面向硬切削的切削区域温度场解析建模及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬切削加工过程中,切削温度及分布是影响刀具使用寿命和加工质量的关键因素之一,其中切削区域温度及分布的精确测量与预测一直是切削加工机理研究的热点和难题,主要问题是现有的温度测量方法很难实现对切削区域温度分布的原位(在接近切削作用区域)测量,其温度测量结果的时间和空间分辨率难以满足要求,因此切削区域温度预测模型的有效性和准确性难以得到验证。
     论文针对上述难题,在深入分析切削加工过程中材料塑性变形区复杂热力耦合效应的基础上,考虑了第二变形区切屑材料滞留区的影响,提出了前刀面上切屑沿刀具与切屑作用面间非线性流动的数学模型,并修正了Komanduri和Hou模型中关于前刀面和后刀面之间的绝热假设,提出了一个正交切削条件下的切削温度分布解析模型,该模型可用于预测切削作用区域的热、力参数。
     在切削温度测量方法上,论文采用无缝嵌入到PCBN刀具中的微尺度薄膜热电偶传感器阵列(Micro-scale Thin Film Thermocouples, TFTCs),实现了刀具切削区域温度分布的原位获取与准确测量。在同等切削条件下,通过硬车削实验中获得的切削温度、切削力、以及切屑厚度等数据,验证了所建立的解析模型的预测精度,验证结果表明,解析模型的预测结果与实验数据之间表现出了较高的预测精度。
     论文根据所提出的解析模型和硬车削条件下所进行的切削实验结果,对切削区域的热力耦合行为及一些尚未澄清的机理问题进行了分析与探讨。基于所提出的解析模型的预测结果,分析了硬车削加工条件下切削区域的切削温度、应力分布、切屑流动速度之间的稳态热力耦合行为,研究结果表明,随着切削速度的变化,切削区域的热源位置与热释放强度分布、热传导过程中的热分配比例关系等是影响刀具切削区域温度分布状态及其变化趋势的重要原因。
     另外,基于硬切削实验中获得的温度数据、切削力和振动信号,对硬车削加工中切屑形成区域的动态热力耦合行为进行了分析,研究结果发现主剪切区域所发生的绝热剪切过程,导致的工件材料周期性的裂纹萌生与扩展,会引起切屑形成区域的材料流动应力及切削温度的周期性耦合脉动,进而影响到硬车削加工的切屑宏观形貌和切屑的锯齿化形成过程。同时,主剪切区域的绝热剪切带位置,同样会影响刀具前刀面上的切削温度及分布状态。
     总体而言,研究成果可广泛应用于金属切削理论研究,加工过程的参数优化,以及切削过程监测等,丰富了金属切削加工研究的理论方法和实验手段。
As well-known as the cutting temperature and its distribution in the cutting zone are acritical factor that significantly affects tool life and degrades part accuracy during hardcutting processes. However, issues surrounding their modeling and experimentalvalidation in the immediate cutting zone still remain an unresolved issue. A majorimpediment is the unavailability of adequate temperature measurement methods withsufficient temporal and spatial resolution to measure actual temperatures and validatepredictive models.
     From the standpoint of the common issues with the limitations that existed in thecutting temperature models and experimental measurements. In this paper, a model for thedry orthogonal cutting process with thermo-mechanical coupling effects is proposed topredict cutting temperature distribution as well as the relevance parameters in the cuttingzone. In this model, to model the non-uniform distribution of the chip flow velocity alongthe tool/chip interface, a unique stagnant region within the secondary shear zone wasadded into the slip-line field. Based on Komanduri and Hou’s approach, a modifiedthermal assumption for the temperature rise in the cutting tool that considers the fact heattransfer occurs from both the rake and flank faces was also proposed.
     Cutting temperature distributions were measured by Micro-scale Thin FilmThermocouples (TFTCs) embedded into PCBN cutting inserts in the immediate vicinity ofthe tool-chip interface. Using these measurements and predictions during hard turning, thefeasibility and prediction accuracy of the model is verified by experimental measurementsthrough TFTC arrays embedded into the PCBN tooling. The experimental verification isperformed under hard turning conditions. It has been shown that the predictions of theproposed model are in very close agreement with the experimentally measured resultsincluding the cutting forces, chip thickness and cutting temperature distributions on the rake and flank faces in the cutting zone.
     Numerous detailed analysis of the thermo-mechanical coupling mechanisms andsome of the unresolved issues in the hard turning processes have been offered with the twocontents that combined by experiment measurements and modeling predictions. Based onthe predictions of the analytical approach, the modeling results have also provided anessential understanding on steady-state thermo-mechanical effects, i.e., the influencesamong in cutting temperatures in the cutting interfaces, stress distributions at the tool/chipand work/tool interfaces as well as of the nature of the chip flow velocity along the rakeface of the cutting tool. It has been shown that the temperature changes in the cutting zonedepend on the heat resource’s location in the chip and the thermal transfer rate from theheat generation zone to the cutting tool.
     Moreover, in current work, a combined investigation on dynamic as well as chipmorphology and formation process analyses were performed based on the cuttingtemperature and cutting force variations in the cutting zone. It became evident that thecyclically changes in the material flow stress and the adiabatic shearing bands generatedgreatly affect not only the chip formation morphology but also the cutting temperaturefield distributions in the cutting zone of the cutting insert.
     Overall,The research achievements can be used to perform more fundamentalinvestigations for metal removal machining mechanism and for widespread applicationssuch as cutting parameters optimization and machining process monitoring etc. Theproposed approach also possesses the abilities that used to advance the metal removalprocessing research evolution forward.
引文
[1] R. Komanduri, Z.B. Hou, A Review of The Experimental Techniques for TheMeasurement of Heat and Temperatures Generated in Some ManufacturingProcesses and Tribology, Tribology International,34(2001)653-682.
    [2] G. Barrow, Review of Experimental and Theoretical Techniques for AssessingCutting Temperatures, CIRP Annals-Manufacturing Technology,22(1974)203-211.
    [3] R. Komanduri, Machining and Grinding: A Historical Review of the ClassicalPapers, Applied Mechanics Reviews,46(1993)80-132.
    [4] M.A. Davies, T. Ueda, R. M'Saoubi, B. Mullany, A.L. Cooke, On the Measurementof Temperature in Material Removal Processes, CIRP Annals-ManufacturingTechnology,56(2007)581-604.
    [5] H.K. T nshoff, C. Arendt, R.B. Amor, Cutting of Hardened Steel, CIRP Annals-Manufacturing Technology,49(2000)547-566.
    [6] G. Byrne, D. Dornfeld, B. Denkena, Advancing Cutting Technology, CIRP Annals-Manufacturing Technology,52(2003)483-507.
    [7] F. Klocke, E. Brinksmeier, K. Weinert, Capability Profile of Hard Cutting andGrinding Processes, CIRP Annals-Manufacturing Technology,54(2005)22-45.
    [8] J.P. Davim, Machining of Hard Materials, Springer,2011.
    [9] J. Kundrak, B. Karpuschewski, K. Gyani, V. Bana, Accuracy of Hard Turning,Journal of Materials Processing Technology,202(2008)328-338.
    [10] J.M. Zhou, A. Andersson, J.E. Stahl, Identification of Cutting Errors in PrecisionHard Turning Process, Journal of Materials Processing Technology,153-54(2004)746-750.
    [11] S.S. Bosheh, P.T. Mativenga, White Layer Formation in Hard Turning of H13ToolSteel at High Cutting Speeds using CBN Tooling, International Journal of MachineTools and Manufacture,46(2006)225-233.
    [12] R. Cep, M. Neslusan, B. Barisic, Chip Formation Analysis During Hard Turning,Strojarstvo,50(2008)337-346.
    [13] S. Zhang, Y.B. Guo, An Experimental and Analytical Analysis on ChipMorphology, Phase Transformation, Oxidation, and Their Relationships in FinishHard Milling, International Journal of Machine Tools and Manufacture,49(2009)805-813.
    [14] Y.K. Chou, C.J. Evans, White Layers and Thermal Modeling of Hard TurnedSurfaces, International Journal of Machine Tools and Manufacture,39(1999)1863-1881.
    [15] Y.B. Guo, J. Sahni, A Comparative Study of Hard Turned and CylindricallyGround White Layers, International Journal of Machine Tools and Manufacture,44(2004)135-145.
    [16] J. Barry, G. Byrne, Chip Formation, Acoustic Emission and Surface White Layersin Hard Machining, CIRP Annals-Manufacturing Technology,51(2002)65-70.
    [17] I.S. Jawahir, E. Brinksmeier, R. M'Saoubi, D.K. Aspinwall, J.C. Outeiro, D. Meyer,D. Umbrello, A.D. Jayal, Surface Integrity in Material Removal Processes: RecentAdvances, CIRP Annals-Manufacturing Technology,60(2011)603-626.
    [18] M.A. Davies, Y. Chou, C.J. Evans, On Chip Morphology, Tool Wear and CuttingMechanics in Finish Hard Turning, CIRP Annals-Manufacturing Technology,45(1996)77-82.
    [19] E.G. Ng, D.K. Aspinwall, The Effect of Workpiece Hardness and Cutting Speed onthe Machinability of AISI H13Hot Work Die Steel when using PCBN Tooling,Journal of Manufacturing Science and Engineering-Transactions of the Asme,124(2002)588-594.
    [20] J.C. Aurich, H. Bil,3D Finite Element Modelling of Segmented Chip Formation,CIRP Annals-Manufacturing Technology,55(2006)47-50.
    [21] M.C. Shaw, A. Vyas, The Mechanism of Chip Formation with Hard Turning Steel,CIRP Annals-Manufacturing Technology,47(1998)77-82.
    [22] G. List, G. Sutter, X.F. Bi, Investigation of Tool Wear in High Speed Machining byusing a Ballistic Set-up, Wear,267(2009)1673-1679.
    [23] G. List, G. Sutter, A. Bouthiche, Cutting Temperature Prediction in High SpeedMachining by Numerical Modelling of Chip Formation and its Dependence withCrater Wear, International Journal of Machine Tools and Manufacture,54–55(2012)1-9.
    [24] Y.S. Chiou, E.S. Chung, S.Y. Liang, Analysis of Tool Wear Effect on ChatterStability in Turning, International Journal of Mechanical Sciences,37(1995)391-404.
    [25] R.Y. Chiou, S.Y. Liang, Chatter Stability of a Slender Cutting Tool in Turning withTool Wear Effect, International Journal of Machine Tools and Manufacture,38(1998)315-327.
    [26] S. Sun, M. Brandt, M.S. Dargusch, Characteristics of Cutting Forces and ChipFormation in Machining of Titanium Alloys, International Journal of MachineTools&Manufacture,49(2009)561-568.
    [27] G.G. Ye, S.F. Xue, W. Ma, M.Q. Jiang, Z. Ling, X.H. Tong, L.H. Dai, Cutting AISI1045Steel at Very High Speeds, International Journal of Machine Tools andManufacture,56(2012)1-9.
    [28] P.C. Wanigarathne, A.D. Kardekar, O.W. Dillon, G. Poulachon, I.S. Jawahir,Progressive Tool-wear in Machining with Coated Grooved Tools and itsCorrelation with Cutting Temperature, Wear,259(2005)1215-1224.
    [29] M. Bacci da Silva, J. Wallbank, Cutting Temperature: Prediction and MeasurementMethods—A Review, Journal of Materials Processing Technology,88(1999)195-202.
    [30] H. Shore, Thermoelectric Measurement of Cutting Tool Temperatures, Journal ofthe Washington Academy of Sciences,15(1925)85-88.
    [31] K. Gottwein, Measurement of the Temperatures in the Turning of Steels,Maschinenbau Technik,4(1925)1129–1135.
    [32] E.G. Herbert, The Measurement of Cutting Temperatures, Proceedings of theInstitution of Mechanical Engineers,110(1926)289-329.
    [33] H. Verbeek, DRP No.359477, in: Klasse49a, Gruppe,1920.
    [34] K.J. Trigger, Progress Report No.1on Tool-Chip Interface Temperatures, ASMETransacations,70(1948)91–98.
    [35] K.J. Trigger, Progress Report No.2on Tool-Chip Interface Temperatures, ASMETransactions,71(1949)163-174.
    [36] D. Stephenson, Tool-work Thermocouple Temperature Measurements--Theory andImplementation Issues, Transactions of the ASME-Journal of Engineering forIndustry,115(1993)432-437.
    [37] B.M. Kramer, B.F. von Turkovich, A Comprehensive Tool Wear Model, CIRPAnnals-Manufacturing Technology,35(1986)67-70.
    [38] C.E. Leshock, Y.C. Shin, Investigation on Cutting Temperature in Turning by aTool-Work Thermocouple Technique, Journal of Manufacturing Science andEngineering,119(1997)502-508.
    [39] W. Grzesik, Experimental Investigation of the Cutting Temperature when Turningwith Coated Indexable Inserts, International Journal of Machine Tools andManufacture,39(1999)355-369.
    [40] W. Grzesik, E. Kwiatkowska, An Energy Approach to Chip-breaking whenMachining with Grooved Tool Inserts, International Journal of Machine Tools andManufacture,37(1997)569-577.
    [41] W. Grzesik, C.A. van Luttervelt, An Investigation of the Thermal Effects inOrthogonal Cutting Associated with Multilayer Coatings, CIRP Annals-Manufacturing Technology,50(2001)53-56.
    [42] A.U. Anagonye, D.A. Stephenson, Modeling Cutting Temperatures for TurningInserts With Various Tool Geometries and Materials, Journal of ManufacturingScience and Engineering,124(2002)544-552.
    [43] M.C. Shaw, Metal Cutting Principles, Oxford University Press,1984.
    [44] G.E. D'Errico, A Systems Theory Approach to Modelling of Cutting Temperaturewith Experimental Identification, International Journal of Machine Tools andManufacture,37(1997)149-158.
    [45] H. Ay, W.-J. Yang, Heat Transfer and Life of Metal Cutting Tools in Turning,International Journal of Heat and Mass Transfer,41(1998)613-623.
    [46] H.A. Kishawy, An Experimental Evaluation of Cutting Temperatures during HighSpeed Machining of Hardened D2Tool Steel, Machining Science and Technology,6(2002)67-79.
    [47] R.T. Coelho, L.R. Silva, A. Braghini Jr, A.A. Bezerra, Some Effects of CuttingEdge Preparation and Geometric Modifications when Turning INCONEL718atHigh Cutting Speeds, Journal of Materials Processing Technology,148(2004)147-153.
    [48] X.J. Ren, Q.X. Yang, R.D. James, L. Wang, Cutting Temperatures in Hard TurningChromium Hardfacings with PCBN Tooling, Journal of Materials ProcessingTechnology,147(2004)38-44.
    [49] S. Smith, B. Woody, W. Barkman, D. Tursky, Temperature Control and MachineDynamics in Chip Breaking Using CNC Toolpaths, CIRP Annals-ManufacturingTechnology,58(2009)97-100.
    [50] T. Ueda, M. Sato, A. Hosokawa, M. Ozawa, Development of Infrared RadiationPyrometer with Optical Fibers—Two-color Pyrometer with Non-contact FiberCoupler, CIRP Annals-Manufacturing Technology,57(2008)69-72.
    [51] G. Sutter, N. Ranc, Temperature Fields in a Chip during High-speed OrthogonalCutting—an Experimental Investigation, International Journal of Machine Toolsand Manufacture,47(2007)1507-1517.
    [52] M. Armendia, A. Garay, A. Villar, M.A. Davies, P.J. Arrazola, High BandwidthTemperature Measurement in Interrupted Cutting of Difficult to Machine Materials,CIRP Annals-Manufacturing Technology,59(2010)97-100.
    [53] M. Sato, T. Ueda, H. Tanaka, An Experimental Technique for the Measurement ofTemperature on CBN Tool Face in End Milling, International Journal of MachineTools and Manufacture,47(2007)2071-2076.
    [54] H. Yoshioka, H. Hashizume, H. Shinn, In-process Microsensor for UltraprecisionMachining, IEEE Proceedings-Science, Measurement and Technology,151(2004)121-125.
    [55] S. Rossetto, U. Koch, An Investigation of Temperature Distribution on Tool FlankSurface, Annals of the CIRP,19(1971)551-557.
    [56] S. Suzuki, F.E. Kennedy, The Detection of Flash Temperatures in a Sliding Contactby the Method of Tribo-Induced Thermoluminescence, Journal of Tribology,113(1991)120-127.
    [57] T. Kato, H. Fujii, PVD Film Method for Measuring the Temperature Distributionin Cutting Tools, Journal of Engineering for Industry,118(1996)117-122.
    [58] P. Wright, E. Trent, Metallographic Methods of Determining TemperatureGradients in Cutting Tools, Journal of the Iron and Steel Institute,211(1973)364-368.
    [59] X. Cheng, A. Datta, H. Choi, X. Zhang, X. Li, Study on Embedding andIntegration of Microsensors Into Metal Structures for Manufacturing Applications,Journal of Manufacturing Science and Engineering,129(2007)416-424.
    [60] X. Cheng, X. Li, Development of Metal Embedded Microsensors by DiffusionBonding and Testing in Milling Process, Journal of Manufacturing Science andEngineering,130(2008)061010-061019.
    [61] H. Choi, X. Li, Experimental Investigations of Laser Micromachining of NickelUsing Thin Film Micro Thermocouples, Journal of Manufacturing Science andEngineering,130(2008)021002-021008.
    [62] A. Basti, T. Obikawa, J. Shinozuka, Tools With Built-in Thin Film ThermocoupleSensors for Monitoring Cutting Temperature, International Journal of MachineTools and Manufacture,47(2007)793-798.
    [63] J. Shinozuka, A. Basti, T. Obikawa, Development of Cutting Tool with Built-inThin Film Thermocouples for Measuring High Temperature Fields in MetalCutting Processes, Journal of Manufacturing Science and Engineering,130(2008)034501-034506.
    [64] H. Choi, H. Konishi, H. Xu, X. Li, Embedding of Micro Thin Film Strain Sensorsin Sapphire by Diffusion Bonding, Journal of Micromechanics andMicroengineering,17(2007)2248.
    [65] D. Werschmoeller, K. Ehmann, X. Li, Tool Embedded Thin Film Microsensors forMonitoring Thermal Phenomena at Tool-Workpiece Interface During Machining,Journal of Manufacturing Science and Engineering,133(2011)021007-021008.
    [66] D. Werschmoeller, X. Li, K. Ehmann, Measurement of Transient Tool-InternalTemperature Fields During Hard Turning by Insert-Embedded Thin Film Sensors,Journal of Manufacturing Science and Engineering,134(2012)061004-061009.
    [67] T. Mabrouki, F. Girardin, M. Asad, J.-F. Rigal, Numerical and Experimental Studyof Dry Cutting for An Aeronautic Aluminium Alloy (A2024-T351), InternationalJournal of Machine Tools and Manufacture,48(2008)1187-1197.
    [68] M. Sima, T. zel, Modified Material Constitutive Models for Serrated ChipFormation Simulations and Experimental Validation in Machining of TitaniumAlloy Ti-6Al-4V, International Journal of Machine Tools and Manufacture,50(2010)943-960.
    [69] M. Calamaz, D. Coupard, F. Girot, A New Material Model for2D NumericalSimulation of Serrated Chip Formation When Machining Titanium Alloy Ti–6Al–4V, International Journal of Machine Tools and Manufacture,48(2008)275-288.
    [70] G.M. Pittalà, M. Monno, A New Approach to The Prediction of Temperature of theWorkpiece of Face Milling Operations of Ti-6Al-4V, Applied Thermal Engineering,31(2011)173-180.
    [71] B. Rao, C.R. Dandekar, Y.C. Shin, An Experimental and Numerical Study on theFace Milling of Ti–6Al–4V Alloy: Tool Performance and Surface Integrity, Journalof Materials Processing Technology,211(2011)294-304.
    [72] A. Molinari, R. Cheriguene, H. Miguelez, Numerical and Analytical Modeling ofOrthogonal Cutting: The Link between Local Variables and Global ContactCharacteristics, International Journal of Mechanical Sciences,53(2011)183-206.
    [73] Y. Karpat, Temperature Dependent Flow Softening of Titanium Alloy Ti6Al4V: AnInvestigation using Finite Element Simulation of Machining, Journal of MaterialsProcessing Technology,211(2011)737-749.
    [74] K.J. Trigger, B.T. Chao, An Analytical Evaluation of Metal Cutting Temperature,Transactions of ASME,73(1951)57-68.
    [75] E.G. Loewen, M.C. Shaw, On the Analysis of Cutting Tool Temperatures,Transactions of ASME,76(1954)217-231.
    [76] J.H. Weiner, Shear-plane Temperature Distribution in Orthogonal Cutting,Transactions of ASME,77(1955)1331-1341.
    [77] H.T. Young, T.L. Chou, Modelling of Tool/chip Interface Temperature Distributionin Metal Cutting, International Journal of Mechanical Sciences,36(1994)931-943.
    [78] T. Foeckerer, M.F. Zaeh, O.B. Zhang, A Three-dimensional Analytical Model toPredict the Thermo-metallurgical Effects within the Surface Layer during Grindingand Grind-hardening, International Journal of Heat and Mass Transfer,56(2013)223-237.
    [79] D. Ulutan, I. Lazoglu, C. Dinc, Three-dimensional Temperature Predictions inMachining Processes using Finite Difference Method, Journal of MaterialsProcessing Technology,209(2009)1111-1121.
    [80] R.S. Hahn, On the Temperature Developed at the Shear Plane in the Metal CuttingProcess, Proceedings of First U.S. National Congress of Applied Mechanics,(1951)661-666.
    [81] B. Chao, K. Trigger, Temperature Distribution at Tool-chip and Tool-workInterface in Metal Cutting, in, ASME,1956.
    [82] J.C. Jaeger, Moving Sources of Heat and the Temperature at Sliding Contacts,Proceedings Royal Society of N.S.W,76(1942)203-224.
    [83] R. Komanduri, Z.B. Hou, Thermal Modeling of the Metal Cutting Process—PartII: Temperature Rise Distribution due to Frictional Heat Source at the Tool–chipInterface, International Journal of Mechanical Sciences,43(2001)57-88.
    [84] R. Komanduri, Z.B. Hou, Thermal Modeling of the Metal Cutting Process: Part I—Temperature Rise Distribution due to Shear Plane Heat Source, InternationalJournal of Mechanical Sciences,42(2000)1715-1752.
    [85] Y. Huang, S.Y. Liang, Cutting Forces Modeling Considering the Effect of ToolThermal Property-Application to CBN Hard Turning, International Journal ofMachine Tools and Manufacture,43(2003)307-315.
    [86] Y. Karpat, T. Ozel, Predictive Analytical and Thermal Modeling of OrthogonalCutting Process-Part I: Predictions of Tool Forces, Stresses, and TemperatureDistributions, Journal of Manufacturing Science and Engineering,128(2006)435-444.
    [87] Y. Karpat, T. Ozel, Predictive Analytical and Thermal Modeling of OrthogonalCutting Process---Part II: Effect of Tool Flank Wear on Tool Forces, Stresses, andTemperature Distributions, Journal of Manufacturing Science and Engineering,128(2006)445-453.
    [88] G. Byrne, D. Dornfeld, I. Inasaki, G. Ketteler, W. K nig, R. Teti, Tool ConditionMonitoring (TCM)—The Status of Research and Industrial Application, CIRPAnnals-Manufacturing Technology,44(1995)541-567.
    [89] P.L.B. Oxley, Mechanics of Machining: An Analytical Approach to AssessingMachinability, Ellis Horwood Limited, Chichester, England,1989.
    [90] D.J. Waldorf, Shearing, Ploughing, and Wear in Orthogonal Machining, in,University of Illinois at Urbana-Champaign, United States--Illinois,1996, pp.139p.
    [91] N. Fang, Q. Wu, The Effects of Chamfered and Honed Tool Edge Geometry inMachining of Three Aluminum Alloys, International Journal of Machine Tools andManufacture,45(2005)1178-1187.
    [92] Y. Ohbuchi, T. Obikawa, Finite Element Modeling of Chip Formation in theDomain of Negative Rake Angle Cutting, Journal of Engineering Materials andTechnology,125(2003)324-332.
    [93] Y. Karpat, T. Ozel, Analytical and Thermal Modeling of High-speed Machiningwith Chamfered Tools, Journal of Manufacturing Science and Engineering,130(2008)011001.
    [94] S. Bahi, M. Nouari, A. Moufki, M. El Mansori, A. Molinari, A New Friction Lawfor Sticking and Sliding Contacts in Machining, Tribology International,44(2011)764-771.
    [95] S. Kato, K. Yamaguchi, M. Yamada, Stress Distribution at the Interface betweenTool and Chip in Machining, Journal of Engineering for Industry,94(1972)683-689.
    [96] E. Usui, H. Takeyama, A Photoelastic Analysis of Machining Stresses, Journal ofEngineering for Industry,82(1960)303-307.
    [97] E. Ozlu, E. Budak, A. Molinari, Analytical and Experimental Investigation of RakeContact and Friction Behavior in Metal Cutting, International Journal of MachineTools and Manufacture,49(2009)865-875.
    [98] M. Weber, T. Hochrainer, P. Gumbsch, H. Autenrieth, L. Delonnoy, V. Schulze, D.L he, J. Kotschenreuther, J. Fleischer, Investigation of Size-effects in Machiningwith Geometrically Defined Cutting Edges, Machining Science and Technology,11(2007)447-473.
    [99] G. Barrow, W. Graham, T. Kurimoto, Y.F. Leong, Determination of Rake FaceStress-distribution in Orthogonal Machining, International Journal of MachineTools and Manufacture,22(1982)75-85.
    [100] A. Moufki, A. Molinari, D. Dudzinski, Modelling of Orthogonal Cutting with aTemperature Dependent Friction Law, Journal of the Mechanics and Physics ofSolids,46(1998)2103-2138.
    [101] N.A. Abukhshim, P.T. Mativenga, M.A. Sheikh, Heat Generation and TemperaturePrediction in Metal Cutting: A Review and Implications for High Speed Machining,International Journal of Machine Tools and Manufacture,46(2006)782-800.
    [102] L.W. Li, B. Li, X.C. Li, K.F. Ehmann, Experimental Investigation of Hard TurningMechanisms by PCBN Tooling Embedded Micro Thin Film Thermocouples, in:Proceedings of the ASME2012International Manufacturing Science andEngineering Conference,2012.
    [103] D. Werschmoeller, K.F. Ehmann, X.C. Li, Tool Embedded Thin Film Microsensorsfor Monitoring Thermal Phenomena at Tool-workpiece Interface DuringMachining, Journal of Manufacturing Science and Engineering,133(2011)021007.
    [104] F.E. Kennedy, D. Frusescu, J.Y. Li, Thin Film Thermocouple Arrays for SlidingSurface Temperature Measurement, Wear,207(1997)46-54.
    [105] Y. Heichal, S. Chandra, E. Bordatchev, A Fast-response Thin Film Thermocoupleto Measure Rapid Surface Temperature Changes, Experimental Thermal and FluidScience,30(2005)153-159.
    [106] E. Brinksmeier, C. Heinzel, A. Wilkens, W. Lang, T. Seedorf, Monitoring ofMachining Processes Using Sensor Equipped Tools, Advanced EngineeringMaterials,12(2010)641-645.
    [107] C. Hongseok, A. Datta, C. Xudong, L. Xiaochun, Microfabrication andCharacterization of Metal-embedded Thin-film Thermomechanical Microsensorsfor Applications in Hostile Manufacturing Environments, Journal ofMicroelectromechanical Systems,15(2006)322-329.
    [108] D. Werschmoeller, Measurement of Transient Tool Internal Temperature Fields byNovel Micro Thin Film Sensors Embedded in Polycrystalline Cubic Boron NitrideCutting Inserts, in: X. Li (Ed.), University of Wisconsin-Madison, United States--Wisconsin,2010.
    [109] E.G. Thomsen, A.G. MacDonald, S. Kobayashi, Flank Friction Studies withCarbide Tools Reveal Sublayer Plastic Flow, Journal of Engineering for Industry,84(1962)53-62.
    [110] T. Shi, S. Ramalingam, Slip-line Solution for Orthogonal Cutting with a ChipBreaker and Flank Wear, International Journal of Mechanical Sciences,33(1991)689-704.
    [111] W. Grzesik, Advanced Machining Processes of Metallic Materials: Theory,Modelling and Applications, Elsevier Science,2008.
    [112] R. Komanduri, R.H. Brown, On the Mechanics of Chip Segmentation inMachining, Journal of Engineering for Industry-Transactions of the Asme,103(1981)33-51.
    [113] G. Poulachon, A.L. Moisan, Hard Turning: Chip Formation Mechanisms andMetallurgical Aspects, Journal of Manufacturing Science and Engineering,122(2000)406-412.
    [114] J. Barry, G. Byrne, The Mechanisms of Chip Formation in Machining HardenedSteels, Journal of Manufacturing Science and Engineering,124(2002)528-535.
    [115] M.A. Davies, T.J. Burns, C.J. Evans, On the Dynamics of Chip Formation inMachining Hard Metals, CIRP Annals-Manufacturing Technology,46(1997)25-30.
    [116] G. Poulachon, A. Moisan, I.S. Jawahir, On Modelling the Influence ofThermo-mechanical Behavior in Chip Formation during Hard Turning of100Cr6Bearing Steel, CIRP Annals-Manufacturing Technology,50(2001)31-36.
    [117] C. Torrence, G.P. Compo, A Practical Guide to Wavelet Analysis, Bulletin of theAmerican Meteorological Society,79(1998)61.
    [118] T. Mabrouki, J.F. Rigal, A Contribution to a Qualitative Understanding ofThermo-mechanical Effects During Chip Formation in Hard Turning, Journal ofMaterials Processing Technology,176(2006)214-221.
    [119] S. Atlati, B. Haddag, M. Nouari, M. Zenasni, Analysis of a New SegmentationIntensity Ratio “SIR” to Characterize the Chip Segmentation Process in MachiningDuctile Metals, International Journal of Machine Tools and Manufacture,51(2011)687-700.