多喷嘴喷雾冷却实验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各行业对冷却技术要求的不断提高,喷雾冷却应运而生。在过去30多年的研究中,国内外学者将大量精力放在单喷嘴喷雾冷却影响因素的实验研究上。近几年,由于多喷嘴喷雾冷却散热更均匀,散热热流密度更高,围绕多喷嘴的实验研究逐渐增加。已有的关于多喷嘴喷雾冷却的研究,以喷嘴数目和喷射参数对雾化特性和换热效果影响的实验研究居多,对多喷嘴喷雾冷却过程中液滴喷射与壁面换热相结合的整体理论研究较少,对喷雾冷却强化换热机理的认识不明确。
     为此,本文以多喷嘴喷雾冷却为研究对象,首先采用商业软件对液滴喷射和壁面换热整体过程进行了整体数值模拟,系统研究了不同喷嘴数目和工况下的雾化特性和壁面换热效果,得到了壁面过热度、进口压力、进口流量、喷嘴高度、喷嘴数目等对壁面散热热流密度大小和分布的影响规律;揭示了不同工况下多喷嘴喷雾冷却雾化特性,为多喷嘴喷雾冷却优化设计和强化换热机理的研究提供了可靠数据。模拟结果表明最优喷射高度为喷雾直接冲击区与被加热表面外切时对应的值,随着喷嘴数目的增加,壁面平均热流密度增加,然而增加幅度减小。模拟工况下,最优喷嘴数目为8。
     喷雾冷却过程中会在壁面上形成一层薄液膜层,薄液膜内复杂流动和换热过程直接影响了最终换热效果。为了对多喷嘴喷雾冷却壁面薄液膜内的复杂流动和换热过程进行详细研究,本文采用高速摄影仪和显微放大镜相结合,系统拍摄观察了多喷嘴喷雾冷却热壁面液膜层的形成和流动,利用图片灰度值矩阵定量分析了不同工况下液膜形成过程、液膜厚度和波动特性,分析了单个气泡周期内气泡形变对当地液膜厚度的影响。实验结果表明随着韦伯数的增加,无量纲平均液膜厚度总体上呈现减小的趋势,薄液膜表面波长和波幅也呈减小的趋势。随着表面温度的增加,无量纲液膜厚度先迅速增加,然后缓慢变化,最后又呈增加的趋势,壁面薄液膜表面波长和波幅随壁面温度的增加没有明显的变化。气泡生长和上升过程的当地液膜厚度比气泡形成和聚集过程更厚。首次发现不同壁面温度下,薄液膜形成过程中当地液膜厚度的平均值存在峰值点。同时本文还采用数值方法研究了薄液膜内的流场和温度场分布,建立了气液两相流数学模型,采用VOF方法捕捉气-液界面,研究了不同液滴初始状态下薄液膜内气泡的形变过程和流动换热特点,分析了连续过冷液滴非正对撞击薄液膜强化换热机理和液滴各参数对气泡形变的影响规律,得到了不同情况下薄液膜内热边界层和气泡的变化规律。结果表明过冷液滴的撞击使壁面附近温差变大,壁面上薄液膜厚度和热边界层大大减小从而强化了对流换热;同时液滴的非正对连续撞击使气泡提前脱离壁面,减小了壁面干烧面积,强化了换热。
     另外,学者们并不满足于多喷嘴喷雾冷却目前的散热能力,正在寻求有效的方法强化换热能力。将壁面微结构和多喷嘴喷雾冷却相结合就是一种新方法。本文实验研究了多种尺寸和形状的微结构表面下,多喷嘴喷雾冷却换热效果和壁面温度分布均匀性,得到了不同工况下各微结构表面的换热特性曲线、壁面换热系数和温度分布,并与平板固体壁面实验结果进行了对比,揭示微结构表面强化换热的机理,在此基础上提出了表征微结构表面强化换热的无量纲数。
With the continuous improvement of cooling technology requirements of the industry, the spray cooling emerges as the times require. In the past30years, domestic and foreign scholars focus more on the experimental study on the influence factors of single nozzle spray cooling. In recent years, due to the more uniform temperature distribution and higher heat flux, experimental study on multi nozzle spray cooling increases. The experimental studies on the effects of the nozzle number and injection parameters on the atomization and heat transfer characteristics are a lot, but the overall theoretical research combined jet and wall heat transfer is less, and the understanding of heat transfer enhancement is not clear.
     This paper studied atomization and heat transfer characteristics with different nozzle numbers and working conditions using commercial software, obtained the effects of the wall superheat, inlet pressure, inlet flow rate, nozzle height, nozzle number on the heat flux, reveals the atomization characteristics of multi nozzle spray cooling under different conditions, and provides reliable data for optimization of multi nozzle spray cooling and the study of heat transfer enhancement mechanism. The simulation result shows that the optimal injection height corresponding to the value when the spray directly impact zone cuts the heated surface. With the increasing of the nozzle number, averaged heat flux increases, but the increase in reducing. In this paper, the optimal nozzle number is eight.
     Spray cooling process will form a layer of thin film on the wall surface, thin liquid film in the complex flow and heat transfer process directly affect the final effect of heat transfer. In order to obtain the detailed liquid flow and heat transfer in thin liquid film. This paper uses a high-speed camera and microscope image capturing system to observe the formation and flow of multi nozzle spray cooling film layer, uses image gray value matrix to conduct quantitative analysis of the forming process, studies the film thickness and the fluctuation characteristics of liquid film under different conditions, analyzes the influence of bubble deformation on the local film thickness. The experimental results showed that with the increase of the Weber number, the dimensionless averaged film thickness has decreased, the surface wavelength and amplitude was decreased. With the increase of the surface temperature, the dimensionless film thickness increased rapidly at first, and then slowly change, and finally increased, thin film surface wavelength and amplitude had no obvious change. The local film thickness in bubble growth and rising process is thicker than that in the bubble formation and accumulation process. First discovered in different temperature, there is a local film thickness peak in the film forming process. At the same time, this paper studies the thin liquid film flow field and temperature field by numerical method. The mathematical model of gas-liquid two-phase flow, using the VOF method to capture the gas liquid interface, was used to study the deformation of bubbles and heat transfer characteristics of thin film. We analysed the heat transfer enhancement mechanism of the continuous subcooled droplets impacting on thin film and the influence of droplet parameters on bubble deformation, obtained the variation law of thin film thermal boundary layer and the bubble deformation under different conditions. The results show that the droplet impact makes the thicknesses of thin liquid film and thermal boundary layer are greatly reduced,the subcooled droplets reduces the temperature difference nearby the wall, both of which enhance convection. The initial droplet position and continuous impact makes the bubble detached from the wall ealier, and decreases the dry area of the wall.
     In addition, people are not satisfied with the spray cooling capacity at present, are seeking effective methods to enhance the spray cooling heat transfer. Combined the multi nozzle spray cooling and micro-structured surface is a new type of heat transfer enhancement technique. In order to study this method, with smooth surface as reference, this paper investigated the heat transfer enhancement and temperature distribution uniformity of micro-sturctrued surface with different sizes and shapes experimentally, obtained the heat transfer characteristic curves of the micro-structured surfaces, heat transfer coefficient and the temperature distribution under different conditions. A dimensionless number was proposed to characterize the heat transfer enhancement of micro-structured surfaces.
引文
[1]刘益才,电子芯片冷却技术发展综述,电子器件,29(2006)5.
    [2]马永锡,张红,电子器件发热与冷却技术,化工进展,25(2006)5.
    [3]王长宏,朱冬生,电子封装热管理的热电冷却技术研究进展,电子元件与材料,27(2008)4.
    [4]朱冬生,雷俊禧,王长宏,胡韩莹,电子元器件热电冷却技术研究进展,微电子学,39(2009)7.
    [5]张德君,杨志刚,孙晓峰,计算机芯片冷却技术的现状与发展,机械设计与制造,3(2008)3.
    [6]赵晓军,余莉,热管的电子设备冷却技术,世界科技研究与发展,29(2007)5.
    [7]岳挺,微电子器件冷却技术概说与进展,科技论坛,(2009)3.
    [8]宗朝晖,现代电力电子的冷却技术,变流技术与电力牵引,4(2007)7.
    [9]李腾,刘静,芯片冷却技术的最新研究进展及其评价,制冷学报,3(2004)11.
    [10]云和明,李真,陈宝明,微小空间电子器件散热研究,山东建筑工程学院学报,19(2004)5.
    [11]I. Mudawar, N. Mascarenhas, Analytical and computational methodology for modeling spray quenching of solid alloy cylinders, International Journal of Heat and Mass Transfer,53 (2010) 5871-5883.
    [12]安庆龙,傅玉灿,徐九华,郑菡菲,低温气动喷雾射流冲击冷却技术在钛合金磨削中
    的应用,中国机械工程,17(2006)4.
    [13]陈乃录,潘键生,廖波,淬火冷却技术的研究进展,热处理,19(2004)6.
    [14]周棣华,李莉,张方,张希俊,符龙,陈秋林,大型铸件强制冷却技术的应用前景及展望,铸造技术,31(2010)3.
    [15]辜蕾钢,徐文章,冷轧带钢连续退火冷却技术及建设的连续退火机组,钢铁技术,5(2007)6.
    [16]刘细芬,蔡晓辉,王国栋,刘相华,中厚板轧后控制冷却技术的发展概况,钢铁研究,1(2002)4.
    [17]林恒,章博,秦勤,臧勇,转炉炉体汽雾冷却技术,冶金设备,129(2001)3.
    [18]陈建业,大功率电力电子装置冷却系统的原理与应用,国际电力,6(2002)5.
    [19]陶毓伽,淮秀兰,李志刚,蔡军,大功率固体激光器冷却技术进展,激光杂志,28(2007)2.
    [20]周乐平,唐大伟,杜小泽,杨勇平,刘登瀛,大功率激光武器及其冷却系统,激光武器,44(2007)5.
    [21]田长青,徐洪波,曹宏章,司春强,高功率固体激光器冷却技术,中国激光,36(2009)7.
    [22]司春强,邵双全,田长青,徐洪波,高功率固体激光器喷雾冷却技术_,强激光与粒子束,22(2010)6.
    [23]刘一兵,电子设备散热技术研究,电子工艺技术,28(2007)286-289.
    [24]周琴,热表面脉冲式喷雾冷却的实验研究,硕士毕业论文,(2007).
    [25]J. Yang, L.C. Chow, M.R. Pais, Nucleate boiling heat transfer in spray cooling, Journal of Heat Transfer-Transactions of the Asme,118 (1996) 668-671.
    [26]S.G Kandlikar, A.V. Bapat, Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal, Heat Transfer Engineering,28 (2007) 911-923.
    [27]G Pautsch, An Overview on the System Packaging of the CRAY SV2 Supercomputer, Advances in Electronic Packaging; Thermal Management Reliability,2 (2001) 8.
    [28]S.C.Y. S., N. Deb, Hammouda, Impacting spray boiling for thermal control of electronic systems, proceedings of the Proceedings of the National Heat Transfer Conference, Htd-Vo1111 ASME, New York, F,, (1989).
    [29]I. Mudawar, K.A. Estes, Optimizing and predicting CHF in spray cooling of a square surface, Journal of Heat Transfer-Transactions of the Asme,118 (1996) 672-679.
    [30]M.R.O. Panao, A.L.N. Moreira, D.F.G Durao, Thermal-fluid assessment of multijet atomization for spray cooling applications, Energy,36 (2011) 2302-2311.
    [31]J.R. Rybicki, I. Mudawar, Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays, International Journal of Heat and Mass Transfer, 49 (2006) 5-16.
    [32]M.A. Kedzierski, R134a/Al2O3 Nanolubricant Mixture Pool Boiling on a Rectangular Finned Surface, Journal of Heat Transfer-Transactions of the Asme,134 (2012).
    [33]S.D. Park, S.W. Lee, S. Kang, S.M. Kim, I.C. Bang, Pool boiling CHF enhancement by graphene-oxide nanofluid under nuclear coolant chemical environments, Nuclear Engineering and Design,252 (2012) 184-191.
    [34]L.-H. Chien, R.L. Webb, A Parametric Study of Nucleate Boiling on Structured Surfaces, Part I:Effect of Tunnel Dimensions, Journal of heat transfer,120 (1998) 1042-1048.
    [35]P.M. Ming, Y.J. Li, S.Q. Wang, S.Z. Li, X.H. Li, Microstructure and properties of nickel prepared by electrolyte vacuum boiling electrodeposition, Surface & Coatings Technology,213 (2012) 299-306.
    [36]S.J. Penley, R.A. Wirtz, Mechanistic Study of Subatmospheric Pressure, Subcooled, Flow Boiling of Water on Structured-Porous Surfaces, Journal of Heat Transfer-Transactions of the Asme,134 (2012).
    [37]Y. J, P. M, C. L, Critical heat flux limits in secondary gas atomized liquid spray cooling, Experimental Heat Transfer,6 (1993).
    [38]T.A. Shedd, A.G Pautsch, Spray impingement cooling with single-and multiple-nozzle arrays. Part II:Visualization and empirical models, International Journal of Heat and Mass Transfer,48 (2005) 3176-3184.
    [39]B. Horacek, K.T. Kiger, J. Kim, Single nozzle spray cooling heat transfer mechanisms, International Journal of Heat and Mass Transfer,48 (2005) 1425-1438.
    [40]钟听,刘秀芳,赵红利,侯予,无沸腾喷雾冷却技术的研究进展,制冷技术,39(2011)5.
    [41]钟昕,刘秀芳,赵红利,胡伟,侯予,相变喷雾冷却技术的研究进展,低温工程,2(2011)5.
    [42]A.G. Pautsch, T.A. Shedd, Adiabatic and diabatic measurements of the liquid film thickness during spray cooling with FC-72, International Journal of Heat and Mass Transfer,49 (2006) 2610-2618.
    [43]E. Martinez-Galvan, R. Anton, J.C. Ramos, R. Khodabandeh, Influence of surface roughness on a spray cooling system with R134a. Part I:Heat transfer measurements, Experimental Thermal and Fluid Science,46 (2013) 183-190.
    [44]J. Li, Spray evaporative cooling in high heat flux electronics, Master's thesis, University of Minnesota, August 2000.
    [45]赵锐,程文龙,刘期聂,喷雾冷却的数值模拟研究,中国工程热物理学会2008年传 热传质学学术会议,郑州:2008.
    [46]D.R. Webb, C.B. Panchal, I. Coward, The Significance of Multicomponent Diffusional Interactions in the Process of Condensation in the Presence of a Non Condensable Gas, Chemical Engineering Science,36 (1981) 87-95.
    [47]M.H. Liu, Y.Q. Wang, D. Liu, K. Xu, Y.L. Chen, Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime, Experimental Thermal and Fluid Science,34 (2010) 933-942.
    [48]Y.B. Tan, J.L. Xie, F. Duan, T.N. Wong, K.C. Toh, K.F. Choo, P.K. Chan, Y.S. Chua, Multi-nozzle spray cooling for high heat flux applications in a closed loop system, Applied Thermal Engineering,54 (2013) 372-379.
    [49]R. Mesler, Surface-Roughness and Its Effects on the Heat-Transfer Mechanism of Spray Cooling, Journal of Heat Transfer-Transactions of the Asme,115 (1993) 1083-1083.
    [50]M.R. Pais, L.C. Chow, E.T. Mahefkey, Surface-Roughness and Its Effects on the Heat-Transfer Mechanism of Spray Cooling-Disclosure, Journal of Heat Transfer-Transactions of the Asme,115 (1993) 1083-1085.
    [51]J. Kim, B. Abbasi, A. Marshall, Dynamic pressure based prediction of spray cooling heat transfer coefficients, International Journal of Multiphase Flow,36 (2010) 491-502.
    [52]J. Kim, B. Abbasi, American, Development of a General Dynamic Pressure Based Single-Phase Spray Cooling Heat Transfer Correlation, Journal of Heat Transfer-Transactions of the Asme,133(2011).
    [53]P. MR, T. D, C. LC, High heat flux, low superheat evaporative spray cooling, In: Proceedings of the 27th AIAA aerospace sciences meeting, (1989).
    [54]D.P. Rini, R.-H. Chen, L.C. Chow, Bubble Behavior and Nucleate Boiling Heat Transfer in Saturated FC-72 Spray Cooling, Journal of heat transfer,124 (2002) 63-72.
    [55]C.Q. Si, S.Q. Shao, C.Q. Tian, H.B. Xu, Development and experimental investigation of a novel spray cooling system integrated in refrigeration circuit, Applied Thermal Engineering, 33-34 (2012) 246-252.
    [56]V.D. Rao, V.M. Krishna, K.V. Sharma, P.V.J.M. Rao, Convective condensation of vapor in the presence of a non-condensable gas of high concentration in laminar flow in a vertical pipe, International Journal of Heat and Mass Transfer,51 (2008) 6090-6101.
    [57]P.A. Bradley, L.R. Cander, I. Kutiev, R. Hanbaba, Prime (COST 238) studies of ionospheric storm effects, Quantitative Description of Ionospheric Storm Effects and Irregularities,20 (1997) 1669-1678.
    [58]W. P., Long range intermolecular forces in change of phase heat transfer, ASME, (1999).
    [59]D. F., K. J., Microscale heat transfer measurement during pool boiling of FC-72:effect of subcooling International Journal of Heat and Mass Transfer,47 (2004) 3257-3268.
    [60]J.G. Myers, V.K. Yerramilli, S.W. Hussey, G.F. Yee, J. Kim, Time and space resolved wall temperature and heat flux measurements during nucleate boiling with constant heat flux boundary conditions, International Journal of Heat and Mass Transfer,48 (2005) 2429-2442.
    [61]T.A. Shedd, Next generation spray cooling:High heat flux management in compact spaces, Heat Transfer Engineering,28 (2007) 87-92.
    [62]M. Mitic, L.R. Cander, Ionospheric variability over Grocka during low solar activity conditions, Journal of Atmospheric and Solar-Terrestrial Physics,70 (2008) 1879-1884.
    [63]王亚青,刘明侯,刘.东,徐.侃,何国梁,喷雾冷却中散热面温度对无沸腾区换热特性的影响_,中国激光,37(2010)6.
    [64]N. Karwa, S.R. Kale, P.M.V. Subbarao, Experimental study of non-boiling heat transfer from a horizontal surface by water sprays, Experimental Thermal and Fluid Science,32 (2007) 571-579.
    [65]M.L. Corradini, Condensation on a Wall in the Presence of Non-Condensable Gas, Transactions of the American Nuclear Society,43 (1982) 484-486.
    [66]B. Abbasi, J. Kim, A. Marshall, Dynamic pressure based prediction of spray cooling heat transfer coefficients, International Journal of Multiphase Flow,36 (2010) 491-502.
    [67]N. Basu, GR. Warrier, V.K. Dhir, Onset of nucleate boiling and avtive nucleation site density during subcooled flow boiling, Journal of heat transfer,124 (2002) 717-728.
    [68]安珍彩,雷树业等,雾化喷射下的波动液膜的电测量,工程热物理学报,25(2004)121-123.
    [69]E. Martinez-Galvan, J.C. Ramos, R. Anton, R. Khodabandeh, Film Thickness and Heat Transfer Measurements in a Spray Cooling System With R134a, Journal of Electronic Packaging,133(2011).
    [70]J. Schwarzkopf, G Sovar, C. T, O. K, L. BQ, R. B, Effect of spray angle in spray cooling thermal management of electronics, ASME heat transfer/fluids engineering summer conference, (2004).
    [71]E.A. Silka, J. Kimb, K. Kigerb, Spray cooling of enhanced surfaces:Impact of structured surface geometry and spray axis inclination, International Journal of Heat and Mass Transfer, 49(2006)4910-4920.
    [72]I. Mudawar, M. Visaria, Theoretical and experimental study of the effects of spray inclination on two-phases spray cooling and critical heat flux, International Journal of Heat and Mass Transfer,51 (2008) 2398-2410.
    [73]W.L. Cheng, Q.N. Liu, R. Zhao, H.L. Fan, Experimental investigation of parameters effect on heat transfer of spray cooling, Heat and Mass Transfer,46 (2010) 911-921.
    [74]A.G.U. de Souza, J.R. Barbosa, Spray cooling of plain and copper-foam enhanced surfaces, Experimental Thermal and Fluid Science,39 (2012) 198-206.
    [75]K.A. Estes, I. Mudawar, Correlation of Sauter Mean Diameter and Critical Heat-Flux for Spray Cooling of Small Surfaces, International Journal of Heat and Mass Transfer,38 (1995) 2985-2996.
    [76]C.H. Amon, S.C. Yao, C.F. Wu, C.C. Hsieh, Microelectromechanical system-based evaporative thermal management of high heat flux electronics, Journal of Heat Transfer-Transactions of the Asme,127 (2005) 66-75.
    [77]T.N. Wong, Z.B. Yan, K.C. Toh, F. Duan, K.F. Choo, P.K. Chan, Y.S. Chua, Experimental study of impingement spray cooling for high power devices, Applied Thermal Engineering,30 (2010) 1225-1230.
    [78]T. Elperin, A. Fominykh, B. Krasovitov, Simultaneous heat and mass transfer during evaporation/condensation on the surface of a stagnant droplet in the presence of inert admixtures containing non-condensable solvable gas, HT2005:Proceedings of the ASME Summer Heat Transfer Conference 2005, Vol 2, (2005) 499-506.
    [79]N. Sozbir, Y.W. Chang, S.C. Yao, Heat transfer of impacting water mist on high temperature metal surfaces, Journal of Heat Transfer-Transactions of the Asme,125 (2003) 70-74.
    [80]Y. Hou, X.F. Liu, J.H. Liu, M.J. Li, L. Pu, Experimental study on phase change spray cooling, Experimental Thermal and Fluid Science,46 (2013) 84-88.
    [81]J.L. Xie, R. Zhao, F. Duan, T.N. Wong, Thin liquid film flow and heat transfer under spray impingement, Applied Thermal Engineering,48 (2012) 342-348.
    [82]L. Lin, R. Ponnappan, Heat transfer characteristics of spray cooling in a closed loop, International Journal of Heat and Mass Transfer,46 (2003) 3737-3746.
    [83]S.J. Jiang, V.K. Dhir, Spray cooling in a closed system with different fractions of non-condensibles in the environment, International Journal of Heat and Mass Transfer,47 (2004) 5391-5406.
    [84]T. Gambaryan-Roisman, O. Kyriopoulos, I. Roisman, P. Stephan, C. Tropea, Gravity Effect on Spray Impact and Spray Cooling, Microgravity Science and Technology,19 (2007) 151-154.
    [85]C.A. Hunnell, J.M. Kuhlman, D.D. Gray, Spray cooling in terrestrial and simulated reduced gravity, Space Technology and Applications International Forum-STAIF 2006,813 (2006) 126-133.
    [86]K. Yoshida, Y. Abe, T. Oka, Y.H. Mori, A. Nagashima, Spray cooling under reduced gravity condition, Journal of Heat Transfer-Transactions of the Asme,123 (2001) 309-318.
    [87]S.J. Thiagarajan, S. Narumanchi, R.G Yang, Effect of flow rate and subcooling on spray heat transfer on microporous copper surfaces, International Journal of Heat and Mass Transfer, 69 (2014) 493-505.
    [88]W. Cui, S. Chandra, S. McCahan, The effect of dissolving salts in water sprays used for quenching a hot surface:Part 2-Spray cooling, Journal of Heat Transfer-Transactions of the Asme,125 (2003) 333-338. [89] W. Jia, H.H. Qiu, Experimental investigation of droplet dynamics and heat transfer in spray cooling, Experimental Thermal and Fluid Science,27 (2003) 829-838.
    [90]A.G. Pautsch, T.A. Shedd, Spray impingement cooling with single-and multiple-nozzle arrays. Part I:Heat transfer data using FC-72, International Journal of Heat and Mass Transfer, 48(2005)3167-3175.
    [91]M.R.O. Panao, J.P.P.V. Guerreiro, A.L.N. Moreira, Microprocessor cooling based on an intermittent multijet spray system, International Journal of Heat and Mass Transfer,55 (2012) 2854-2863.
    [92]S. Kondaraju, J.S. Lee, Hybrid turbulence modeling of liquid spray impingement on a heated wall with arbitrary Lagrangian Eulerian method, Numerical Heat Transfer Part a-Applications,52 (2007) 1059-1079.
    [93]R.H. Pereira, S.L. Braga, J.A.R. Parise, Single phase cooling of large surfaces with square arrays of impinging water sprays, Applied Thermal Engineering,36 (2012) 161-170.
    [94]O.C. EW, Z. JJ, C. NF, F. MJ, Orbiter flash evaporator:flight experience and improvements, In:International conference on environmental systems, (1997) 14-17.
    [95]N. JR, W. F, Y. J, Challenges in the Development of the orbiter active thermal control subsystem, In:NASA Johnson Space Center Space Shuttle technical conference proceedings, (1985)450-464.
    [96]M.R. Pais, L.C. Chow, E.T. Mahefkey, Surface-Roughness and Its Effects on the Heat-Transfer Mechanism in Spray Cooling, Journal of Heat Transfer-Transactions of the Asme, 114(1992)211-219.
    [97]M.S. Sehmbey, L.C. Chow, O.J. Hahn, M.R. Pais, Effect of Spray Characteristics on Spray Cooling with Liquid Nitrogen, Journal of Thermal and Heat Transfer,9 (1995) 757-765.
    [98]J.H. Kim, S.M. You, S.U.S. Choi, Evaporative spray cooling of plain and microporous coated surfaces, International Journal of Heat and Mass Transfer,47 (2004) 3307-3315.
    [99]C.C. Hsieh, S.C. Yao, Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces, International Journal of Heat and Mass Transfer,49 (2006) 962-974.
    [100]P. Stephan, C. Sodtke, Spray cooling on micro structured surfaces, International Journal of Heat and Mass Transfer,50 (2007) 4089-4097.
    [101]S. EA, K. J, K. K, Enhanced surface spray cooling with embedded and compound extended surface structures., In:Tenth intersociety conference on thermal and thermomechanical phenomena in electronic systems, (2006).
    [102]H. Bostanci, D.P. Rini, J.P. Kizito, L.C. Chow, Spray Cooling With Ammonia on Microstructured Surfaces:Performance Enhancement and Hysteresis Effect, Journal of Heat Transfer-Transactions of the Asme,131 (2009).
    [103]H. Bostanci, D.P. Rini, J.P. Kizito, V. Singh, S. Seal, L.C. Chow, High heat flux spray cooling with ammonia:Investigation of enhanced surfaces for CHF, International Journal of Heat and Mass Transfer,55 (2012) 3849-3856.
    [104]J.S. Coursey, J.G. Kim, K.T. Kiger, Spray cooling of high aspect ratio open microchannels, Journal of Heat Transfer-Transactions of the Asme,129 (2007) 1052-1059.
    [105]A.S. Moita, A.L.N. Moreira, Scaling the effects of surface topography in the secondary atomization resulting from droplet/wall interactions, Experiments in Fluids,52 (2012) 679-695.
    [106]M.S. Hanchak, L.W. Byrd, A.M. Briones, J.S. Ervin, S.A. Putnam, Model of Droplet Impingement Based on Least-Squares Solution of Proper Orthogonal Decomposition Basis Matrices, Journal of Fluids Engineering-Transactions of the Asme,134 (2012).
    [107]陈萍萍,VOF运动界面的重构的体积分数保持法.
    [108]L. Wang, X. Huai, Y. Tao, Flow and Heat Transfer of Micro-Droplet Impact on Thin Liquid Film During Spray Cooling, Journal of Engineering Thermophysics,31 (2010) 987-990.
    [109]N. Nikolopoulos, A. Theodorakakos, G. Bergeles, Three-dimensional numerical investigation of a droplet impinging normally onto a wall film, Journal of Computational Physics,225 (2007) 322-341.
    [110]M.F. Trujillo, S.R. Lewis, Thermal boundary layer analysis corresponding to droplet train impingement, Physics of Fluids,24 (2012).
    [111]A. Kumar, S. Gu, S. Kamnis, Simulation of impact of a hollow droplet on a flat surface, Applied Physics a-Materials Science & Processing,109 (2012) 101-109.
    [112]A. Kumar, S. Gu, Modelling impingement of hollow metal droplets onto a flat surface, International Journal of Heat and Fluid Flow,37 (2012) 189-195.
    [113]P. Pournaderi, A.R. Pishevar, A numerical investigation of droplet impact on a heated wall in the film boiling regime, Heat and Mass Transfer,48 (2012) 1525-1538.
    [114]R.P. Selvam, L.C. Lin, R. Ponnappan, Computational modeling of spray cooling:Current status and future challenges, Space Technology and Applications International Forum-Staif 2005,746 (2005) 55-63.
    [115]R.P. Selvam, L.C. Lin, R. Ponnappan, Direct simulation of spray cooling:Effect of vapor bubble growth and liquid droplet impact on heat transfer, International Journal of Heat and Mass Transfer,49 (2006) 4265-4278.
    [116]S. Sarkar, R.P. Selvam, Direct Numerical Simulation of Heat Transfer in Spray Cooling Through 3D Multiphase Flow Modeling Using Parallel Computing, Journal of Heat Transfer-Transactions of the Asme,131 (2009).
    [117]W.L. Cheng, F.Y. Han, Q.N. Liu, R. Zhao, H.L. Fan, Experimental and theoretical investigation of surface temperature non-uniformity of spray cooling, Energy,36 (2011) 249-257.
    [118]R.J. Issa, S.C.Yao, Numerical Model for Spray-Wall Impaction and Heat Transfer at Atmospheric Conditions, Journal of Thermalphysics and Heat Transfer,19 (2005) 441-447.
    [119]G.M. Haas, A.P. Wemhoff, Thermophysical Phenomena Associated With Nano-Droplet Impingement on a Solid Surface, Journal of Heat Transfer-Transactions of the Asme,134 (2012).
    [120]R.H. Chen, L.C. Chow, J.E. Navedo, Effects of spray characteristics on critical heat flux in subcooled water spray cooling, International Journal of Heat and Mass Transfer,45 (2002) 4033-4043.
    [121]K.A.E.a.I. Mudawar, Correlation of Sauter mean diameter and critical heat flux for spray cooling of small surfaces, International Journal of Heat and Mass Transfer,38 (1995) 2985-2996.
    [122]Y.J. Tao, X.L. Huai, L. Wang, Z.X. Guo, Experimental characterization of heat transfer in non-boiling spray cooling with two nozzles, Applied Thermal Engineering,31 (2011) 1790-1797.
    [123]S.S. Hsieh, T.C. Fan, H.H. Tsai, Spray cooling characteristics of water and R-134a. Part II: transient cooling, International Journal of Heat and Mass Transfer,47 (2004) 5713-5724.
    [124]T.A. Shedd, T.A. Newell, Characteristics of the liquid film and pressure drop in horizontal, annular, two-phase flow through round, square and triangular tubes, Journal of Fluids Engineering-Transactions of the Asme,126 (2004) 807-817.
    [125]E.A. Silk, E.L. Golliher, R.P. Selvam, Spray cooling heat transfer:Technology overview and assessment of future challenges for micro-gravity application, Energy Conversion and Management,49 (2008) 453-468.
    [126]X. Lv, Q.P. Zou, D. Reeve, Numerical simulation of overflow at vertical weirs using a hybrid level set/VOF method, Advances in Water Resources,34 (2011) 1320-1334.
    [127]R.P. Selvam, R. Ponnappan, Numerical moddeling of nucleation boiling in thin film and effect of droplet impact,15th Annual Thermal & Fluids Analysis Workshop, (2004).
    [128]M.F. Trujillo, J. Alvarado, E. Gehring, G.S. Soriano, Numerical Simulations and Experimental Characterization of Heat Transfer From a Periodic Impingement of Droplets, Journal of Heat Transfer-Transactions of the Asme,133 (2011).
    [129]端木玉,朱仁庆,流体体积方程的求解方法,江苏科技大学学报,21(2007)6.
    [130]R.L. Vander Wal, G.M. Berger, S.D. Mozes, Droplets splashing upon films of the same fluid of various depths, Experiments in Fluids,40 (2006) 33-52.
    [131]L.H. Chien, C.Y. Chang, An experimental study of two-phase multiple jet cooling on finned surfaces using a dielectric fluid, Applied Thermal Engineering,31 (2011) 1983-1993.
    [132]Z. Zhang, J. Li, P.X. Jiang, Experimental investigation of spray cooling on flat and enhanced surfaces, Applied Thermal Engineering,51 (2013) 102-111.
    [133]J.H. Kim, Spray cooling heat transfer:The state of the art, International Journal of Heat and Fluid Flow,28 (2007) 753-767.