基于聚乳酸/玉米秸秆纤维食品包装材料发泡性能及其模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以聚乳酸和玉米秸秆纤维为原料制备食品包装材料既能解决不可降解材料给环境带来的污染问题又能缓解石化资源短缺问题,同时还能提高农业副产品的利用率,遵循可持续发展的原则。聚乳酸/玉米秸秆纤维食品包装材料的开发具有重大的应用价值和现实意义。
     通过熔融混炼,模压发泡的方法制备聚乳酸发泡材料。首先引入马来酸酐、1,2,4-苯三酸酐、均苯四甲酸酐、甲基丙烯酸缩水甘油酯,分析熔体黏度对聚乳酸发泡材料表观密度和膨胀率的影响,从而优选出最佳增塑剂——GMA。其次,探索了GMA的加入对聚乳酸分子结构和界面形态的影响,发现GMA与PLA发生了反应。再者,考察了不同的熔体黏度对聚乳酸发泡材料表观密度、膨胀率、孔隙率、力学性能和热性能的影响,结果显示聚乳酸发泡需要合适的熔体黏度,熔体黏度过高,气泡膨胀生长所需克服的阻力较大,气泡膨胀生长较为困难;熔体黏度过低,聚合物熔体难以包裹住支撑膨胀的气泡而导致气泡破裂、崩塌、.合并,当GMA添加量为4%,熔体黏度为233Pa.S时材料的密度及其性能最好。
     研究了纤维的加入对聚乳酸/玉米秸秆纤维复合发泡材料分子结构和界面形态的影响;优化了热压工艺参数;考察了不同玉米秸秆纤维含量对PLA/玉米秸秆纤维发泡材料的表观密度、膨胀率、力学性能、热性能和吸水性能的影响。结果表明纤维与聚乳酸之间有一定的界面相容性;热压发泡的最佳工艺参数为:热压压力15MPa,热压温度200℃,保压时间5min;当纤维添加量为15%时,所得发泡材料表观密度最小为0.568g/cm3,膨胀率最大为61%,拉伸强度最大为8.031MPa,纤维的加入降低了PLA/玉米秸秆纤维复合发泡材料的热降解温度。
     根据经典发泡理论,选用细胞模型为物理模型,利用质量守恒定律、动量守恒定律、能量守恒定律、Dewitt本构方程和理想气体状态方程等,探讨了气泡膨胀生长中的数学模型,并对数学模型进行实验验证。结果显示,该模型可以应用在聚乳酸发泡体系中,但是当体系较为复杂时,仍需进一步改进实验方法和模型方程。
The developing of food packaging material based on polylactic acid (PLA)/corn straw fiber not only solve the environment pollution caused by undegradable material but also remission energy shortage, otherwise it also improve the use ratio of agriculture by-product, follow the principle of sustainable development.
     PLA foams were prepared through melt mixing and hot pressing. Firstly MAH, TMA, PMDA and MAH were introduced as plasticizer and the effect of melt viscosity with different plasticizer on apparent density and expansion ratio of foams were measured as well, among these four plasticizers GMA was the optimal one. And then, the effect of GMA on the molecular and interfacial structures were discussed, it was revealed that there was a react between PLA and GMA. Besides, the apparent density, expansion ratio, void fraction, mechanical properties and thermal properties with different GMA content were investigated, it was showed that the foam of PLA need a suitable melt viscosity, High melt viscosity prevents the gas diffusion and the cell expansion while low viscosity accelerates gas loss and cell collapse phenomenon, the density and other properties reached maximum values while GMA mass was 4% and the melt viscosity was 233Pa.S.
     The effect of fiber introduction on molecular and interface structures of PLA/corn fiber composite foams were studied firstly. Then, the parameters of hot-pressing process were optimized. Moreover, the effect of corn fiber concentration on apparent density, expansion ratio, mechanical thermal and moisture properties of foams were investigated. It turned out that, to some extent compatibility between PLA and corn fiber was observed; the most optimal parameters were hot-pressing pressure 15MPa, temperature 200℃, keeping-time 5min and the most ideal materials were obtained when fiber content was 15%.
     A mathematical model for the bubble growth of PLA foams was established on the basis of classic foaming theory, cell-model, law of conservation of mass and conservation of momentum, ideal gas equation and so on. After compared with experiment data we got the conclusion that this model was suitable for PLA foam system, but when the foams were complicated it still need further calculation and simplification.
引文
[1]李明元,胡银川.食品塑料包装中PAEs迁移危害研究现状[J].食品与生物技术学报,2010,1(29):14-17
    [2]梁艳君,骆光林.食品保鲜包装新技术[J].包装印刷,2006(5):80-81
    [3]胡永茂,项金钟,张学清,李汝恒,吴兴惠.抗菌食品保鲜膜的研究与进展[J].大理学院学报,2005,1(4):92-96
    [4]陈伊凡.“绿色材料”聚乳酸在包装行业的应用[J].印刷质量与标准化,2009:8-9
    [5]Sodergard A, Stolt M. Properties of lactic acid based polymers and their correlation with composition[J]. Progress in polymer science,2002(27):1123-1163
    [6]Lunt J. Large-scale production, properties and commercial application of polylactic acid polymers[J]. Polymer degradation and stability,1998(59):145-152
    [7]王华林,盛敏刚,史铁钧等.PLA及PLA复合材料降解性能研究进展[J].高分子材料科学与工程,2004,6(20):20-23
    [8]Drumright R E, Gruber P R, Henton D E. Polylactic acid technology [J]. Advanced materials, 2000,23(12):1841-1846
    [9]杨斌.绿色塑料聚乳酸[M].北京:化学工业出版社,2007
    [10]Erwin T H V, Karl R R, David A G, Patrick R G. Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production[J]. Polymer degradation and stability, 2003(80):403-419
    [11]雷海芬.可生物降解聚乳酸基纳米复合材料的制备及性能研究[D].哈尔滨:哈尔滨工业大学,2007
    [12]田怡,钱欣.聚乳酸的结构、性能与展望[J].石化技术与应用,2006,3(24):233-237
    [13]付标.绿色聚乳酸及其改性材料的研制[D].武汉:华中科技大学,2007
    [14]Lim L T, Auras R, Rubino M. Processing technologies for poly(lactic acid)[J]. Progress in Polymer Science,2008,33(8):820-852
    [15]任元林,焦晓宁,程博闻.聚乳酸纤维及其非织造布的生产和应用[J].新纺织,2005(5):24-26
    [16]刑玉清,吴贵国,邢军.化学合成全降解塑料——聚乳酸[J].工程塑料应用,2002,30(12):57-58
    [17]Narayan R. "Degradation of Polymeric Materials", in Science and Engineering of Composting: Design, Environmental, Microbiological and Utilization Aspects (Eds:H. A. Hoitink, H. N. Keener), OARDC,OH 1993
    [18]Fambri L, Pegoretti A, Fenner R, Incardona S D, Migliaresi C. Biodegradable fibres of poly(L-lactic acid) produced by melt spinning[J]. Polymer,1997,1(38):79-85
    [19]Tsuji H, Lkada Y. Properties and morphologies of poly(L-lactide):1. annealing condition effects on properties and morphologies of poly(L-lactide)[J]. Polymer,1995,14(36):2709-2716
    [20]Tsuji H, Ishida T. Poly(L-lactide). X. Enhanced Surface Hydrophilicity and Chain-Scission Mechanisms of Poly(L-lactide) Film in Enzymatic, Alkaline, and Phosphate-Buffered Solutions[J]. Journal of Applied Polymer Science,2003(87):1628-1633
    [21]Michael S R, Stephen P M, Milton J D, Richard A G. Polylactide stereochemistry:effect on enzymic degradability[J]. Macromolecules,1994(27):825-831
    [22]Pierre M V, Raymond C, Sylwester G. Effect of in vivo and in vitro degradation on molecular and mechanical properties of various low-molecular-weight polylactides[J]. Journal of biomedical materials research,1997(36):360-380
    [23]Schneider A K, Wilmington D. Properties of high melting lactide[P]. USA:2703316,1955
    [24]M. H. Hartmann. "High MolecularWeight Polylactic Acid Polymers", in:Biopolymers from Renewable Resources,1st edition, D. L. Kaplan, Ed., Springer-Verlag Berlin Heidelberg, Berlin 1998:367-411
    [25]Murariu M, Bonnaud L, Yoann P, Fontaine G, Bourbigot S, Dubois P. New trends in polylactide (PLA)-based materials:green PLA-calcium sulfate (nano) composites tailored with flame retardant properties [J]. Polymer degradation and stability,2010(95):374-381
    [26]Bendix D. Chemical synthesis of polylactide and its copolymers for medical application[J]. Polymer degradation and stability,1998(59):129-135
    [27]Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications[J]. Macromolecular rapid communications,2000(21):117-132
    [28]Murata J, Ohya Y, Ouchi T. Possibility of application of quaternary chitosan having pendant galactose residues as gene delivery tool[J].Carbohydrate polmers,1996,1 (29):69-74
    [29]Zhao Y M, Wang Z Y, Wang J, Mai H Z, Yan B, Yang F. Direct Synthesis of Poly(D,L-lactic acid) by Melt Polycondensation and Its Application in Drug Delivery[J]. Journal of applied polymer science,2004(91):2143-2150
    [30]王玉,陈立成,陈美玉等.环境友好聚乳酸复合发泡材料的研究进展[J].化工新型材料,2010,11(38):12-14
    [31]张久礼.聚乳酸(PLA)增粘改性及其发泡材料的制备与性能研究[D].上海:上海交通大学,2010
    [32]Nijenhuis A J, Colstee E, Grijpma D W, Pennings A J. High molecular weight poly(L-lactide) and poly(ethylene oxide) blends:thermal characterization and physical properties[J]. Polymer,1996, 26(37):5849-5857
    [33]Ajay M G, Vipul D, Richard A G, Stephen P M. Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate)[J]. Polymer,1996,37 (3):437-444
    [34]Andrzej K B, Adam J, Dietrich S. Mechanical properties of PLA composites with man-made cellulose and abaca fibres[J]. Composites:part A,2009(40):404-412
    [35]Satyanarayana K G, Gregorio G C A, Fernando W. Biodegradable composites based on lignocellulosic fibers-an overview[J]. Progress in polymer science,2009(34):982-1021
    [36]Fang Q, Hanna M A. Preparation and characterization of biodegradable copolyester-starch based foams[J]. Bioresource technology,2001(78):115-122
    [37]李申,周晔,任天斌等.聚乳酸/淀粉复合材料的制备及性能研究[J].塑料,2006,4(35):7-11
    [38]Yew G H, Mohd Yusof A M, Mohd Ishak Z A, Ishiaku U S. Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites[J]. Polymer Degradation and Stability, 2005(90):488-500
    [39]Wang N, Yu J G, Chang P R, Ma X F. Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends[J]. Carbohydrate polymers,2008(71):109-118
    [40]杨美娟,薛平,张军.聚乙二醇对聚乳酸/热塑性淀粉复合材料性能的影响[J].工程塑料应用,2009,12(37):38-41
    [41]邵俊,赵耀明.聚乳酸/DMSO增塑淀粉复合材料的制备与表征[J].塑料工业,2010,2(38):8-11
    [42]Yokesahachart G, Yoksan R. Effect of amphiphilic molecules on characteristics and tensile properties of thermoplastic starch and its blends with poly(lactic acid)[J]. Carbohydrate Polymers, 2011(83):22-31
    [43]Pierre S, Gang L, William J O, Basil D F. Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch[J]. Polymer,2008(49):599-609
    [44]Takashi N, Koichi H, Masaru K, Katsuhiko N, Hiroshi I. Kenaf reinforced biodegradable composite[J]. Composites science and technology,2003(63):1281 - 1286
    [45]Plackett D, Andersen T L, Pedersen W B, Nielsen L. Biodegradable composites based on 1-polylactide and jute fibres[J]. Composites science and technology,2003(63):1287-1296
    [46]Nina G, Axel S H, Jorg M. Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites:An overview about mechanical characteristics and application areas[J]. Composites: Part A,2009(40):810-821
    [47]Benjamin B, Jorg M. Impact and tensile properties of PLA/Cordenka and PLA/flax composites [J]. Composites science and technology,2008(68):1601-1607
    [48]Andrzej K B, Adam J, Dietrich S. Mechanical properties of PLA composites with man-made cellulose and abaca fibres[J]. Composites:Part A:2009(40):404-412
    [49]Lee B H, Kim H S, Lee S, Kim H J, Dorgan J R. Bio-composites of kenaf fibers in polylactide: Role of improved interfacial adhesion in the carding process[J]. Composites science and technology, 2009(69):2573-2579
    [50]Masud S H, Lawrence T D, Amar K M, Manjusri M. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers[J]. Composites science and technology,2008(68):424-432
    [51]Sanchez-Garcia M D, Gimenez E, Lagaron J M. Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers[J]. Carbohydrate polymers,2008(71):235-244
    [52]韩建,袁利华,徐国平.PLA/黄麻复合层压材料的降解性能分析[J].纺织学报,2008,8(29):48-51
    [53]Islam M S, Pickering K L, Foreman N J. Influence of accelerated ageing on the physico-mechanical properties of alkali-treated industrial hemp fibre reinforced poly(lactic acid) (PLA) composites[J]. Polymer degradation and stability,2010(95):59-65
    [54]Lisman S, Antonio N N, Hiroyuki Y. The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites[J]. Composites science and technology,2009(69):1187-1192
    [55]Kazuya O, Toru F, Erik T T. Multi-scale hybrid biocomposite:Processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose[J]. Composites: Part A,2009(40):469-475
    [56]Martial S, Jacques F, Audrey C, Clemence N, Elisabeth R. New challenges in polymer foaming:an review of extrusion process assisted by supercritical carbon dioxide[J]. Progress in polymer science, 2011:1-18
    [57]Di Y W, Iannace S, Maio E D, Nicolais L. Reactively modified poly(lactic acid):properties and foam processing[J]. Macromolecular materials and engineering,2005(290):1083-1090
    [58]Sterzel H J. Foamed polylactide moldings and production thereof[P]. US 5348983,1994-09-20
    [59]Kameoka T, Kashima T, Ajioka M, Yamaguchi A, Suzuki K. Degradable aliphatic polyester foamed products[P]. US5763098,1998-06-09
    [60]Suprakas S R, Masami O. New polylactide/layered silicate nanocomposites,6a melt rheology and foam processing[J]. Macromolecular materials and engineering,2003(288):936-944
    [61]Lee S Y, Eskridge K M, Koh W Y, Hanna M A. Evaluation of ingredient effects on extruded starch-based foams using a supersaturated split-plot design[J]. Industrial crops and products,2009(29):427-436
    [62]Willett J L, Shogren R L. Processing and properties of extruded starch/polymer foams[J]. Polymer,2002(43):5935-5947
    [63]Dujdao P, Manisara P, Pitt S, Ratana R. Preparation and characterization of starch/poly(L-lactic acid) hybrid foams[J]. Carbohydrate polymers,2005(59):329-337
    [64]Ganjyal G M, Weber R, Hanna M A. Laboratory composting of extruded starch acetate and poly lactic acid blended foams[J]. Bioresource technology,2007(98):3176-3179
    [65]Xanthos M, Young M W, Karayannidis G P, Bikiaris D N. Reactive modification of polyethylene terephthalate with polyepoxides[J]. Polymer engineering and science,2001,4(41):643-655
    [66]Yang S L, Wu Z H, Yang W, Yang M B. Thermal and mechanical properties of chemical crosslinked polylactide(PLA)[J]. Polymer testing,2008(27):957-963
    [67]Lee S T, Kareko L, Jun J. Study of thermoplastic PLA foam extrusion[J]. Journal of cellular plastics, 2008(44):293-305
    [68]Reignier J, Gendron R, Champagne M F. Extrusion foaming of poly(lactic acid) blown with CO?: toward 100% green material[J]. Cellular polymers,2007(26):83-115
    [69]Mihai M, Huneault M A, Favis B D, Li H B. Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends[J]. Macromolecular bioscience,2007(7):907-920
    [70]Matuana L M, Faruk O, Diaz C A. Cell morphology of extrusion foamed poly(lactic acid) using endothermic chemical foaming agent[J]. Bioresource technology,2009(100):5947-5954
    [71]罗辉甲,曹国荣,刘全校.植物纤维缓冲材料的研究现状与发展[J].新材料产业,2009(12):52-55
    [72]高德,刘壮,孙智慧.秸秆纤维EPS缓冲包装材料性能的研究[J].农业机械学报,2006,8(37):201-204
    [73]高德,孙智慧.可降解缓冲包装材料的现状及发展前景[J].包装工程,2002,5(23):141-144
    [74]Ganjyal G M, Reddy N, Yang Y Q, Hanna M A. Biodegradable packing foams of starch acetate blended with corn stalk fibers[J]. Journal of applied polymer science,2004(93):2627-2633
    [75]Nattakan S, Pitt S, Ratana R. Preparation and characterization of jute- and flax-reinforced starch-based composites foams[J]. Carbohydrate polymers,2004(58):53-63
    [76]Rizvi G, Matuana L M, Park C B. Foaming of PS/wood fiber composites using moisture as a blowing agent[J]. Polymer engineering and science,2000,10(40):2124-2132
    [77]EI-Meligy M G, Mohamed S H, Mahani R M. Study mechanical, swelling and dielectric properties of prehydrolysed banana fiber-waste Polyurethane foam composite[J]. Carbohydrate polymers, 2009,11 (034):1-25
    [78]Pan P, Zhu B, Kai W H, Serizawa S, Iji M, Inoue Y. Crystallization behavior and mechanical properties of bio-based green composites based on poly(L-lactide) and kenaf fiber[J]. Journal of applied polymer science,2007(105):1511-1520
    [79]李媛媛.发泡植物纤维模压制品的关键生产技术研究[D].重庆:重庆工商大学,2008
    [80]Buranov A U, Mazza G. Lignin in straw of herbaceous crops[J]. Industrial crops and products,2008(23):1-23
    [81]Su Z Z, Li Q Y, Liu Y J, Hu G H, Wu C F. Compatibility and phase structure of binary blends of poly(lactic acid) and glycidyl methacrylate grafted poly(ethylene octane)[J]. Eurpean polymer journal,2009(45):2428-2433
    [82]李应林,向帮龙,蒋亚静等.微孔发泡成核理论新进展[J].现代塑料加工应用,2006,6(18):59-61
    [83]吴晓丹,彭玉成,国明成.微孔发泡过程的气泡生长动力学模型[J].轻工机械,2005,2:22-27
    [84]Shafi M A, Joshi K, Flumerfelt R W. Bubble size distributions in freely expanded polymer foams[J]. Chemical Engineering science,1997,4(52):635-644
    [85]Everitt S L, Harlen O G, Wilson H J, Read D J. Bubble dynamics in viscoelastic fluids with application to reacting and non-reacting polymer foams[J]. Journal of non-newtonian fluid mechanics,2003(114):83-107
    [86]Leaelaf H, Martin O, Osvaldo C. A mathematical model for the isothermal growth of bubbles in wheat dough[J]. Journal of food engineering,2007(82):466-477
    [87]Kameoka, T, Kashima T, Ajioka M, Yamaguchi A, Suzuki K. Degradable aliphatic polyester foamed products[P]. US5763098,1988-06-09
    [88]苏思玲,赵吉洁,柏大伟等.提高聚乳酸熔体强度的研究进展[J].中国塑料,2007,8(21):7-12
    [89]程艳玲,龚平.聚乳酸-马来酸酐共聚物的制备与性能研究[J].塑料,2007.3(36):46-49
    [90]Pilla S, Kim S G, Auer G K, Gong S Q, Park C B. Microcellular extrusion-foaming of polylactide with chain-extender[J]. Polymer engineering and science,2009(49):1653-1660
    [91]GB/T1033—1986,塑料密度和相对密度试验方法[S].北京:中国标准出版社,1986
    [92]GB/T9341-2000,塑料弯曲性能试验方法[S].北京:中国标准出版社,2000
    [93]GB/T1843-2008,塑料悬臂梁冲击强度的测定[S].北京:中国标准出版社,2008
    [94]GB/T1040-1992,塑料拉伸性能试验方法[S].北京:中国标准出版社,1992
    [95]周持兴.聚合物流变实验与应用[M].上海:上海交通大学出版社,2003:19
    [96]Eubeler J P, Bernhard M, Zok S, Knepper T P. Environmental biodegradation of synthetic polymers I.Test methodologies and procedures [J]. Trends in analytical chemistry,2009,9(28):1057-1072
    [97]Willett J L, Shogren R L. Processing and properties of extruded starch/polymer foams[J]. Polymer, 2002(43):5935-5947
    [98]袁华,赵秋峰,刘智勇等.聚乳酸/淀粉复合发泡材料的研究(Ⅰ):发泡工艺的研究[J].玻璃钢/复合材料,2009(1):42-46,30
    [99]Ochi S. Mechanical properties of kenaf fibers and kenaf/PLA composites [J]. Mechanics of materials,2008(40):446-452
    [100]Pan P J, Zhu B, Kai W H, Serizawa S, Iji M, Inoue Y. Crystallization behaviour and mechanical properties of bio-based green composites based on poly(L-lactide) and kenaf fiber[J]. Journal of Applied Polymer Science,2007(105):1511-1520
    [101]GB/T1463-2005,纤维增强塑料密度和相对密度试验方法[S].北京:中国标准出版社,2005
    [102]GB/T1449-2005,纤维增强塑料弯曲性能试验方法[S].北京:中国标准出版社,2005
    [103]向帮龙,管蓉,方荃等.模压法制备微孔发泡聚碳酸酯片材[J].材料科学与工艺,2007,2(15):233-236
    [104]Ganjyal G M, Reddy N, Yang Y Q, Hanna M A. Biodegradable packaging foams of starch acetate blended with corn stalk fibers[J]. Journal of applied polymer science,2004(93):2627-2633
    [105]何继敏.新型聚合物发泡材料及技术[M].北京:化学工业出版社,2008
    [106]Blander M, Katz J L. Bubble nucleation in liquids[J]. American institute of chemical engineers,1975(21):833-848
    [107]黄田琪.聚合物中气泡形成与溶解的数学模型[D].苏州大学,2010
    [108]田森平.挤出发泡成型过程中气泡膨胀过程的数学模型研究及简化[D].华南理工大学,1999
    [109]吴舜英,徐敬一.泡沫塑料成型[M].化学工业出版社:北京,1999
    [110]Leung S N, Park C B, Xu D L, Li H B, Fenton R G. Computer simulation of bubble-growth phenomena in foaming[J]. Industrial & Engineering chemistry research,2006,23(45):7283-783