煤矿通风瓦斯蓄热氧化过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷是一种重要的温室气体来源,其排放量仅次于二氧化碳,温室效应是二氧化碳的二十多倍。有效的处理和利用煤矿通风甲烷,具有温室气体减排和节约能源的重要意义。目前通风瓦斯处理技术应用最广的是采用蓄热氧化的方式实现低浓度甲烷的氧化处理。通风瓦斯蓄热氧化过程的参数影响分析是这一技术走向应用的基础。然而,实验规模和散热等约束条件使得参数影响的研究范围受到限制,实验分析的结果也不具有普遍的适用性。同时,面对通风瓦斯蓄热氧化装置的设计需求,实验和数值模拟研究难以满足快速的工程设计需要,也难预测设计参数变化带来的装置稳定运行范围变化问题。针对以上两方面的问题,本文对煤矿通风瓦斯蓄热氧化过程开展了实验、数值模拟和理论分析的研究,具体研究内容和结果如下:
     1.针对通风瓦斯蓄热氧化过程的参数影响问题开展了无量纲化的实验参数分析研究。建立了通风瓦斯蓄热式热氧化实验系统以及低浓度甲烷氧化固定床反应器,同时建立了实验装置中蓄热式换热过程的无量纲分析模型。提出低浓度甲烷在氧化装置中氧化的基本条件,结合蓄热式换热过程的无量纲计算结果对实验中各个参数的影响进行了分析,结果表明和无量纲时间相关的切换时间对装置的影响较小,而与无量纲长度相关的气流速度对装置内温度分布的影响较大。
     2.开展了通风瓦斯蓄热式热氧化装置的一维模型化研究。建立了通风瓦斯蓄热氧化装置的一维计算模型。利用开源的Matmol程序,基于线法对通风瓦斯蓄热氧化装置的运行过程进行了模拟计算,模拟结果和实验符合较好。计算结果表明,氧化装置的蓄热条件涉及气流流速、甲烷浓度、蓄热体结构等诸多因素,是装置能否稳定运行的关键。流速的影响存在有多重影响的机制,这一多重影响机制会使得通风瓦斯蓄热氧化装置在实际运行中既有通风量的下限也有通风量的上限。
     3.开展了通风瓦斯蓄热式热氧化装置的三维建模研究。基于多孔介质的连续分布假设,利用Fluent软件的自定义标量方程等功能模块建立了通风瓦斯蓄热氧化过程的三维计算模型,利用这一计算模型研究了通风瓦斯蓄热氧化装置中流动分布、温度分布等问题。计算结果表明,蜂窝蓄热体区域的整流作用,使得工业装置设计中两端入口的结构对装置内流动分布的影响很小。散热会影响装置内的温度分布甲烷转化率,实验结构下的空腔有较小的气流混合作用。由于气流的滞留效应,装置切换时间缩短会降低装置的综合甲烷转化率,根据无量纲切换时间的计算,可以选择装置切换时间为60s-120s。
     4.针对目前通风瓦斯蓄热氧化装置的设计需求,开展了基于蓄热式换热过程的蓄热氧化装置设计方法研究。提出一种蓄热氧化装置内最低稳定运行甲烷浓度的计算方法,并与部分实验结果进行了比较验证,计算模型的预测结果与实验符合较好。基于这一方法进一步计算了装置内通风量范围、蓄热体的需求量等参数。计算结果表明装置存在主要由散热决定的通风量下限以及由蓄热性能决定的通风量上限。烟气分流计算结果和稳定运行试验运行结果表明,本文提出的设计方法可以用于工业装置的设计。
Methane is an important source of greenhouse gas, as it is the second leading greenhouse gas, next to CO2, in contribution to global warming. The global warming potential(GWP) of methane is20times of CO2on the condition of the same mass. The methane emission of coal mining industry accounts for22%of the whole energy industry. About30billion m3methane are discharged from the worldwide coal mining process, while the amount of20billion m3are generated by China. Among this emission, more than70%comes from ventilation air methane(VAM). An effective treatment and utilization of ventilation air methane have an important meaning for greenhouse gas reduction and energy saving. The oxidation process of methane can realize the reduction of greenhouse gas. As the concentration of methane in ventilation air methane are far lower than the combustion limit, the oxidation process is hard to achiever in conventional condition. The most prospective technology applied to the treatment of ventilation air methane is thermal flow-reversal reactor(TFRR). This paper established a TFRR experimental device and a dynamic TFRR simulation model to show the parameter influence, and then a TFRR design model was put forward and had been verified by experiments:
     1. Parameter analysis of thermal flow-reversal reactor
     Experimental system of the regenerative thermal oxidation for ventilation air methane and the fixed bed reactor of lean methane-air mixture oxidation were established. The fundamental condition of the lean methane-air mixture oxidation process is proposed. The effect factors on the regenerative thermal oxidation process of ventilation air methane were analyzed with the help of dimensionless analysis.
     2. One dimensional model of regenerative thermal oxidation of VAM
     An one-dimensional model was proposed for the regenerative thermal oxidation of VAM, and it was employed to simulate the working conditions, and compared with the experiment. The governing equations were solved by the method of lines using an open source software(MatMOL) based MATLAB language. Results show that the regenerative heat exchange conditions involving feed gas velocity, periodic switch time, structure of honeycomb ceramics are critical for stable operation of the reactor. The feed gas velocity has multiple influence on the steady of the reactor because of the relatively fixed heat loss of the reactor.
     3. Three dimensional model of regenerative thermal oxidation of VAM
     A heterogeneous three dimensional continuum model of the reactor was established using the user defined scalar in the commercial software Fluent. Flow distribution, temperature profile and concentration profile of the reactor were studied. The calculation results show that the rectifying effect of the honeycomb ceramic zone is very obvious. Heat loss of the reactor will affact the methane conversion, and improvement of central cavity on the methane conversion was very limited. The switch time should be properly prolonged due to the gas-trap effect.
     4. Design method of thermal flow-reversal reactor for VAM
     A method of calculating the stable operating parameters of thermal flow-reversal reactor was proposed. The regenerative heat exchange model and the criterion of the stability were established in thermal flow-reversal reactor. Based on the solution of the established model, the lowest self-sustaining methane concentration of the reactor was calculated. The calculated results are basically consistent with the experimental results, which shows the validity of the proposed model. The ventilation rate ranges of the reactor's stable operation, the flow rates of the withdrawal gas, the self-sustaining honeycomb ceramic demands are also calculated using this model.
引文
[1]HOUGHTON J T, DING Y, GRIGGS D J, et al. Climate change 2001:the scientific basis [M]. Cambridge university press Cambridge, 2001.
    [2]SOLOMON S. Climate change 2007-the physical science basis:Working group I contribution to the fourth assessment report of the IPCC [M]. Cambridge University Press, 2007.
    [3]Mizuno Y. CDM in Charts [J]. Institute for Global Environmental Strategies (IGES),2008.
    [4]SU S, BEATH A, GUO H, et al. An assessment of mine methane mitigation and utilisation technologies [J]. Progress in Energy and Combustion Science, 2005,31(2): 123-170.
    [5]SU S, AGNEW J. Catalytic combustion of coal mine ventilation air methane [J]. Fuel,2006,85(9):1201-1210.
    [6]张德江.大力推进煤矿瓦斯抽采利用[J].求是,2009,24:3-5.
    [7]袁河津,常荣俊,姚绍强.煤矿安全规程[M].徐州:中国矿业大学出版社.2010:219-226.
    [8]马晓钟.煤矿乏风(通风瓦斯)甲烷氧化技术经济及社会效益分析[J].北京,2007,
    [9]杨俊辉.矿井通风瓦斯综合利用[J].中国煤层气,2012,1):43-46.
    [10]SU S, CHEN H, TEAKLE P, et al. Characteristics of coal mine ventilation air flows [J]. J Environ Manage, 2008,86(1):44-62.
    [11]SALOMONS S, HAYES R E, POIRIER M, et al. Flow reversal reactor for the catalytic combustion of lean methane mixtures [J]. Catal Today, 2003,83(1-4):59-69.
    [12]MAIGAARD P, KRAFT M, MAUSS F. Homogeneous charge compression ignition engine:A simulation study on the effects of inhomogeneities [J]. Journal of engineering for gas turbines and power, 2003,125(2):466-471.
    [13]MALLETT C, SU S. Progress in developing ventilation air methane mitigation and utilization technologies; proceedings of the Third International methane and nitrous oxide mitigation conference, Beijing, F, 2003 [C].
    [14]YOU C, XU X. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler [J]. Environ Sci Technol, 2008,42(7): 2590-2593.
    [15]KOSMACK A. Capture and use of mine ventilation air methane; proceedings of the 2nd Annual Conference on Carbon Sequestration, May, F, 2003 [C].
    [16]CAROTHERS F P, SCHULTZ H L, TALKINGTON C C. Mitigation of methane emissions from coal mine ventilation air: An update [J]. US Environmental Protection Agency: Washington, DC, 2003.
    [17]KING B, TRAVES D, BLAMIRE D. Catalytic flow reversal reactor/gas turbine greenhouse gas emissions reduction technology [J]. Neil and Gunter (Nova Scotia) Limited, presented to Atlantic Canada Environmental Business and Municipal Expo, 2000,25-27.
    [18]COBB JR J: BCR National Lab., Pittsburgh, PA(United States), 1991.
    [19]SU S, MALLETT C. Investigation into waste coal handling facilities [J]. Brisbane: CSIRO Exploration and Mining Report, 2003.
    [20]CAROTHERS P, DEO M. Technical and economic assessment: mitigation of methane emissions from coal mine ventilation air [M]. United States, Environmental Protection Agency, Climate Protection Division, 2000.
    [21]GOSIEWSKI K, MATROS Y S, WARMUZINSKI K, et al. Homogeneous vs. catalytic combustion of lean methane-air mixtures in reverse-flow reactors [J]. Chem Eng Sci, 2008,63(20):5010-5019.
    [22]李永玲,刘应书.低浓度含氧煤层气吸附富集过程中吸附塔高径比的影响规律[J].煤炭学报,2014,39(3):492-497.
    [23]杨雄,张传钊,孟宇,et al.煤矿乏风瓦斯富集中试试验研究[J].煤炭学报,2014,39(3):486-491.
    [24]Y ANG M, DAVIES C, ALKANE ENERGY P, et al. New trends in coalmine methane recovery and utilization [J]. Chem Eng Sci, 2008,100(11):21-26.
    [25]DANELL R, NUNN J, KALLSTRAND A. Demonstration of MEGTEC Vocsidizer for methane utilisation [J]. ACARP Report C, 2002,9065.
    [26]Bayer C E, Blazejewski E G. Bypass system and method for regenerative thermal oxidizers:U.S. Patent 5,837,205[P].1998-11-17.
    [27]Libanati C, Uberoi M, Ziebarth M S. Catalyst and method for oxidizing oxygen-containing organic compounds in waste gas:U.S. Patent 5,882,616[P]. 1999-3-16.
    [28]Blazejewski E G. Integrated VOC entrapment system for regenerative oxidation: U.S. Patent 5,833,938[P].1998-11-10.
    [29]刘百奇.VAMOX^ TM系统在美国一家煤矿通风瓦斯处理中的应用[J].中国煤层气,2009,6(4):16-19.
    [30]Baker R J, Ginger B L. Natural gas injection system for regenerative thermal oxidizer: U.S. Patent 7,833,010[P].2010-11-16.
    [31]SAPOUNDJIEV H, GILLES J. CH4MIN Technology and Its Potential in China [J]. China Coalbed Methane, 2004,1:011.
    [32]陈宜亮,马晓钟,魏化兴.煤矿通风瓦斯氧化技术及氧化热利用方式[J].中国煤层气,2007,04):27-30.
    [33]KOLIOS G, FRAUHAMMER J, EIGENBERGER G. Autothermal fixed-bed reactor concepts [J]. Chem Eng Sci, 2000,55(24):5945-5967.
    [34]GOSIEWSKI K. Effective approach to cyclic steady state in the catalytic reverse-flow combustion of methane [J]. Chem Eng Sci, 2004,59(19):4095-4101.
    [35]MATROS Y S, BUNIMOVICH G A, STROTS V O, et al. Reversed flow converter for emission control after automotive engines [J]. Chem Eng Sci,1999, 54(13-14):2889-2898.
    [36]MATROS Y S, BUNIMOVICH G A, PATTERSON S E, et al. It economically feasible to use heterogeneous catalysts for VOC control in regenerative oxidizers? [J]. Efce Publ S,1995,112):199-202.
    [37]MATROS Y S, BUNIMOVICH G A, NOSKOV A S. The Decontamination of Gases by Unsteady-State Catalytic Method-Theory and Practice [J]. Catal Today, 1993,17(1-2):261-273.
    [38]Bayer C E, Heard W G. Regenerative thermal oxidizer: U.S. Patent 5,376,340[P].1994-12-27.
    [39]Nutcher P B, Waldern P J. Regenerative thermal oxidizer: U.S. Patent 5,161,968[P].1992-11-10.
    [40]Wilhelm F. Regenerative thermal oxidizer: U.S. Patent 5,562,442[P].1996-10-8.
    [41]Matros Y S, Noskov A S. Neutralizing the industrial gas wastes [J]. Uspekhi Khimii,1990,59(10):1700-1727.
    [42]周怀春,盛锋,姚洪.高温空气燃烧技术21世纪关键技术之一[J].工业炉,1998,1:19-29.
    [43]李茂德,程惠尔.高温空气燃烧系统中陶瓷蓄热体传热特性分析研究[J].热科学与技术,2004,3(3):255-260.
    [44]Weinberg F J. Combustion temperatures:the future?[J]. Nature, 1971,233: 239-241.
    [45]Lloyd S A, Weinberg F J. A burner for mixtures of very low heat content[J]. Nature,1974,251:47-49.
    [46]MALICO I, PEREIRA J C F. Numerical study on the influence of radiative properties in porous media combustion [J]. Journal of heat transfer, 2001,123(5): 951-957.
    [47]MUJEEBU M A, ABDULLAH M, BAKAR M, et al. Applications of porous media combustion technology-a review [J]. Appl Energ, 2009,86(9):1365-1375.
    [48]KIM N I, KATO S, KATAOKA T, et al. Flame stabilization and emission of small Swiss-roll combustors as heaters [J]. Combust Flame, 2005,141(3):229-240.
    [49]GRITSCH A, KOLIOS G, EIGENBERGER G. Reactor concepts for autothermal execution of endothermic high temperature reactions [J]. Chem-Ing-Tech, 2004,76(6):722-725.
    [50]SCHMIDT F W, WILLMOTT A J. Thermal energy storage and regeneration [M]. Hemisphere Publishing Corporation Washington, 1981.
    [51]KLEIN H, KLEIN S, MITCHELL J. Analysis of regenerative enthalpy exchangers [J]. Int J Heat Mass Tran, 1990,33(4):735-744.
    [52]BACLIC B S, DRAGUTINOVIC G D. Asymmetric-Unbalanced Counterflow Thermal Regenerator Problem-Solution by the Galerkin Method and Meaning of Dimensionless Parameters [J]. Int J Heat Mass Tran, 1991,34(2):483-498.
    [53]WILLMOTT A. Digital computer simulation of a thermal regenerator [J]. Int J Heat Mass Tran,1964,7(11):1291-1302.
    [54]SHEN C, WOREK W. Second-law optimization of regenerative heat exchangers, including the effect of matrix heat conduction [J]. Energy, 1993,18(4):355-363.
    [55]REN C Q, TU M, WANG H H. An analytical model for heat and mass transfer processes in internally cooled or heated liquid desiccant-air contact units [J]. Int J Heat Mass Tran,2007,50(17):3545-3555.
    [56]HINCHCLIFFE C, WILLMOTT A. Lumped heat-transfer coefficients for thermal regenerators [J]. Int J Heat Mass Tran, 1981,24(7):1229-1236.
    [57]蒋绍坚,汪洋洋.蜂窝陶瓷蓄热体传热数学模型及传热系数求解[J].工业炉,2001,23(3):50-53.
    [58]欧俭平,蒋绍坚,吴创之,et al.蜂窝陶瓷蓄热体格孔壁面应力变化特性的数值研究[J].热能动力工程,2004,19(1):63-65.
    [59]李伟,祁海鹰,由长福,et al.蜂巢蓄热体传热性能的数值研究[J].工程热物理学报,2001,22(5):657-660.
    [60]李朝祥,郭威.蜂窝状陶瓷蓄热体热交换过程的数值模拟[J].安徽工业大学学报:自然科学版,2004,21(3):183-185.
    [61]艾元方,孙英文,黄国栋,et al.用拉普拉斯变换法求解蜂窝蓄热体气固温度分布[J].工业加热,2006,35(2):4-6.
    [62]MATROS Y S. Forced unsteady-state processes in heterogeneous catalytic reactors [J]. Can J Chem Eng, 1996,74(5):566-579.
    [63]MATROS Y S, BUNIMOVICH G A, PATTERSON S E, et al. Is it economically feasible to use heterogeneous catalysts for VOC control in regenerative oxidizers? [J]. Catal Today, 1996,27(1-2):307-313.
    [64]SIMEONE M, MENNA L, SALEMME L, et al. Temperature evolution on Rh/A12O3 catalyst during partial oxidation of methane in a reverse flow reactor [J]. Exp Therm Fluid Sci, 2010,34(3):381-386.
    [65]LITTO R, HAYES R E, SAPOUNDJIEV H, et al. Optimization of a flow reversal reactor for the catalytic combustion of lean methane mixtures [J]. Catal Today, 2006, 117(4):536-542.
    [66]LIU B, HAYES R E, YI Y, et al. Three dimensional modelling of methane ignition in a reverse flow catalytic converter [J]. Comput Chem Eng, 2007,31(4): 292-306.
    [67]GOSIEWSKI K, WARMUZINSKI K, JASCHIK M, et al. Kinetics of thermal combustion of lean methane-air mixtures in reverse flow reactors [J]. Inz Chem Procesowa, 2007,28(2):335-345.
    [68]郑斌,刘永启,刘瑞祥,等.煤矿乏风的蓄热逆流氧化[J].煤炭学报,2009, 34(11):1475-1478.
    [69]唐帅,刘永启,毛明明,等.乏风氧化装置进气导流的流动均匀性研究[J].煤炭工程,2012(1):107-110.
    [70]张志诚,刘瑞祥,刘永启,等.煤矿乏风瓦斯氧化装置浓度调节系统开发[J].农业装备与车辆工程,2011(3):12-14.
    [71]吕元,姜凡,肖云汉.煤矿通风瓦斯氧化处理实验装置设计[J].环境工程,2011,29(4):90-93.
    [72]吕元,姜凡,肖云汉.煤矿通风瓦斯甲烷热氧化装置实验研究[J].煤炭学报,2011,36(6):973-977.
    [73]邓浩鑫,吕元,萧琦,等.通风瓦斯蓄热式热氧化过程数值模拟[J].煤炭学报,2012,37(8):1332-1336.
    [74]吕元.煤矿通风瓦斯的蓄热氧化处理装置研究[D];中国科学院研究生院(工程热物理研究所),2012.
    [75]萧琦,邓浩鑫,吕元.煤矿通风瓦斯蓄热预热过程研究[J].采矿与安全工程学报,2012,29(2):295-300.
    [76]冯涛,王鹏飞,郝小礼,等.煤矿乏风低浓度甲烷热逆流氧化试验研究[J].中国安全科学学报,2012,22(010):88-93.
    [77]王鹏飞,冯涛,郝小礼.煤矿乏风瓦斯热逆流氧化的一维数值模拟[J].采矿与安全工程学报,2012,29(003):434-439.
    [78]王鹏飞,冯涛,李石林.煤矿乏风瓦斯热逆流氧化床的阻力特性研究[J].天然气工业,2012,32(6):73-77.
    [79]GOSIEWSKI K, PAWLACZYK A, JASCHIK M. Combustion of coal-mine ventilation air methane in a thermal flow reversal reactor [J]. Przem Chem, 2011, 90(10):1917-1923.
    [80]GOSIEWSKI K, JASCHIK M, PAWLACZYK A, et al. Method for utilization of low-concentration gas mixtures of combustible gas and air with stable heat energy recovery and flow reversal device for implementation of the method [M]. Google Patents.2011.
    [81]Gosiewski K, Pawlaczyk A, Jaschik M. Thermal combustion of lean methane-air mixtures:Flow reversal research and demonstration reactor model and its validation[J]. Chemical Engineering Journal, 2012,207:76-84.
    [82]王鹏飞.煤矿乏风低浓度瓦斯热逆流氧化理论及实验研究[D];中南大学,2012.
    [83]王一坤,刘银河,车得福.通风瓦斯处理系统燃烧特性研究[J].工程热物理学报,2011,32(1):169-172.
    [84]MAR N P, ORD EZ S, D EZ F V. Procedures for heat recovery in the catalytic combustion of lean methane-air mixtures in a reverse flow reactor [J]. Chem Eng J, 2009,147(2):356-365.
    [85]SALOMONS S, HAYES R, POIRIER M, et al. Modelling a reverse flow reactor for the catalytic combustion of fugitive methane emissions [J]. Comput Chem Eng, 2004,28(9):1599-1610.
    [86]TELLAECHE C, GLOCKLER B, KOLIOS G, et al. A Heat-Integrated Reverse-Flow Reactor Concept for Endothermic High-Temperature Syntheses Part II: Development of a Reformer Prototype for Hydrogen Production [J]. Chem Eng Technol,2009,32(9):1348-1357.
    [87]LITTO R, HAYES R, SAPOUNDJIEV H, et al. Optimization of a flow reversal reactor for the catalytic combustion of lean methane mixtures [J]. Catal Today, 2006, 117(4):536-542.
    [88]HAYES R, KOLACZKOWSKI S, THOMAS W. Finite-element model for a catalytic monolith reactor [J]. Comput Chem Eng, 1992,16(7):645-657.
    [89]Fujita Y. Ceramic honeycomb structural body: U.S. Patent 7,438,967[P]. 2008-10-21.
    [90]张克铭,赵延峰,徐春柏,et al.高性能蜂窝式蓄热体的研制[J].冶金能源,2005,24(4):26-29.
    [91]张建军,邹得球,肖睿,et al.蓄热燃烧蓄热体的应用现状与发展趋势[J].冶金能源,2009,28(4):15-20.
    [92]BOEHMAN A L. Radiation heat transfer in catalytic monoliths [J]. Aiche J, 1998, 44(12):2745-2755.
    [93]WILLMOTT A, THOMAS R. Analysis of the long contra-flow regenerative heat exchanger [J]. IMA Journal of Applied Mathematics, 1974,14(3):267-280.
    [94]周娴.煤矿乏风低浓度甲烷氧化处理实验研究[D].北京:中国科学院工程热物理研究所,2009.
    [95]王丰.液体和气体的热物理性质表[M].科学出版社,1982.
    [96]Matros Y S, BUNIMOVICH G A. Reverse-flow operation in fixed bed catalytic reactors[J]. Catalysis Reviews, 1996,38(1):1-68.
    [97]SCHIESSER W E, SCHIESSER W E. The numerical method of lines: integration of partial differential equations [M]. Academic Press San Diego,1991.
    [98]VANDE WOUWER A, SAUCEZ P, SCHIESSER W. Simulation of distributed parameter systems using a Matlab-based method of lines toolbox:chemical engineering applications [J]. Ind Eng Chem Res, 2004,43(14):3469-3477.
    [99]SCHIESSER W E, GRIFFITHS G W. A compendium of partial differential equation models: method of lines analysis with Matlab [M]. Cambridge University Press, 2009.
    [100]SAUCEZ P, SCHIESSER W E. Adaptive method of lines [M]. CRC Press, 2001.
    [101]SCHIESSER W. The Numerical Method of Lines: Integration of Partial Differential Equations [M]. Academic Press, San Diego. 1991.
    [102]WOUWER A V, SAUCEZ P, SCHIESSER W, et al. A MATLAB implementation of upwind finite differences and adaptive grids in the method of lines [J]. Journal of computational and applied mathematics, 2005,183(2):245-258.
    [103]SHAMPINE L F, REICHELT M W. The matlab ode suite [J]. SIAM journal on scientific computing, 1997,18(1):1-22.
    [104]HAYES R E, KOLACZKOWSKI S T, THOMAS W J, et al. Transient experiments and modeling of the catalytic combustion of methane in a monolith reactor [J]. Ind Eng Chem Res, 1996,35(2):406-414.
    [105]HACKERT C, ELLZEY J, EZEKOYE O. Combustion and heat transfer in model two-dimensional porous burners [J]. Combust Flame, 1999,116(1):177-191.
    [106]MEIH, LI C, LIU H, et al. Simulation of catalytic combustion of methane in a monolith honeycomb reactor [J]. Chinese J Chem Eng, 2006,14(1):56-64.
    [107]FLUENT A.12.0 User's Guide [J]. User Inputs for Porous Media, 2009,6.
    [108]KOLACZKOWSKI S, CHAO R, AWDRY S, et al. Application of a CFD code (FLUENT) to formulate models of catalytic gas phase reactions in porous catalyst pellets [J]. Chemical Engineering Research and Design, 2007,85(11):1539-1552.
    [109]牟宝杰.蜂窝陶瓷蓄热体阻力特性和传热特性实验研究[D];山东:山东理工大学,2011.
    [110]KAYS W M, LONDON A L. Compact heat exchangers [J].1984,
    [111]WANG Y, LIU Y, CAO Q, et al. Homogeneous combustion of fuel ultra-lean methane-air mixtures: Experimental study and simplified reaction mechanism [J]. Energ Fuel, 2011,25(8):3437-3445.
    [112]MARIN P, HEVIA M A, ORDONEZ S, et al. Combustion of methane lean mixtures in reverse flow reactors: comparison between packed and structured catalyst beds [J]. Catal Today, 2005,105(3):701-708.
    [113]SALINGER A G, EIGENBERGER G. The direct calculation of periodic states of the reverse flow reactor.1. Methodology and propane combustion results [J]. Chem Eng Sci, 1996,51(21):4903-4913.
    [114]SALINGER A G, EIGENBERGER G. The direct calculation of periodic states of the reverse flow reactor.2. Multiplicity and instability [J]. Chem Eng Sci, 1996, 51(21):4915-4922.
    [115]GOSIEWSKI K, WARMUZINSKI K. Effect of the mode of heat withdrawal on the asymmetry of temperature profiles in reverse-flow reactors. Catalytic combustion of methane as a test case [J]. Chem Eng Sci, 2007,62(10):2679-2689.
    [116]Gosiewski K, Pawlaczyk A. Catalytic or thermal reversed flow combustion of coal mine ventilation air methane:What is better choice and when?[J]. Chemical Engineering Journal, 2014,238:78-85.