原位有机改性制备溴化丁基橡胶/蒙脱土复合材料及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溴化丁基橡胶(BIIR)具有低透气性、耐老化性、耐臭氧性及耐化学药品性等优异性能,所以它被用于制造轮胎、药品瓶塞等工业产品。蒙脱土(MMT)是一种层状的硅铝酸盐,通过有机改性,能使有机化的硅酸盐与多数聚合物具有良好的相容性,从而有利于聚合物和单体的嵌入,是插层法制备纳米复合材料的关键方法之一。
     本研究选用BIIR作为基体材料,用原位有机改性的方法,将不同有机改性剂和MMT应用到BIIR中,制得溴化丁基橡胶/有机蒙脱土(BIIR/OMMT)纳米复合材料。研究了其硫化特性、力学性能、热分解行为和微观形态结构。
     采用原位有机改性的方法制备了溴化丁基橡胶/有机蒙脱土复合材料,研究了该复合材料的力学性能。结果发现,各种有机蒙脱土对溴化丁基橡胶都具有一定的补强作用,且使用原位有机改性方法制备的复合材料,在减少有机土预处理的同时,其力学性能达到并优于直接添加有机蒙脱土的复合材料。
     应用无转子硫化仪研究了溴化丁基橡胶纯胶、溴化丁基橡胶/蒙脱土、溴化丁基橡胶/原位有机改性蒙脱土的硫化特性,并进行了比较。结果表明,直接添加OMMT和含有原位有机改性蒙脱土的混炼胶与添加Na-MMT的混炼胶相比,胶料的焦烧时间和正硫化时间缩短,最低转矩与最高转矩的差值明显增加。原位有机改性方法制得的复合材料,其硫化反应表观活化能较添加蒙脱土的混炼胶和纯胶的有一定程度的降低。
     研究发现,溴化丁基橡胶/有机蒙脱土复合材料有良好的耐有机溶剂的性质。因此研究了插层剂用量和蒙脱土用量对于复合材料在其良溶剂二甲苯中的溶胀速度和程度,并与BIIR纯胶和BIIR/Na-MMT复合材料进行比较。结果表明,与纯胶和BIIR/Na-MMT复合材料相比,原位有机改性BIIR/OMMT纳米复合材料对二甲苯的吸收速度和吸收率降低。随着插层剂的增加,复合材料耐有机溶剂的性能提高。
     同时,采用X射线衍射(XRD)、透射电子显微镜(TEM)和热重分析(TGA)表征了复合材料的微观形态结构和热稳定性。XRD表明,给BIIR/Na-MMT配合体系中分别加入不同插层剂,对Na-MMT进行原位有机处理之后,硫化胶中蒙脱土001晶面的层间距有了明显扩大,比有机蒙脱土的层间距还要大1.5nm左右。采用TGA分析了硫化胶的热稳定性,结果表明:加入插层剂后,硫化胶的热分解起始温度有一定的升高,说明Na-MMT和插层剂对提高BIIR的热分解温度具有协同效应,该效应主要来自蒙脱土粒子在BIIR中的良好分散。TEM证明了原位有机改性方法能制备出纳米型复合材料,且MMT能均匀分散在橡胶基体中。
Bromobutyl Rubber (BIIR) is used in manufacturing tyres, bottle stop for medicine etc., because of its excellent properties of low ventilation, anti-age property, anti-ozone and chemicals restriction. Montmorillonite (MMT) is a clay and consists of two fused silicate tetrahedral sheets sandwiching an edge-shared octahedral sheet of either magnesium or aluminum hydroxide. It has good compatibility with most polymers through organic modification, so that it will be easy for inset of polymers and monomers. And this is the key method of preparing nanocomposites.
     In this study, BIIR was selected as matrix. In situ organic modification method was applied to use intercalatant and MMT into BIIR to make BIIR/OMMT composites. The vulcanization characteristics, mechanical property, thermal degradation behavior and microstructure of these composites were studied.
     BIIR/OMMT composites were prepared by in situ organic modification and its mechanical properties were studied. The results showed that different kinds of organic MMT had certain reinforcement on BIIR and using the method of in situ organic modification can save the time of preparation of OMMT and the mechanical properties of these kind of BIIR/OMMT was equal to and even better than the composites by directly adding organic MMT.
     The vulcanization characteristics of gum BIIR, BIIR/Na-MMT and BIIR/in situ OMMT composites were studied and compared by an oscillating disk rheometer. The results showed that, compared with adding only Na-MMT, adding directly OMMT and in situ organic modified OMMT have lower scorch time and vulcanization time. And the difference between maximum torque and minimum torque increased obviously. Composites prepared by in situ organic modification have lower apparent activation energy than adding Na-MMT and gum BIIR.
     It was found that BIIR/OMMT has good restriction to organic solution. The effect of the content of intercalatant and MMT on the absorption speed and degree of the composites in dimethylbenzene was studied and compared with gum BIIR and the traditional BIIR/Na-MMT composites. The results showed that compared with BIIR and BIIR/Na-MMT, in situ organic modification BIIR/OMMT composites has lower swelling rate. And with the increase of intercalatant, the organic solvent restriction of the composites increased.
     Meanwhile, XRD, TEM and TGA were used to investigate the morphology and thermal stability of the composites. According to XRD, adding different kind of intercalatants into BIIR/Na-MMT and after in situ organic modification for Na-MMT, the layer of MMT in the vulcanizate was expanded largely, which was about 1.5nm larger than the layer of MMT. TGA was used to analyze the thermal stability. The results showed that the beginning temperature of thermal degradation increased, which indicated Na-MMT and intercalatant had the cooperation effect on thermal temperature of BIIR. This effect mainly comes from the good dispersion of MMT particles in BIIR. TEM proved in situ organic modification method can prepare nanocomposites and MMT can disperse uniformly in the rubber matrix.
引文
[1] 韩秀山, 丁基橡胶功能化品种,《四川化工与腐蚀控制》第五卷2002 年
    [2] 钱寒东,溴化丁基橡胶性能研究,世界橡胶工业 2004 第31卷 第12期 6-11
    [3] 谢遂志等,《橡胶工业手册》第一分册, 化学工业出版社, 1989.
    [4] 李忠,于少明,伍广,有机蒙脱土的制备研究,安徽理工大学学报(自然科学版)第25卷 第2期 2005 年6 月
    [5] 张术根, 谢志勇, 申少华等. 膨润土高层次开发利用研究新进展[J ]. 中国非金属矿工业导刊, 2002, 25(1) : 17- 20.
    [6] 李阳等,有机蒙脱土制备及表征合成技术及应用 2005年3月 第20卷,第一期
    [7] 谢克难,游贤贵,纳米材料及其制备与应用[J ] .四川有色金属,1994 , (8) 2 :8~17
    [8] 陈光明,李强,漆宗能等,聚合物P层状硅酸盐纳米复合材料研究进展[J ] . 高分子通报,1999 ,4 :1~10)
    [9] Usuki A, Okada A, Kurauchit et al. USP:4889885,1989.
    [10] Vaia R A, Sauar B B, Tse O K et al. J. Polym. Sci.,Part B:Polym. Phy.,1997(35):59~67.
    [11] Ogata N, Kawakage S, Ogihara T. Polymer, 1997,(38):5115~5118.
    [12] Yano K, Usuki A, Okada A et al. J. Polym. Sci., Polym. Chem. Ed., 1993(31):2493~2495.
    [13] Lan T, Kaviratna P D, Pinnavaia T J. Chem. Mater.,1994,(6):573~576.
    [14] Messersmith P B, Giannlis E P. J. Polym. Sci., Polym. Chem. Ed., 1995(33):1047~1050.
    [15] Biasci L, Aglietto M, Ruggeri G et al. Polymer, 1994(35):3296~3299.
    [16] Kawasumi M, Okeda A. Macromolecules, 1977,(30):6333~6338.
    [17] Akelah A, Moet A. J. Mater. Sci.,1996(31):35]89~3596.
    [18] 梁中华,姜俊青,赵树高,纳米蒙脱土在SBR复合材料中的应用,世界橡胶工业 2006 第33 卷第4 期)
    [19] 王立春等,HIPS/OMMT复合材料阻燃性能的研究,现代塑料加工应用 2006年18卷第一期)
    [20] 梁中华,纳米蒙脱土/丁苯橡胶复合材料结构及动态力学性能的研究,橡塑技术与装备
    [21] 郑华,三元乙丙橡胶/蒙脱土纳米复合材料的制备、结构和性能研究
    [22] 王韶晖,原位有机改性法制备EPDM/蒙脱土纳米复合材料
    [23] 梁玉蓉,张惠峰,吴友平,王益庆,张立群,丁基橡胶/有机黏土纳米复合材料的结构和性能,合成橡胶工业, 2005 - 05 - 15, 28 (3) : 211~215
    [24] Kada Boukerma , Jean-Yves Piquemal , Mohamed M. Chehimi , Miroslava Mravcˇa′kova′ , Ma′ria Omastova′ , Patricia Beaunier,Synthesis and interfacial properties of montmorillonite/polypyrrole Nanocomposites,Polymer 47 (2006) 569–576
    [25]Suprakas Sinha Ray, Mosto Bousmina , Poly(butylene sucinate-co-adipate)/montmorillonite nanocomposites: effect of organic modifier miscibility on structure, properties, and viscoelasticity,Polymer 46 (2005) 12430–12439)
    [26] Andrea Sze′p, Andra′s Szabo′, Nikoletta To′th, Pe′ter Anna, Gyo¨rgy Marosi,Role of montmorillonite in flame retardancy of ethyleneevinyl acetate copolymer,Polymer Degradation and Stability 91 (2006) 593e599
    [27] 武保华,王一中,余鼎声. 有机蒙脱土的制备与表征[J ] . 石油化工, 1999 , 28(3) :1532156.
    [28] 李同年,周持兴,庐文奎,等. 聚苯乙烯2蒙脱土插层复合材料的制备与性能[J ] . 塑料工业,2000 ,28 (2) :33-35. [ 29 ] Zheng H, Zhang Y X, Zhang Y, et al . Effect of rganomontmorillonite modified with different intercalants on roperties of EPDMPclay nanocomposites [J ] . 合成橡胶工业,2003 ,26(2) :115.
    [30] Fu X, Qutubuddin S. Polymer2clay nanocomposites : exfoliation of organophilic montmorillonite nanolayers in polystyrene[J ] . Polymer ,2001 ,42(2) :8072813.
    [31] Magaraphan R , Lilayuthalert W, Sirivat A , et al .Preparation , structure , properties and thermal behavior of rigidrod polyimide Pmontmorillonite nanocomposites [ J ] .Composites Science And Technology , 2001 , 61 (9) : 1253-1264.
    [32] 聚合物P层状硅酸盐纳米复合材料的研究进展——层状硅酸盐粘土的有机改性,王月欣,李英,张留成,化学世界 2005 年 第9期 562-565
    [33] 严志云,贾德民,广东化工2005年第3期,橡胶纳米复合材料研究进展,34-37
    [34] GautierJ. Kumesch G. , Polonsky J. , Tetrahedron lett, 1972: 2715 - 2781.
    [35] Vaia R A, Giannelis E P. Polymermelt intercalation in organically modified layered silicates: Model p redications and experiment[ J ].macromolecules, 1997, 30 (25) : 7990 - 7999.
    [36] Vaia R A, Giannelis E P. Lattic of polymermelt intercalation in organically2modified layered silicates [ J ]. Macromolecules, 1997 9, 30 (25) : 8000 - 8009.
    [37] LausM, francescangeli O, Sandrolini F, New hybrid nanocomposites based on organophilic clay and poly ( styrene2b2butatiene ) copolymers [ J ] J Mater Res, 1997, 12 (11) : 3134 - 3139.
    [38] Vaia R. A, Vasudevan S, KrawiecW, et al. New polymer electrolyte nanocomposites: melt intercalation of poly ( ethylene oxide) inmicatype silicates[ J ]. Adv. Mater, 1995, 7: 154 - 156.
    [39] Kotov N A, et al. Mechanism and formation in the self2assembly of polymeric polycation montmorllonite ultrathin films[ J ]. J American Chem. Soc, 1997, 119: 6821 - 6832.
    [40] 张立群,等. 粘图/橡胶纳米复合材料的制备方法[ J ]. 中国发明专利, 98101496.
    [41] 杨勇,朱子康.,溶胶-凝胶法制备可溶性聚酰亚胺/二氧化硅纳米复合材料的研究-Ⅰ,溶胶--凝胶转变过程和反应机理的研究,功能材料,1999(1):78-80
    [42] 张晶波,范勇,衷敬和,王芳,聚酰亚胺/氧化硅/氧化铝纳米复合薄膜的制备及性能研究,绝缘材料,2005,38(1): 9-11
    [43] J. Suwanprateeb.,Rate-dependent function in the correlation between hardness and yield stress of polyethylene composite,Polymer Composite,2000, 21(2):238-244
    [44] Yeh. Wang,Ming-Jian Yu,Effect of volume loading and surface treatment on the thixotropic behavior of polypropylene filled with calcium carbonate,Polymer Composite,2000,21(1):1-12
    [45] 景晓燕,王猛,田一光,张密林,张东,二乙烯三胺/ 蒙脱土纳米复合材料的制备与表征, 哈尔滨工程大学学报,第28 卷第5 期,2007 年5 月
    [46] 孙玉海,傅伟文,刘岚, 贾德民,罗远芳,天然橡胶/固相改性蒙脱土纳米复合材料的制备与表征,高分子材料科学与工程, 第23卷第5 期,2007年9月
    [47] 杨清芝,现代橡胶工艺学,北京:中国石化出版社,1997,147
    [48] 徐政,钱寒东,溴化丁基橡胶与普通丁基橡胶并用性能之研究,世界橡胶 工业,2005,第32 卷第4期:3-6
    [49] 高云芝,田恒水,张新军,马维德,溴化丁基橡胶的应用研究及市场分析, 橡胶科技市场,2007年第2期:4-7
    [50] C.A.Moakes,刘振华,化工设备防腐蚀用的室温硫化溴化丁基橡胶配方,橡胶参考资料 , 1988,(05)