高倍聚光光伏光热综合利用系统的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能以其清洁、可再生和利用广泛等特点备受瞩目,成为了传统化石能源的替代能源之一。作为太阳能重要利用形式之一的光伏发电技术也已经引起了世界各国的广泛关注。而聚光光伏发电技术通过采用聚光器提高光伏组件表面的能流密度,可以大幅度减少昂贵光伏电池的面积,是提高系统效率、降低系统发电成本的有效途径。
     针对聚光光伏发电系统能流密度分布不均匀以及光伏组件温度过高等问题,从提高太阳能利用率及降低系统成本的角度出发,结合聚光太阳能光伏发电技术和太阳能光电光热综合利用的思想,本文提出了高倍聚光光伏光电光热综合利用系统,对反射型和折射型两种高倍聚光发电系统分别进行了强制水冷换热设计研究。系统在输出电能的同时对产生的余热进行收集利用,在提高光伏电池光电转换效率的同时还能获得额外的热能收益,大大提高了系统的太阳能综合利用效率。对于两种不同形式的高倍聚光光伏发电供热(HCPV/T)系统,分别建立了相应的动态数学模型以及相应的实验测试平台,通过数值模拟和实验研究相结合的方法,对不同聚光比、不同质量流量以及不同环境参数条件下系统光伏电池的输出特性、聚光光斑能流密度分布的均匀性、系统光电转换和系统光热转换的耦合关系等进行了深入的研究。
     本文的主要研究内容主要包括以下几个方面:
     建立了旋转抛物面式高倍聚光器的光学模型,根据系统聚光比及太阳影像等光学理论对该聚光器的聚光焦距、采光面积等进行了理论设计。在此基础上,针对其聚光光斑不均匀的缺点,分别采用化整为零的思想提出了多碟共焦式高倍聚光器;以及通过平面镜分段逐步逼近抛物面的方法,提出了平面镜阵列取代连续曲面的聚光方式。通过相应的理论分析研究,分别搭建了多碟共焦式高倍聚光器实验平台和平面镜阵列高倍聚光器实验平台,并对两者的聚光能流密度分布进行了实验研究。结果表明平面镜阵列高倍聚光器能从根本上解决聚光不均匀的问题。且系统部件不仅加工安装难度小、成本低、稳定性及抗风性能好;而且该系统的聚光比可调节,适用于各种聚光比需求的聚光光伏发电系统。
     结合平面镜阵列高倍聚光器和CPV/T模块,建立HCPV/T系统的动态数学模型,研究高热流密度下光伏电池与基板、基板与换热器的结构设计,并对模型中光伏基板、换热器以及内部的冷却水沿水流方向的温度分布进行了理论模拟,给出了系统热效率、电效率及光电光热综合效率的计算方法。结合光敏跟踪和视日程序跟踪方法,设计并研制了系统所需的双轴跟踪系统。
     搭建了平面镜阵列HCPV/T系统实验测试平台,对系统的关键温度参数、热效率、电效率以及光电光热综合效率进行了实验测试以及结果分析。同时深入探讨了不同聚光比、不同质量流量以及不同环境参数等对系统热电性能的影响。实验结果表明,该HCPV/T系统具有良好的光电光热性能,光电效率可达22%,热效率可达47%,光电光热综合效率能够达到70%左右。同时本文还对该平面镜阵列系统的CPV/T模块电输出性能的温度系数作了实验与理论分析。
     提出了菲涅尔水冷散热HCPV/T系统,并对该系统模型进行了理论研究,对其子部件菲涅尔棱镜的设计及光学性能进行了理论分析。建立了包含系统热模型及电模型在内的菲涅尔水冷系统动态模型。建立了标准状态下的单二极管五参数模型,讨论了五参数的求解方法,给出了不同温度及辐照情况下的性能变化方程。提供了较为准确的赋初值方法,并给出了系统电模型及热模型的程序设计流程及相关实现步骤。
     对传统菲涅尔高倍发电阵列系统的光伏设计及相关散热翅片进行了介绍,在此基础上提出了菲涅尔水冷散热高倍聚光发电供热系统。对菲涅尔聚光发电系统的水冷模块进行了试制,并将其取代常规的散热翅片,形成菲涅尔水冷聚光模块,同时搭建了系统实验测试平台。对比了基于水冷模块的菲涅尔HCPV/T与基于铝制翅片风冷型的HCPV模组的性能。菲涅尔HCPV/T系统的瞬态热效率为49.3%,电效率为26.5%,系统的综合效率将高达75.8%。在整个实验测试期间HCPV/T模组的平均热效率可达46.8%。为了更深入地研究菲涅尔HCPV/T系统的光电转换、光热转换及光电光热复合利用的性能,将所测实验数据与理论模拟进行对比分析,同时对系统光伏电池光电转化效率的温度系数、不同进口水温下的系统性能进行了理论研究。
As one of the substitutes of traditional fossil energy, solar energy is clean, renewable and widely used. Photovoltaic technology, one of the important utilization patterns of solar energy, is worldwidely concerned. Concentrating photovoltaic technology uses the concentrator to improve surface energy density of PV module and reduce the necessary area of expensive photovoltaic cells. Therefore, it is an effective way to improve system efficiency and reduce system costs.
     Concerning the problem of uneven distribution of energy flux density in concentrating photovoltaic system and overtemperature of PV module, aiming to improve solar energy utilization efficiency and reduce system costs, this paper proposes a high concentration photovoltaic/thermal system, meanwhile designs and studies two high concentration photovoltaic/thermal systems (HCPV/T) of reflection and refraction with forced cooling device, by combining solar photovoltaic technology and photovoltaic/thermal technology. The systems collect waste heat besides electrical output, which improves photovoltaic efficiency and gains additional heat to improve overall efficiency of the system greatly. For the two HCPV/T systems, this paper establishes corresponding dynamic mathematical models and experimental test rigs, conducts intensive study on output characteristic of the photovoltaic cells, uniformity of energy flux density distribution and coupling relationship of photovoltaic and thermal features of the system under different concentration ratio, mass flow rate and other environment parameters by combining numerical simulation and experimental study.
     The main contents of this paper include the following aspects:
     Firstly, this paper establishes optical model of parabolic high-concentration concentrator, theoretically designs the focal length and area of the concentrator, according to optical theories such as concentration and solar image. To solve the problem of uniformity, this paper proposes multi-disc focal concentrator of high concentration ratio using a modular approach, and proposes the concentrating mode of replacing the continuous surface with plane mirror array. According to corresponding theoretical analysis, this paper builds a parabolic concentration system and a plane mirror array concentration system, and experimentally studied the energy flux density distribution. The result shows that the plane mirror concentration system fundamentally solves the problem of uniformity, and the system components are easily installed, low-cost, stable and of good wind resistance, while its concentration ratio is adjustable and the system can be applied to concentrating photovoltaic system of various concentration ratio.
     Secondly, combining high concentration ratio concentrator with plane mirror array and CPV/T module, this paper establishes a dynamic mathematical model and studies the design of the cells, the substrate and the heat exchanger under high energy flux. Moreover, this paper theoretically simulates temperature distribution of PV substrate, the heat exchanger and the cooling water along the flow direction, and calculates system thermal efficiency, electrical efficiency and overall efficiency. Additionally, this paper designs and studies a dual-axis tracking system according to photosensitive tracking and mechanical tracking program.
     Thirdly, this paper builds a HCPV/T system of plane mirror array, tests and calculates key temperature parameters, thermal efficiency, electrical efficiency, and overall efficiency of the system, while deeply analyses the influence of different concentration ratios, mass flow rates and environment parameters on the thermal and electrical efficiency of the system. Experimental results show that the HCPV/T system has good thermal and electrical performance, with electrical efficiency of22%, thermal efficiency of47%, and overall efficiency of about70%. Also, this paper experimentally and theoretically studies temperature coefficient of CPV/T module's electrical output.
     Fourthly, this paper proposes a Fresnel HCPV/T system of water cooling device, and theoretically studies the system, analyses design and optical performance of the Fresnel prism. Dynamic model of the Fresnel cooling system is established, including system thermal model and electrical model. This paper also establishes the single diode five parameter model under standard conditions, discusses the solving method of five parameters, and gives the performance change equation at different temperatures and different irradiation conditions, while providing relatively accurate initial value method, and giving the program process of the thermal and electrical model of the system.
     Fifthly, this paper introduces traditional high concentration system with Fresnel array and related cooling fins, and proposes Fresnel HCPV/T system of water cooling module. Water cooling module of the Fresnel HCPV/T system is produced and replaces traditional cooling fins to form Fresnel water cooling module, and a test rig based on it is built. The experiment compares the performance of the Fresnel HCPV/T system with water cooling device and HCPV module based on air-cooled aluminum fins. Transient thermal efficiency of the Fresnel HCPV/T system can reach49.3%, electrical efficiency is26.5%, and overall efficiency of the system can be up to75.8%. The average thermal efficiency of the HCPV/T module can reach46.8%throughout the experiment. To intensively study thermal efficiency, electrical efficiency, and overall efficiency of the HCPV/T system, the experimental data and the simulation results are compared, while temperature coefficient of electrical efficiency of the system, performance under different inlet water temperature are studied.
引文
[1]崔民选,王俊生,陈义和.中国能源发展报告(2013)[M].北京:社会科学文献出版社,2013.
    [2]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年)[M].2006.
    [3]赵争鸣.太阳能光伏发电及其应用[M].科学出版社,2005.
    [4]中国气象局太阳能风能资源中心[EB/OL]. http://cwera.cma.gov.cn.
    [5]Kalogirou S. The potential of solar industrial process heat applications[J]. Applied Energy, 2003,76(4):337-361.
    [6]李俊峰.2013中国光伏发展报告[M].2013.
    [7]Russell T, Beall J, Loferski J, et al. Combined photovoltaic/thermal collector panels of improved design[C].15th Photovoltaic Specialists Conference,1981:990-996.
    [8]Bergene T, Lovvik O M. Model calculations on a flat-plate solar heat collector with integrated solar cells[J]. Solar Energy,1995,55(6):453-462.
    [9]Platz R, Fischer D, Zufferey M-A, et al. Hybrid collectors using thin-film technology[C]. Photovoltaic Specialists Conference,1997., Conference Record of the Twenty-Sixth IEEE,1997: 1293-1296.
    [10]Van Helden W G, Van Zolingen R J C, Zondag H A. PV thermal systems:PV panels supplying renewable electricity and heat[J]. Progress in Photovoltaics:Research and Applications, 2004,12(6):415-426.
    [11]Rockendorf G, Sillmann R, Podlowski L, et al. PV-hybrid and thermoelectric collectors[J]. Solar Energy,1999,67(4):227-237.
    [12]Tripanagnostopoulos Y, Nousia T, Souliotis M, et al. Hybrid photovoltaic/thermal solar systems[J]. Solar Energy,2002,72(3):217-234.
    [13]Sandnes B, Rekstad J. A photovoltaic/thermal (PV/T) collector with a polymer absorber plate. Experimental study and analytical model[J]. Solar Energy,2002,72(1):63-73.
    [14]Zondag H, De Vries D, Van Helden W, et al. The yield of different combined PV-thermal collector designs[J]. Solar Energy,2003,74(3):253-269.
    [15]Aste N, Chiesa G, Verri F. Design, development and performance monitoring of a photovoltaic-thermal (PVT) air collector[J]. Renewable Energy,2008,33(5):914-927.
    [16]Toufek K, Haddadi M, Mk A. Experimental comparison of two configurations of hybrid photovoltaic thermal collectors[J]. Applied Solar Energy,2011,47(3):189-194.
    [17]Rahou M, Othman M Y, Mat S, et al. Performance Study of a Photovoltaic Thermal System With an Oscillatory Flow Design[J]. Journal of Solar Energy Engineering-Transactions of the Asme,2014,136(1).
    [18]Ji J, Liu K, Chow T T, et al. Thermal analysis of PV/T evaporator of a solar-assisted heat pump[J]. International journal of energy research,2007,31(5):525-545.
    [19]Ji J, Lu J-P, Chow T-T, et al. A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation[J]. Applied Energy,2007,84(2):222-237.
    [20]Ji J, Luo C, Chow T-T, et al. Thermal characteristics of a building-integrated dual-function solar collector in water heating mode with natural circulation[J]. Energy,2011, 36(1):566-574.
    [21]Ji J, Pei G, Chow T-T, et al. Experimental study of photovoltaic solar assisted heat pump system[J]. Solar Energy,2008,82(1):43-52.
    [22]Jie J, Bin J, Hua Y, et al. An experimental and mathematical study of efforts of a novel photovoltaic-Trombe wall on a test room[J]. International journal of energy research,2008, 32(6):531-542.
    [23]Jie J, Hua Y, Gang P, et al. Study of PV-Trombe wall assisted with DC fan[J]. Building and Environment,2007,42(10):3529-3539.
    [24]Jie J, Hua Y, Gang P, et al. Study of PV-Trombe wall installed in a fenestrated room with heat storage[J]. Applied Thermal Engineering,2007,27(8):1507-1515.
    [25]Huang B J, Lin T H, Hung W C, et al. Performance evaluation of solar photovoltaic/thermal systems[J]. Solar Energy,2001,70(5):443-448.
    [26]Chow T. Performance analysis of photovoltaic-thermal collector by explicit dynamic model[J]. Solar Energy,2003,75(2):143-152.
    [27]刘鹏,关欣,穆志君,et al. PVT系统运行的数值模拟与实验研究[J].太阳能学报, 2010,31(8):999-1004.
    [28]王宝群,姚强,宋蔷,et al.太阳能光伏/光热集热器设计与性能研究[J].燃气轮机技术,2009,22(1).
    [29]穆志君,关欣,刘鹏.太阳能光伏光热一体化系统运行实验研究[J].节能技术,2009,(5):445-447.
    [30]全贞花,李宁军,赵耀华,et al.基于平板热管的太阳能光伏光热系统实验研究[C][J].全国暖通空调制冷2010年学术年会论文集,2010.
    [31]Klaiβ H, Kohne R, Nitsch J, et al. Solar thermal power plants for solar countries—technology, economics and market potential[J]. Applied Energy,1995,52(2):165-183.
    [32]Herrmann U, Kelly B, Price H. Two-tank molten salt storage for parabolic trough solar power plants[J]. Energy,2004,29(5):883-893.
    [33]范兵,陈步亮.太阳能槽式热发电技术综述[J].电源技术应用,2010,(4):9-14.
    [34]王志峰.西班牙太阳能高温热利用的研究与思考[J].太阳能,2002,5:018.
    [35]郭苏,刘德有,张耀明.太阳能热发电系列文章(5)——塔式太阳能热发电的定日镜[J].太阳能,2006,(5):34-37.
    [36]Buck R, Barth C, Eck M, et al. Dual-receiver concept for solar towers[J]. Solar Energy, 2006,80(10):1249-1254.
    [37]Kearney D, Kelly B, Herrmann U, et al. Engineering aspects of a molten salt heat transfer fluid in a trough solar field[J]. Energy,2004,29(5):861-870.
    [38]李鑫,李安定,李斌,et al.碟式/斯特林太阳能热发电系统经济性分析[J].中国电机工程学报,2005,25(12):108-111.
    [39]Jaffe L D. Test results on parabolic dish concentrators for solar thermal power systems[J]. Solar Energy,1989,42(2):173-187.
    [40]Mancini T, Heller P, Butler B, et al. Dish-Stirling systems:An overview of development and status[J]. Journal of Solar Energy Engineering,2003,125(2):135-151.
    [41]Li Z, Tang D, Du J, et al. Study on the radiation flux and temperature distributions of the concentrator-receiver system in a solar dish/Stirling power facility [J]. Applied Thermal Engineering,2011,31(10):1780-1789.
    [42]Luther J, Luque A, Bett A, et al. Concentration photovoltaics for highest efficiencies and cost reduction[C].20th European Photovoltaic Solar Energy Conference,2005:1953-1957.
    [43]田玮,王一平,韩立君,et al.聚光光伏系统的技术进展[J].太阳能学报,2005,26(4):597-604.
    [44]袁爱谊,王亮兴.聚光光伏发电技术研究与展望[J].上海电力,2009,(1).
    [45]Mcconnell R, Symko-Davies M. DOE high performance concentrator PV project[C]. International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen, 2005.
    [46]Garboushian V, Yoon S, Turner G, et al. A novel high-concentration PV technology for cost competitive utility bulk power generation[C]. Photovoltaic Energy Conversion,1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994,1994 IEEE First World Conference on,1994:1060-1063.
    [47]Coventry J S. A solar concentrating photovoltaic/thermal collector[J],2004.
    [48]Liou H M. Overview of the photovoltaic technology status and perspective in Taiwan[J]. Renewable and Sustainable Energy Reviews,2010,14(4):1202-1215.
    [49]Faiman D, Biryukov S, Pearlmutter K K. PETAL:a research pathway to fossil-competitive solar electricity[C]. Photovoltaic Specialists Conference,2002. Conference Record of the Twenty-Ninth IEEE,2002:1384-1387.
    [50]许志龙,刘菊东,冯培锋,et al.蝶式光伏发电聚光器的研制[J].太阳能学报,2007,28(2):174-177.
    [51]肖遵林,施钰川.槽式太阳聚光器的研究[J].可再生能源,2007,(2):10-12.
    [52]王建平,杨金付,徐晓冰.一种聚光型太阳能光伏系统的研究[J].能源研究与利用,2007,(1):19-22.
    [53]杜斌,张耀明,孙利国.低倍聚光光伏系统的实验研究[J].太阳能学报,2009,29(11):1328-1332.
    [54]Coventry J S. Performance of a concentrating photovoltaic/thermal solar collector[J]. Solar Energy,2005,78(2):211-222.
    [55]Li M, Ji X, Li G L, et al. Performance study of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal system[J]. Applied Energy,2011,88(9):3218-3227.
    [56]Harris J A, Duff W S. Focal plane flux distributions produced by solar concentrating reflectors[J]. Solar Energy,1981,27(5):403-411.
    [57]Jones P D, Wang L. Concentration distributions in cylindrical receiver/paraboloidal dish concentrator systems[J]. Solar Energy,1995,54(2):115-123.
    [58]Elsayed M, Fathalah K. Solar flux-density distribution due to partially shaded/blocked mirrors using the separation of variables/superposition technique with polynomial and Gaussian sunshapes[J]. Journal of Solar Energy Engineering,1996,118(2):107-114.
    [59]Buie D, Monger A, Dey C. Sunshape distributions for terrestrial solar simulations[J]. Solar Energy,2003,74(2):113-122.
    [60]李瑞恒,邢玉明,刘伟.空间太阳能热动力发电系统10kW聚能器焦平面热流分布计算[J].太阳能学报,2005,26(1):116-120.
    [61]杜胜华,夏新林,唐尧.太阳光不平行度对太阳能聚集性能影响的数值研究[J].太阳能学报,2006,27(4):388-393.
    [62]刘颖,戴景民,郎治国,et al.旋转抛物面聚光器焦面能流分布的有限元分析[J].光学学报,2007,27(10):1775-1778.
    [63]王云峰,季杰,何伟,et al.抛物碟式太阳能聚光器的聚光特性分析与设计[J].光学学报,2012,32(1):198-205.
    [64]Yamaguchi M, Takamoto T, Khan A, et al. Super-high-efficiency multi-junction solar cells[J]. Progress in Photovoltaics:Research and Applications,2005,13(2):125-132.
    [65]Dimroth F, Kurtz S. High-efficiency multijunction solar cells[J]. MRS bulletin,2007, 32(03):230-235.
    [66]Yamaguchi M, Nishimura K-I, Sasaki T, et al. Novel materials for high-efficiency [J]-V multi-junction solar cells[J]. Solar Energy,2008,82(2):173-180.
    [67]Stan M, Aiken D, Cho B, et al. Very high efficiency triple junction solar cells grown by MOVPE[J]. Journal of Crystal Growth,2008,310(23):5204-5208.
    [68]Geisz J, Levander A, Norman A, et al. In situ stress measurement for MOVPE growth of high efficiency lattice-mismatched solar cells[J]. Journal of Crystal Growth,2008,310(7): 2339-2344.
    [69]Kumar S, Mullick S C. Wind heat transfer coefficient in solar collectors in outdoor conditions[J]. Solar Energy,2010,84(6):956-963.
    [70]Palyvos J. A survey of wind convection coefficient correlations for building envelope energy systems' modeling[J]. Applied Thermal Engineering,2008,28(8):801-808.
    [71]Li M, Wang L L. Investigation of evacuated tube heated by solar trough concentrating system[J]. Energy Conversion and Management,2006,47(20):3591-3601.
    [72]Incropera F P, Dewitt D P, Bergman, et al. Fundamentals of Heat and Mass Transfer[M]. New York:John Wily and Sons Inc,2006.
    [73]Fujisawa T, Tani T. Annual exergy evaluation on photovoltaic-thermal hybrid collector[J]. Solar Energy Materials and Solar Cells,1997,47(1):135-148.
    [74]Hepbasli A. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future[J]. Renewable and Sustainable Energy Reviews,2008,12(3): 593-661.
    [75]Carvalho M, Collares-Pereira M, Correia De Oliveira J, et al. Optical and thermal testing of a new 1.12 X CPC solar collector[J]. Solar Energy Materials and Solar Cells,1995,37(2): 175-190.
    [76]Reindl D, Beckman W, Duffie J. Evaluation of hourly tilted surface radiation models[J]. Solar Energy,1990,45(1):9-17.
    [77]Huang B, Lin T, Hung W, et al. Performance evaluation of solar photovoltaic/thermal systems[J]. Solar Energy,2001,70(5):443-448.
    [78]Olson J M, Friedman D J, Kurtz S R. Chapter 9:High-Efficiency Ⅲ-Ⅴ Multijunction Solar Cells[J]. Handbook of Photovoltaic Science and Engineering,2003.
    [79]Philipps S P, Guter W, Welser E. Present Status in the Development of Ⅲ-Ⅴ Multi-Junction Solar Cells[J]. Next Generation of Photovoltaics,2012:1-21.
    [80]Gow J A, Manning C D. Development of a photovoltaic array model for use in power-electronics simulation studies[J]. Iee Proceedings-Electric Power Applications,1999, 146(2):193-200.
    [81]Siefer G, Bett A W. Analysis of temperature coefficients for III-V multi-junction concentrator cells[J]. Progress in Photovoltaics:Research and Applications,2012.
    [82]Kinsey G S, Hebert P, Barbour K E, et al. Concentrator multijunction solar cell characteristics under variable intensity and temperature[J]. Progress in Photovoltaics,2008,16(6): 503-508.
    [83]Cosby R M. The Linear Fresnel Len Solar Concentrator:Transverse Tracking Error Effects[M].2889. National Aeronautics and Space Administration,1977.
    [84]姚叙红,朱林泉,薛忠晋,et a1.菲涅尔透镜提高太阳能利用率的研究[J].红外,2009,30(3):30-34.
    [85]Leutz R, Suzuki A. Nonimaging Fresnel lenses:design and performance of solar concentrators[M].83. Springer,2001.
    [86]Kritchman E, Friesem A, Yekutieli G. Highly concentrating Fresnel lenses[J]. Applied Optics,1979,18(15):2688-2695. [87] Mifiano J C, Gonzalez J C. New method of design of nonimaging concentrators[J]. Applied Optics,1992,31(16):3051-3060. [88] Mcevoy A, Markvart T, Castafier L, et al. Practical handbook of photovoltaics: fundamentals and applications:fundamentals and applications[M]. Elsevier,2003. [89] Lin J-S, Huang W-C, Hsu H-C, et al. A study for the special Fresnel lens for high efficiency solar concentrators[C]. Optics & Photonics 2005,2005:59420X-59420X-9.[90]刘华,卢振武,朱瑞,et al.聚光光伏系统的发展及未来趋势[J].Chinese Journal of Optics and Applied Optics,2008,1(1). [91] Mcconnell R. Concentrator photovoltaic technologies:Review and market prospects[J]. Refocus,2005,6(4):35-39. [92] Stone K W, Garboushian V, Hayden H. Design and performance of the Amonix High Concentration Solar PV System[C]. ASME Solar 2002:International Solar Energy Conference, 2002:157-162. [93] Stone K W, Garboushian V, Boehm R, et al. Analysis of five years of field performance of the Amonix High Concentration PV system[C]. Proceedings of the Power-Gen Renewable Conference,2006:1-12.
    [94]Kinsey G S, Pien P, Hebert P, et al. Operating characteristics of multijunction solar cells[J]. Solar Energy Materials and Solar Cells,2009,93(6):950-951.
    [95]Kinsey G S, Stone K, Brown J, et al. Energy prediction of Amonix CPV solar power plants[J]. Progress in Photovoltaics:Research and Applications,2011,19(7):794-796.
    [96]郭丰.聚光光伏的发展[J].电源技术,2009,10:936-941.
    [97]Grilikhes V, Rumyantsev V, Shvarts M. Indoor and outdoor testing of space concentrator AlGaAs/GaAs photovoltaic modules with Fresnel lenses[C]. Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE,1996:345-348.
    [98]Bett A, Baur C, Dimroth F, et al. FLATCON/spl trade/-modules:technology and characterisation[C]. Photovoltaic Energy Conversion,2003. Proceedings of 3rd World Conference on,2003:634-637.
    [99]Bett A, Dimroth F, Glunz S, et al. FLATCON/TM and FLASHCON/TM:Concepts for high concentration PV[C].19th European PVSEC,2004:2488-2491.
    [100]Bett A, Siefer G, Baur C, et al. FLATCON concentrator PV-technology ready for the market[C]. Proc 20th European PVSEC,2005:114-117.
    [101]Siefer G, Bett A, Emery K. One year outdoor evaluation of a FLATCON Concentrator module[C]. Proceedings of the 19th European Photovoltaic Solar Energy Conference,2004: 2078-2081.
    [102]Vogt A, Peharz G, Jaus J, et al. Degradation Studies on FLATCON(?) Modules and Assemblies[C]. Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany,2006:2225-2228.
    [103]Rumyantsev V D. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells[J]. Optics Express,2010,18(101):A17-A24.
    [104]Gombert A, Heile I, Wullner J, et al. Recent progress in concentrator photovoltaics[C]. SPIE Photonics Europe,2010:772508-772508-9.
    [105]Teo H G, Lee P S, Hawlader M N A. An active cooling system for photovoltaic modules[J]. Applied Energy,2012,90(1):309-315.
    [106]Ji J, Lu J P, Chow T T, et al. A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation[J]. Applied Energy,2007,84(2):222-237.
    [107]Han X Y, Wang Y P, Zhu L. Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids[J]. Applied Energy,2011,88(12):4481-4489.
    [108]Mittelman G, Kribus A, Dayan A. Solar cooling with concentrating photovoltaic/thermal (CPVT) systems[J]. Energy Conversion and Management,2007,48(9): 2481-2490.
    [109]Tyagi V V, Kaushik S C, Tyagi S K. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology[J]. Renewable & Sustainable Energy Reviews,2012,16(3): 1383-1398.
    [110]Kerzmann T, Schaefer L. System simulation of a linear concentrating photovoltaic system with an active cooling system[J]. Renewable Energy,2012,41:254-261.
    [111]Kong C D, Xu Z L, Yao Q. Outdoor performance of a low-concentrated photovoltaic-thermal hybrid system with crystalline silicon solar cells[J]. Applied Energy,2013, 112:618-625.
    [112]Zhou W, Yang H X, Fang Z H. A novel model for photovoltaic array performance prediction[J]. Applied Energy,2007,84(12):1187-1198.
    [113]Segev G, Mittelman G, Kribus A. Equivalent circuit models for triple-junction concentrator solar cells[J]. Solar Energy Materials and Solar Cells,2012,98:57-65.
    [114]Duffie J A, Beckman W A. Solar engineering of thermal processes[M]. John Wiley & Sons,2013.
    [115]Chemisana D, Ibanez M, Rosell J I. Characterization of a photovoltaic-thermal module for Fresnel linear concentrator[J]. Energy Conversion and Management,2011,52(10):3234-3240.
    [116]Liao T, Lin B, Yang Z. Performance characteristics of a low concentrated photovoltaic-thermoelectric hybrid power generation device[J]. International Journal of Thermal Sciences,2014, 77:158-164.
    [117]Chow T T. A review on photovoltaic/thermal hybrid solar technology[J]. Applied Energy,2010,87(2):365-379.
    [118]Chaabane M, Charfi W, Mhiri H, et al. Performance evaluation of concentrating solar photovoltaic and photovoltaic/thermal systems[J]. Solar Energy,2013,98:315-321.