节能特征;采用电液比例控制,调速范围广,并为自动化控制打下了基础。
     论文对此控制系统进行建模仿真分析。通过仿真曲线分析得知采用负载敏感泵和比例换向阀的绞车系统性能安全可靠,此设计方案能有效解决传统长螺旋钻机存在的问题。
In recent years, the continuous flight auger has obtained the widespread application and market potential in the construction field, relying on its superiority such as broad compatibility, environmental protection and so on. But this kind of machine on present still exist massive questions including the insufficient design theory, the difficulty that it develops to the high efficiency, the low automaticity and the unreliable quality .These questions will hinder its further development seriously and affect its future market competitiveness.
     This article' first carries on the comprehensive analysis to the drilling-out strength, using the knowledge of soil mechanics. And it has provided the theory that basis for the determination the main parameter to the hydraulic winch of continuous flight auger. Then it uses the electro-hydraulic proportional load-sensitive variable displacement piston pump in the hydraulic control system design, and has guaranteed the full using to the installed capacity and the small system energy loss. It also has solved the questions such as the heating of traditional continuous flight auger and the system energy conservation.
     This article that basis results by carry-drilling mechanics theory enactmented paremeter designs control system of hydraulic winch fiting lenth of service.Simultaneously it carries on the velocity modulation and uses the electro-hydraulic proportional control valve, so builds the foundation for the automated control. Because uses the load sensitive pump in designed hydraulic control system,so enhance the precision of the control systemIt and envoid the affect of the load's varibility and solves effectively the system energy conservation questions.because of taking the electro-hydraulic proportional ,the control timing range get larger and the foundation for the automation drilling-out control has been built.
     Finally, it carries on the modeling simulation analysis to the system. Through the simulation tracing analysis, we can know the safe reliable of winch system performance that using the load sensitive pump and electro-hydraulic proportional control valve, and also know that this system can meet the operation requirements.
引文
[1]王茂桑.影响长螺旋CFG压灌桩成桩质量的几个因素.山西建筑,2005(4):58-59
    [2]赵伟民等.国内外螺旋钻孔机发展概况.工程机械与维修,2000(9):30-32
    [3]刘国安,王利民.CFG桩施工机具.建筑机械,1999(8):39-43
    [4]刘古岷等.桩工机械.北京:机械工业出版社,2001:68-95
    [5]沈宝汉.桩基础施工技术讲座 第六讲 长螺旋钻成孔工艺的发展.施工技术,2000,10(29-10):49-51
    [6]徐至钧.水泥粉煤灰碎石桩复合地基.北京:机械工业出版社,2004:12-16
    [7]李世京等.钻孔灌注桩施工技术.北京:地质出版社,1990:102-108
    [8]唐爱平.钻孔灌注桩施工的质量预控.湖南地质,2002(6):127-129
    [9]张万凤.长螺旋钻管内泵压混合料CFG桩复合地基在民用高层住宅中的应用.工程质量,2003(4):37-39
    [10]Fleming W.G.K.Piling Engineering.Surrey University Press;Hunt,R.E.,Geotechnical Engineering Analysis and Evaluation,1986
    [11]白有良等.管内泵压混凝土成桩技术的应用.建筑机械化,2002(3):36-37
    [12]常乃麟等.后植入钢筋笼灌注桩施工技术的研究.建筑机械化,2006(1):42-47
    [13]张浩.CFG桩施工中常见问题及处理方法.山西建筑,2002(12):35-37
    [14]余金海.CFG桩的施工工艺及单价分析.铁路工程造价管理,2003(2):10-12
    [15]毛泽华.长螺旋钻孔压灌超流态混凝土桩基础的应用.湘潭师范学院学报,2004.12,(26-4):81-83
    [16]徐慎初.桩基成孔机械的发展.建筑机械,1997(11):22-26
    [17]杨海学等.液压技术在钻机上的应用现状及发展建议.石油机械,2004,32(8):72-74
    [18]郭传新等.国内桩工机械发展趋势.建筑机械,2004(1):40-43
    [19]兰锍蕃.我国桩工机械的现状与展望.建筑机械化,2002(1):13-16
    [20]尹永晶.自动钻进技术的现状与展望.石油机械,2002,30(8):64-65
    [21]赵伟民等.螺旋钻孔机合理提钻方式的研究.建筑机械化,2000(1):23-24
    [22]郭传新等.中国桩工机械概况.建筑机械,2002(10):59
    [23]夏蓓娅等.长螺旋钻机工作参数与土的运动.建筑机械,1999(4):31-33
    [24]孙景武等.长螺旋钻机参数的研究.建筑机械,1992(9):23-26
    [25]李文英.土力学与地基基础.北京:中国铁道出版社,2005
    [26]Kenny,M.J.Guasti,S.,Zsak,P.Continuous flight auger boring in sandy soils.BGA International Conference on Foundations,Innovations,Observations,Design and Practice,2003:433-441
    [27]王予铭.螺旋钻机主要参数计算.筑路机械与施工机械化,1998,15(6):8-10
    [28]孙景武等.长螺旋钻机功率的确定.工程机械,1992(10):9-11
    [29]Computational simulation of theologically classified soil flow over augers.Proceedings of the Institute of Marine Engineering,2005(6):23-31
    [30]上海东方液压.液压产品选型手册.上海:东方液压,2005
    [31]Bosch.Rexroth产品目录.Bosch公司,2003
    [32]Parker.工程机械液压产品目录.Parker公司,2004.7
    [33]张红彦等.国内外全液压钻机节能控制系统发展趋势.矿业工程,2004,2(3):43-45
    [34]张红军等.全液压钻机液压系统的设计.液压与气动,1999(5):3-6
    [35]FRANKI.Continuous Flight Auger(CFA) Piles Product Introduction RTG.RG-System pile driver product introduction,2005:4-5
    [36]李洪人.液压控制系统.北京:国防工业出版社,1981
    [37]V.Vekteris,M.Jurevichius,A.Trumpa.Mechatronical system of drill testing.Measurement,2005,37(2):103-107
    [38]朱骥北.机械控制工程基础.北京:机械工业出版社,2001
    [39]赵显新.建筑机械高效节能液压系统.建筑机械.1995(7):30-33
    [40]卢长耿等.液压控制系统的分析与设计.北京:煤炭工业出版社,1991
    [41]章宏甲等.液压与气压传动.北京:机械工业出版社.2000
    [42]路涌祥等.电液比例控制技术.北京:机械工业出版社.1988,11
    [43]关景泰.机电液控制技术.上海:同济大学出版社.2003,2
    [44]黄卉等.电液比例技术发展趋势微探.机床与液压.2002(1):3-4
    [45].黎启柏.电液比例控制与数字控制系统.北京:机械工业出版社.1997,6
    [46]王文深等.液压系统负载自适应控制节能技术.矿山机械.2003-2:50-51
    [47]彭玉洁等.液压系统负载感应控制与节能.工程机械.1999(9):35-38
    [48]胡黄卿.液压系统的节能设计探讨.液压与气动.2001(5):1-5
    [49]李晶等.液压提升系统的节能改进研究.液压与气动.2003(12):58-59
    [50]陈冬生.液压负荷传感技术在工程机械上的应用及评价.工程机械与维修.1995(2):6-8
    [51]J.W.DOBCHUK,P.N.NIKIFORUK.Effect of internal pump dynamics on control,piston pressure ripple.Measurement and Control MARCH.2001:31-35.
    [52]K.A.Edge and J.Darling.Cylinder Pressure Transients in Oil Hydraulic Pumps With Sliding Valve Plates.Proceedings of the Institution of Mechanical Engineers Vol.200 N B1,1986,:45-49.
    [53]米智楠.液压起重机中的负载传感系统.起重运输机械.2000(10):5-6
    [54]徐灏.机械设计手册.北京:机械工业出版社,1992
    [55]赵显新等.负载传感系统稳定性研究.工程机械,1995,6:25-30
    [56]于雷.液压系统节能的潜力和途径.机械加工与自动化.2004(2):28-30
    [57]那焱青等.轴向柱塞泵瞬时流量的理论分析.兰州理工大学学报.2004(1):18-21
    [58]Wang Chunxing.Enveloping Researches on a New Type of Variable Delivery Radial Piston Pump with Electro-hydraulic Proportional Pressure Regulator.Gansu University of Technolony,1992(3):45-48.
    [59]Edge K A.The Pumping Dynamics of Swash Plate Piston Pumps.New York:ASME Journal of Dynamic Systems,Measurement and Control DESEMBER,1999:307-312.
    [60]Manring.The Toque on the Input Shaft of an Axial-Piston Swash-Plate Type Hydrostatic Pumps.New Jersey,ASME Journal of Dynamic Systems,Measurement and Control MARCH.1998:57-62.
    [61]Deng Jing Liu.Structural Parameters and Its Optimization of Pilot-operated Proportional Throttle valve with Displacement Electricity Feedback//Tokyo:JHPS Sym on Fluid Power,1989:357-362.
    [62]陈桂明.应用MATLAB建模与仿真.北京:科学出版社,2000
    [63]Mohand Mokhtari Michel Marie[法].MATLAB与SIMULINK工程应用.北京:电子工业出版社,2002
    [64]王沫然.Simulink4建模及动态仿真.北京:电子工业出版社,2002
    [65]李永堂.液压系统建模与仿真.北京:冶金工业出版社,2002
    [66]陈燎原.基于Matlab\Simulink的液压绞车动态特性仿真研究.煤炭科学技术,2002,30(4):18-21
    [67]张潘等.装载机转向负荷敏感型变量泵的动态仿真.建筑机械.2006(1):70-72
    [68]李宜达等.控制系统设计与仿真.北京:清华大学出版社.2004
    [69]楼顺天等.基于MATLAB的系统分析设计-控制系统.西安:西安电子科技大学出版社,2000
    [70]李战慧等.基于simulink的转运车液压系统动态特性仿真研究.机床与液压.2005(7):30-34
    [71]蔡廷文等.斜盘式变量泵的动态模型研究.机电工程技术.2001(1):17-20
    [72]郭初生等.变转速轴向柱塞泵恒流量控制的建模与仿真.北京理工大学学报.2004(11):37-41