新型稀土配合物橡胶防老剂的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶的老化与防老化是橡胶理论和应用的一个重要问题。当前橡胶防老剂的发展方向是高效、多功能化、环保和低成本。合成新型环保型高效多功能橡胶防老剂对于橡胶制品的使用和橡胶工业的发展具有重要的理论和实际意义。
     本文合成了14种新型2-巯基苯并咪唑稀土配合物,通过红外光谱分析、元素分析、X射线衍射等方法对配合物进行了表征,确定配合物的结构式为:REL2(OH)?XH2O(RE=镧~镥,除钷外,L=2-巯基苯并咪唑,X=1或2)。同时选择天然橡胶和丁苯橡胶两种橡胶体系,研究了2-巯基苯并咪唑稀土配合物对天然橡胶硫化胶和丁苯橡胶硫化胶的热氧老化、紫外光老化、臭氧老化及动态老化性能的影响及其作用机理,并与防老剂4010NA及防老剂MB进行了比较。
     选用自制的十四种稀土配合物,与天然橡胶按常规方法进行混炼、硫化制得硫化胶。采用红外光谱、X射线光电子能谱、交联密度测定、力学性能测试等方法研究了钐配合物对天然橡胶硫化胶热氧老化过程的化学组成、硫化胶结构和力学性能的影响。通过热分析方法探讨了钐配合物对天然橡胶硫化胶防老化作用的机理。结果表明钐配合物对天然橡胶硫化胶有显著的防老化作用,其防老化效果优于防老剂4010NA和防老剂MB。钐配合物一方面通过结构中的硫醚键分解氢过氧化物,另一方面稀土钐离子与老化过程中产生的含氧自由基及含氧化合物作用,从而达到了较好的防老化效果。热氧化动力学计算得出添加钐配合物天然橡胶硫化胶的热氧化活化能高于添加防老剂4010NA和添加防老剂MB硫化胶的热氧化活化能值。
     通过全反射红外光谱、力学性能测试、表面形貌分析等方法研究了2-巯基苯并咪唑钐配合物对天然橡胶耐紫外光老化、臭氧老化和疲劳老化性能的影响,并与橡胶防老剂4010NA及防老剂2-巯基苯并咪唑进行了比较。结果表明稀土配合物的加入可以对天然橡胶硫化胶紫外光老化、臭氧老化和疲劳老化起到较好的防护作用,其综合防老化效果优于防老剂4010NA和防老剂MB,但防臭氧老化效果稍逊于防老剂4010NA。
     采用自制的十四种稀土配合物,与丁苯橡胶按常规方法进行混炼、硫化制得硫化胶,热氧老化性能测试表明2-巯基苯并咪唑稀土配合物对丁苯橡胶硫化胶的热氧老化有较好的防老化效果。分别采用微分法和积分法计算出了添加不同防老剂丁苯橡胶硫化胶的热氧化活化能,两种方法计算结果相近。利用Ozawa公式计算出了不同失重百分率时的热氧化活化能,结果显示,添加钐配合物丁苯橡胶硫化胶在不同失重率对应的活化能比添加防老剂4010NA及添加防老剂MB硫化胶相应的活化能数值都高,说明2-巯基苯并咪唑钐配合物对丁苯橡胶硫化胶的热氧老化防护效果较防老剂4010NA及防老剂MB更为显著。
     通过全反射红外光谱、力学性能测试、表面形貌分析等方法,研究了合成的2-巯基苯并咪唑稀土钐配合物对丁苯橡胶紫外光老化、臭氧老化和疲劳老化性能的影响,并与橡胶防老剂4010NA及防老剂2-巯基苯并咪唑进行了比较。研究表明稀土配合物的加入可以对丁苯橡胶硫化胶紫外光老化、臭氧老化和疲劳老化起到较好的防护作用,其综合防老化效果优于防老剂4010NA和防老剂MB,但防臭氧老化效果稍逊于防老剂4010NA。
Ageing and anti-ageing of rubber is one of the most important problems in theoretical research and applied sciences of rubber. The current direction of development of rubber anti-ageing agent are high performance, multi-functional, environmental friendly and low-cost. Synthesis of new types of multi-functional rubber anti-ageing agent will play an important theoretical and practical part in rubber products and the development of rubber industry.
     Fourteen rare earth complexes with 2-Mercaptobenzimidazole were synthesized and characterized by IR spectra, elemental analyses, X-ray diffraction and thermal analyses. The results indicated that the composition of the complexes is REL2(OH)?XH2O (RE = La~Lu, except for Pm, L = 2-mercaptobenzimidazole, x =1 or 2). Natural rubber(NR) vulcanizates and styrene-butadiene rubber(SBR) vulcanizates were prepared with the rare earth complexes. The antioxidative properties and mechanisms of the rare earth complexes in the NR vulcanizates and SBR vulcanizates were analyzed and compared with antioxidant 4010NA and antioxidant MB.
     The NR vulcanizates with fourteen kinds of rare earth complexes were prepared according to the conventional processes. The antioxidative properties and mechanisms of the Sm(III) complex in the NR vulcanizates were analyzed by attenuated total-reflectance Fourier transform infrared (FTIR-ATR) spectroscopy, X-ray photoelectron spectroscopy (XPS), crosslinking density determination, mechanical testing and thermogravimetric analysis (TGA). It was found that the Sm(III) complex showed the significant antioxidative effect in the NR vulcanizates through two functions: the thioether bond which can decompose the peroxide and the Sm(III) ion which can capture and inactivate the oxy radicals. The apparent thermo-oxidation activation energy (E) of the NR vulcanizates were calculated by the Kissinger and Flynn-Wall-Ozawa methods, respectively. The results showed that the NR vulcanizate with the Sm(III) complex had higher thermo-oxidation activation energy than the samples with antioxidant 4010NA and antioxidant MB.
     The effect of the Sm(III) complex on the photo-ageing, ozone ageing and fatigue ageing of NR vulcanizates were investigated by attenuated total-reflectance Fourier transform infrared (FTIR-ATR) spectroscopy and optical microscopy. The anti-ageing stability of the NR vulcanizates were found to be improved markedly by the addition of Sm(III) complex. The comprehensive antioxidant effect of the Sm(III) complex was superior to that of antioxidant 4010NA and antioxidant MB, but the ozone-resisting performance of the Sm(III) complex was slightly lower than that of antioxidant 4010NA.
     The SBR vulcanizates with fourteen kinds of rare earth complexes were prepared according to the conventional processes. The antioxidative properties and mechanisms of the Sm(III) complex in the SBR vulcanizates were analyzed. It was found that the Sm(III) complex showed the significant antioxidative effect in the SBR vulcanizates. The apparent thermo-oxidation activation energy (E) of the SBR vulcanizates were calculated by the Kissinger and Flynn-Wall-Ozawa methods, respectively. The results showed that the SBR vulcanizate with the Sm(III) complex had higher thermo-oxidation activation energy than the samples with antioxidant 4010NA and antioxidant MB.
     The effect of the Sm(III) complex on the photo-ageing, ozone ageing and fatigue ageing of SBR vulcanizates were investigated by attenuated total-reflectance Fourier transform infrared (FTIR-ATR) spectroscopy and optical microscopy. The anti-ageing stability of the SBR vulcanizates were found to be improved markedly by the addition of Sm(III) complex. The comprehensive antioxidant effect of the Sm(III) complex was superior to that of antioxidant 4010NA and antioxidant MB, but the ozone-resisting performance of the Sm(III) complex was slightly lower than that of antioxidant 4010NA.
引文
[1] Bolland J L. Kinetic studies in the chemistry of rubber and related materials. I. The thermal oxidation of ethyl linoleate[J]. Proceeding of the Royal Society of London, Series A: Mathematical, Physical and engineering Sciences, 1946, 186: 218-236
    [2] Bolland J L, Gee Geoffrey. Kinetic studies in the chemistry of rubber and related materials. II. The kinetics of oxidation of unconjugated olefins[J]. Transactions of the Faraday Society, 1946, 42: 236-243
    [3] Boyer R F, Bunn C W, Gee G, et al. Scientific prograss in the field of rubber and synthetic elastomers[M]. New York: Interscience Publishers, 1946: 453-456
    [4] Gugumus F. Formation of ester functional groups in oxidizing polymers[J]. Polymer Degradation and Stability, 1999, 65: 5-10
    [5]山西省化工研究所.塑料橡胶加工助剂[M].第2版.北京:化学工业出版社, 2002: 135-137
    [6] Gugumus F. Discussion of hydroperoxide formation and decomposion[J]. Polymer Degradation and Stability, 2000, 65: 337-352
    [7]周大纲,谢鸽成.塑料老化与防老化技术[M].北京:中国轻工业出版社, 1998: 210-216
    [8] Jellinek H H G. Aspects of degradation and stabilization of polymers[M]. New York: Elsevier Scientific Publishing Company, 1978: 79-92
    [9] zhang P, Shi X Y, Li J G, et al. The structure change of dynamically fatigued unfilled natural rubber vulcanizates[J]. Journal of Applied Polymer Science, 2010, 115(6): 3535-3541
    [10] El-Nashar D E, Youssef E A M, E1-Ghaffar M A A. Modified phosphate pigments as high performance reinforcing materials for rubber vulcanizates[J]. Materials & Design, 2010, 31(3): 1350-1359
    [11] Samadi A, Kashani M R. Effects of organo-clay modifier on physical-mechanical properties of butyl-based rubber nanocomposites[J]. Journal of Applied Polymer Science, 2010, 116(4): 2101-2109
    [12] Nakazono T, Ozaki A, Matsumoto A. Effect of phase separation on thermal aging behavior of styrene-butadiene rubber vulcanizates using liquid polyisoprene as plasticizer[J]. Chemistry Letters, 2010, 39(3): 268-269
    [13] Amraee I A. The effect of heat history on thermal degradation of elastomers containing butadiene units[J]. Journal of Applied Polymer Science, 2009, 113(6): 3896-3900
    [14] Colin X, Audouin L, Verdu J, et al. Kinetic modelling of the thermal oxidation of polyisoprene elastomers. Part 2: Effect of sulfur vulcanization on mass changes and thickness distribution of oxidation products during thermal oxidation[J]. Polymer Degradation and Stability, 2007, 92: 898-905
    [15] Li Z H, Chen S J, Zhan J, et al. Influence of different antioxidants on cure kinetics and aging behaviors of ethylene propylene diene rubber/low density polyethylene blends[J]. Plastics Rubber and Composites, 2009, 38(5): 187-194
    [16] Yakout E M A, E1-Sabbagh S H. New uracil derivatives as antioxidants for natural rubber[J]. Pigment & Resin Technology, 2007, 36(4):224-234
    [17] Pimolsiriphol V, Saeoui P, Sirisinha C. Relationship among thermal ageing degradation, dynamic properties, cure systems, and antioxidants in natural rubber vulcanizates[J]. Polymer-Plastics Technology and Engineering, 2007, 46(2): 113-121
    [18] Al-Malaika S, Coker M, Scott G. Mechanism of antioxidation action: nature of transformation products of dithiophosphates. Part I. Their role as antioxidants in polyolefins[J]. Polymer Degradation and Stability, 1988, 22(2): 147-159
    [19] Al-Malaika S, Coker M, Scott G, et al. Mechanism of antioxidation action: nature of transformation products of dithiophosphates. II. Antioxidant action of thiophosphoryl disulfides[J]. Journal of Applied Polymer Science, 1992, 44(7): 1297-1305
    [20] Al-Malaika S, Coker M, Scott G, et al. Mechanism of antioxidation action: nature of transformation products of dithiophosphates. Part III. The antioxidant action of dithio and thio/thionophosphoric acids[J]. Journal of Applied Polymer Science, 1993, 50(10): 1823-1831
    [21] Husbands M J, Scott G. Mechanism of antioxidation action: the behavior of sulfur dioxide in autoxidizing systems[J]. European Polymer Journal, 1979, 15(3): 249-253
    [22]朱福海.高分子材料光降解和光稳定[J].合成材料老化与应用, 1999, (1): 24-26
    [23] Hawkins W L. Polymer Stabilization[M]. New York: Wiley Interscience, 1972: 5-6
    [24]杨明.塑料添加剂应用手册[M].南京:江苏科学技术出版社, 2002: 16-26
    [25] Allen N S, Rabek J F. New trends in the photochemistry of polymers[M]. London: Elsevier Applied Science Publishers, 1985: 209-211
    [26] R.盖希, H.米勒.塑料添加剂手册[M].陈振兴,杨新源,王自昌等译.北京:中国石化出版社, 1992:119-121
    [27]舒万良,申雄军.国内外光稳定剂的发展现状及趋势[J].精细与专用化学品, 2002, (5): 3-5
    [28]王克智.塑料助剂开发及应用-光稳定剂[J].塑料科技, 1995, (4): 37-45
    [29]化学工业部合成材料老化研究所.高分子材料老化与防老化[M].北京:化学工业出版社, 1979: 61-63
    [30] Sae-oui P, Sirisinha C, Hatthapanit K. Effect of blend ratio on aging, oil and ozone resistance of silica-filled chloroprene rubber/natural rubber(CR/NR) blends[J]. Express Polymer Letters, 2007, 1(1): 8-14
    [31] Murray R W, Story P R, Loan L D. Ozonides from aldehydic zuitterions and acetone[J]. Journal of the American Chemistry Society, 1965, 87(13): 3025-3026
    [32]陈经盛.橡胶老化防护与监测(一) [J].化工标准化与质量监督, 1996, (1): 30-32
    [33]张友南,杨军,陈忠海.天然橡胶制品抗疲劳性能的因素简析[J].世界橡胶工业, 2002, 29(6): 35-39
    [34]王梦蛟等.橡胶工业手册第二分册[M].北京:化学工业出版社, 1989: 172-176
    [35] Andrews E H. Fracture in polymers[M]. London: Olives and Boil, 1968: 151-153
    [36] Williams J G. Fracture Mechanics of Polymers[M]. New York: Ellis Harwood Limited, 1984: 168-174
    [37]陶华.天然橡胶撕裂能和疲劳裂纹扩展速率研究[J].西北工业大学学报, 1998, 16(1): 138-141
    [38] Kitagawai Y, Saito A, Nakafutami Y, et al. New technology polymer for tire[A]. In: IRC95. Japan: 402-403
    [39]杨清芝.现代橡胶工艺学[M].北京:中国石化出版社, 1997: 154-222
    [40] Sea-oui R, Thepsuwan U, Hatthapanit K. Effect of curing system on reinforcing efficiceny of silane coupling agent[J]. Polymer Testing, 2004, 23(4): 397-403
    [41] Hashim A S, Azahari B, Ikeda Y, et al. The effect of bis(3-triethoxysilylpropyl) tetrasuifide on silica reinforcement of styrene-butadienerubber[J]. Rubber Chemistry and Technology, 1998, 71(2): 289-299
    [42]孟宪德.橡胶的疲劳老化与防护[J].合成材料老化与应用, 1992, 4: 10-21
    [43]肖琰,魏伯荣,杜茂平.橡胶加速老化试验及贮存期推算方法[J].合成材料老化与应用, 2007, 36(1): 40-43
    [44] Morrell P R, Patel M, Skinner A R. Accelerated thermal ageing studies on nitrile rubber O- rings[J]. Polymer Testing, 2003, 22: 651-656
    [45] David R B, John M B, Kevin R E. Rubber aging in tires. Part 2: Accelerated oven aging tests[J]. Polymer Degradation and Stability, 2007, 92(1): 110-117
    [46] Deng H, Bart J L, Jose M C, et al. Development of a service-simulating, accelerated aging test method for exterior tire rubber compounds[J]. Polymer Degradation and Stability, 2001(74): 353-362
    [47] Bart J L, Jose M C, Frederick I H. Development of a service-simulating, accelerated aging test method for exterior tire rubber compounds II. Design and development of an accelerated outdoor aging simulator[J]. Polymer Degradation and Stability, 2002, 75(2): 213-227
    [48]刘振海.热分析导论[M].北京:化学工业出版社. 1991: 163-167
    [49] Tasakorn P, Amatyakul W. Photochemical reduction of molecular weight and number of double bonds in natural rubber film[J]. Korean Journal of Chemical Engineering, 2008, 25(6): 1532-1538
    [50] Rodrigues F H A, Santos E F, Feitosa J P A, et al. Ozonation of unstretched natural rubber: Part I. Effect of film thickness[J]. Rubber Chemistry and Technology, 2001, 74(1): 57-68
    [51] Kumar A, Commereuc S, Verney V. Aging of elastomers: a molecular approach based on rheological characterization[J]. Polymer Degradation and Stability, 2004, 85 (2): 751-757
    [52]李思东,彭政,余和平等.用红外差谱表征橡胶的热老化[J].橡胶工业, 1998, 45(8): 494-498
    [53] Pecsok P L, Painter P C, Shelton J R. Fourier transform infrared studies of the mechanism of oxidation of cis-1,4-polybutadiene[J]. Rubber Chemistry and Technology, 1976, 49(3): 1010-1017
    [54] Wei Y T, Nasdala L, Rothert H, et a1. Experimental investigations on the dynamic mechanical properties of aged rubbers[J]. Polymer Testing, 2004, 23(4): 447 -453
    [55] Maria A M, Rogerio M B M, Colleen M M, et al. Thermooxidative study of raw natural rubber from Brazilion IAC 300 series clones[J]. Thermochimica Acta, 2008, 474: 62-66
    [56] Agostini D L S, Constantino C J L, Job A E. Thermal degradation of both latex and latex cast films forming membranes combied TG/FTIR investigation[J]. Journal of Thermal Analysis and Calorimetry, 2008, 91(3): 703-707
    [57] Mohanraj G T, Vikram T, Shanmugharaj A M, et al. Kinetics of thermal degradation and thermo-oxidative degradation of conductive styrene-butadiene rubber-carbon black composites[J]. Journal of Materials Science, 2006, 41: 4777-4789
    [58] Cibulkova Z, Simon P, Lehocky P, et al. Antioxidant activity of p-phenylenediaminesstudied by DSC[J]. Polymer Degradation and Stability, 2005, 87: 479-486
    [59] Budrugeac P. On the use of oxidative stability measurements for short-term thermal endurance characterization of polymeric materials[J]. Polymer Degradation and Stability, 2000, 68: 289-293
    [60]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社, 2001: 2-8
    [61] Yu H P, Li S D, Zhong J P, et al. Studies of thermooxidative degradation process of chlorinated natural rubber from latex[J]. Thermochimica Acta, 2004, 410: 119-124
    [62] Mathew A P, Packirisamy S, Thomas S. Studies on the thermal stability of natural rubber polystyrene interpenetrating polymer networks: thermogravimetric analysis[J]. Polymer Degradation and Stability, 2001, 72(3): 423-439
    [63] Kader M A, Bhowmick A K. Thermal aging, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates[J]. Polymer Degradation and Stability, 2003, 79(2): 283-295
    [64]黄华明,陈美,曾宗强等.用TG、DTA研究不同品系天然橡胶热降解[J].热带农业工程, 2006, (2): 35-37
    [65]侯婷婷,李程鹏,钟杰平等.氯化钙凝固天然橡胶的热分析研究[J].广东化工, 2006, 33(11): 26-28
    [66] Sirait K T, Suwarno S. Evaluation of surface degradation of silicone rubber under natural tropical aging using thermogravimetric and thermomechanical analysis[A]. Proceedings of the IEEE International Conference on Properties and App lications of Dielectric Materlals[C]. Xipan: Institute of Electrical and Electronics Engineers Inc., 2000: 645-648
    [67] Wei Y T, Nasdala L, Rothert H, et al. Experimental investigations on the dynamic mechanical properties of aged rubbers[J]. Polymer Testing, 2004, 23(4): 447-453
    [68]张苹,兰慧萍,唐学明. 1,2-聚丁二烯硫化胶的热氧老化性能及其防护体系的研究[J].高分子材料科学与工程, 1989, 5(6): 55-60
    [69] Denardin E I G, Janissek P R. Time-temperature dependence of the thermo- oxidative aging of polychloroprene rubber[J]. Thermochimica Acta, 2003, 395 (2): 159-167
    [70] Somers A E, Bastow T J, Burgar M I, et al. Quantifying rubber degradation using NMR[J]. Polymer Degradation and Stability 2000, 70(1): 31-37
    [71] Parker D D, KoerIig J L. Solid-state 13C-NMR studies of changes in crosslinked carbon structure of natural rubber during heating under air and nitrogen environments[J]. Journal of Applied Polymer Science, 1998, 70(7): 1371-1383
    [72] BuzaréJ Y, Silly G, Emery J, et al. Aging effects on vulcanized natural rubber studied by high resolution solid state 13C-NMR[J]. European Polymer Journal, 2001, 37(1): 85-91
    [73] Maciej G, Winfried K, Jacek K, et al. Characterization of aged nitrile rubber elastomers by NMR spectroscopy and microimaging[J]. Polymer, 2002, 43(11): 3169-3172
    [74]魏小琴,余淑华,许明等.用X射线光电子能谱法研究氟硅橡胶的热氧老化机理[J].橡胶工业, 2008, 55(7): 441-443
    [75] Dadvand N, Lehrle R S, Parsons IW, et al. Use of pyrolysis-GC-MS to assess the thermal degradation behaviour of polymers containing chlorine II. Thermal stability characteristics of Neoprene/chlorobutyl rubber composites, before and after artificial ageing[J]. PolymerDegradation and Stability, 2000, 67(3): 407-419
    [76]张静芳,译.增塑溴化丁基橡胶撕裂断裂及拉伸断裂的扫描电镜观察[J].橡胶译丛, 1992, (4): 71-76
    [77]中国化工学会橡胶专业委员会.橡胶助剂手册[M].北京:化学工业出版社, 2000: 8-9
    [78]韦凤仙,张启交,章伟光等. 2-巯基苯并噻唑稀土配合物的合成、表征及橡胶硫化促进性能研究[J].中国稀土学报, 2002, 20: 37-40
    [79]黄庙由,范毅,章伟光等.新型稀土促进剂在天然橡胶配合中的性能研究[J].世界橡胶工业, 2005, 32(7): 3-6
    [80]江涛,章伟光,申俊英.二乙基二硫代氨基甲酸稀土配合物的合成及促进橡胶硫化性能研究[J].稀土, 2000, 21(3): 39-41
    [81] Zhang W G, Tang N, Liu W S, et al. Preparation and Properties of RE Complexes with 5-Phenyl Pyrazoline Dithioformate[J]. Journal of Rare Earths, 2002, 20(2): 145-147
    [82]万霞,章伟光.新型橡胶硫化促进剂-稀土-钴多核配合物的研制[J].华南师范大学学报(自然科学版), 2003, 2: 66-70
    [83] Yasuda H. Organo-rare-earth-metal initiated living polymerizations of polar and nonpolar monomers[J]. Journal of Organometallic Chemistry, 2002, 647(12): 128-138
    [84] Zhang Q J, Wei F X, Zhang W G, et al. Synthesis, Characterization and vulcanizing properties of rare earth complexes[J]. Journal of Rare Earths, 2002, 20(5): 395-399
    [85]章伟光,殷霞,张启交等.稀土含硫有机配体配合物的合成与研究进展[J].中国稀土学报, 2004, 22(3): 299-306
    [86]林新花,陈朝晖,王迪珍. O,O’-二辛基二硫代磷酸镨对天然橡胶硫化及力学性能的影响[J].稀土, 2007, 28(4): 59-62
    [87]杨卫,武萃霖,吴振耀.混合稀土金属氧化物交联氯磺化聚乙烯的研究[J].橡胶工业, 1992, 39(3): 132-137
    [88]朝克,张克俭,韩咏梅.羧酸稀土蒙脱土制备及其在高分子材料中的应用分析[J].非金属矿, 2000, 25(6): 8-10
    [89]朝克,王恒平,程喜亮等.羧酸稀土蒙脱土对橡胶补强及热稳定性的影响[J].稀土, 2002, 23(5): 39-42
    [90]张明,李幼荣,邱关明等.稀土复合弹性材料的抗热氧化作用[J].中国稀土学报, 2000, 18(4): 318-321
    [91] Qiu G M, Zhou Lan X, Zhang M, et al. Preparation and mechanical performance of rare earth containing composite elastomer[J]. Journal of Rare Earths, 2001, 19(4): 260-265
    [92]张明,张志斌,邱关明等.稀土复合弹性材料的制备和力学性能[J].中国稀土学报, 2000, 18(3): 233-238
    [93]苏正涛,刘君,彭亚岚等.金属氧化物对硅橡胶和氟硅橡胶耐热性的影响[J].有机硅材料, 2000, 14(5): 4-7
    [94] Su Z T. Interfacial reaction of stannic oxide in silicone rubber at 300℃[ J]. Journal of Applied Polymer Science, 1999, 73: 2779-2781
    [95]任艳军,赵永光.改性三氧化二钇补强橡胶的研究[J].橡胶工业, 2006, 53(10): 598-600
    [96]关长斌,任艳军,卢硕等.稀土CeO2对橡胶材料耐磨性的影响[J].摩擦学学报, 2006, 26(2): 179-182
    [97]郭宇波,王炼石,张安强等.稀土掺杂高耐磨炭黑填充型粉末NR研究[J].弹性体, 2005, 15(2): 10-13
    [98]林雅铃,洪少颖,王炼石等.稀土及过渡金属氧化物改性纳米碳酸钙/天然橡胶复合材料的结构与性能[J].合成橡胶工业, 2004, 27(6): 363-367
    [99]林雅铃,肖孔清,王炼石等.稀土化合物改性炭黑/天然橡胶复合材料的制备与性能[J].中国稀土学报, 2005, 23(6): 708-712
    [100]周奕雨,王胜华,王炼石.稀土化合物处理高耐磨炭黑填充粉末丁腈橡胶[J].中国稀土学报, 2006, 24: 132-135
    [101] Zhang M, Qiu G M, Zhou L X, et al. Fatigue Resistance of Filled NR with PMMA Wrapped and RE[J]. Journal of Rare Earths, 2002, 20(4): 278-281
    [102] Qiu G M, Zhang M, Zhou L X, et al. Thermal oxidation resistance of rare earth-containing composite elastomer[J]. Journal of Rare Earths, 2001, 19(3): 192-197
    [103] Zhang M, Qiu G M, Chen H Y, et al. Study on Preparation and Property of Poly-Aminosilicone-Rare Earth Composite[J]. Journal of Rare Earths, 2003, 21(6): 622-625
    [104]杨程,刘力,张婉等.稀土铽三元配合物/橡胶复合材料的制备及荧光性能研究[J].橡胶工业, 2004, 51(5): 261-266
    [105]刘力,张立群,金日光.稀土/高分子复合材料的研究进展[J].中国稀土学报, 2001, 19(3): 193-199
    [106] Yoshioka N, Nishde H, Tsuchida E. Complexation of gadoliniumion with poly (methacrylic acid)s and magnetic properties of the complexes [J]. Inorganica Chimica Acta, 1987, 128(1): 135-138
    [107] Cheng X S. Study on synthesis of tetraphenyl porphyrin metal polymer and its physicochemical properties [D]. Japan: Osaka University, 1987
    [108] Sanina N, Roudneva T, Shilov G, et al. Structure and properties of binuclear nitrosyl iron complex with benzimidazole-2-thiolyl[J]. Dalton Transactions, 2009, 10: 1703-1706
    [109] Klimesova V, Koci J, Pour M, et al. Synthesis and preliminary evaluation of benzimidazole derivatives as antimicrobial agents[J]. European Journal of Medicinal Chemistry, 2002, 37: 409-418
    [110] Liu Y C, Yang Z Y. Crystal structure, antioxidation and DNA binding properties of Eu(III) complexes with Schiff-base ligands derived from 8-hydroxyquinoline-2-carboxyaldehyde and three aroylhydrazines[J]. Journal of Inorganic Biochemistry, 2009, 103: 1014-22
    [111] Li T R, Yang Z Y, Wang B D, et al. Synthesis, characterization, antioxidant activity and DNA-binding studies of two rare earth(III) complexes with naringenin-2-hydroxy benzoyl hydrazone ligand[J]. European Journal of Medicinal Chemistry, 2008, 43: 1688-95
    [112]贾志欣,谢婵,贾德民.一种稀土配合物及制备方法和应用[P]: 200910213912.6, 2009
    [113]武汉大学化学系编.稀土元素分析化学[M].北京:科学出版社, 1981: 313-314
    [114]刘宇. 2-巯基苯并咪唑[J].精细与专用化学品, 2005, 13(20): 12-13
    [115] Zhang Q J, Wei F X, Zhang W G, et al. Synthesis, characterization and vulcanizing properties of rare earth complexes with 2-mercaptobenthiazole[J]. Journal of Rare Earths, 2002, 20(5): 395-399
    [116] Li G Y, Koenig J L. A review of rubber oxidation[J]. Rubber Chemistry and Technology, 2005, 78(3): 355-390
    [117] Sulekha P B, Joseph R, Manjooran K B. New oligomer-bound antioxidant in natural rubber/polybutabiene rubber and natural rubber/styrene-butadiene rubber blends[J]. Journal of Applied Polymer Science, 2004, 93: 437-443
    [118] Liu Y C, Yang Z Y. Crystal structure, antioxidation and DNA binding properties of Eu(III) complexes with schiff-base ligands derived from 8-hydroxyquinoline-2-carboxyaldehyde and three aroylhydrazines[J]. Journal of Inorganic Biochemistry, 2009, 103: 1014-1022
    [119] Li T R, Yang Z Y, Wang B D, et al. Synthesis, characterization, antioxidant activity and DNA-binding studies of two rare earth(III) complexes with naringenin-2-hydroxy benzoyl hydrazone ligand[J]. European Journal of Medicinal Chemistry, 2008, 43: 1688-1695
    [120]王增林,孙万明,唐功本.添加稀土氧化物对聚丙烯热稳定性的影响[J].稀土, 1994, 15(2): 13-17
    [121]邓庆仪,喻淼,黄少惠.稀土化合物对聚丙烯结晶形态与热稳定性的影响[J].中山大学学报:自然科学版, 1999, 38(5): 121-123
    [122]汪联辉,章文贡.掺钕聚苯乙烯(Nd/PS)及其性质研究[J].功能材料, 1993, 24(3): 238-241
    [123] Bian L J, Qian X F, Yin J. Preparation and properties of rare earth oxide/polyimide hybrids [J]. Polymer Testing, 2002, 21: 841-845
    [124]张明,李幼荣,邱关明.稀土复合弹性材料的抗热氧化作用[J].中国稀土学报, 2000, 18(4): 317-321
    [125] Flory P J, Krigbaum W R. Statistical mechanics of dilute polymer solutions II.[J]. Journal of Chemical Physics, 1950,18: 1086-1094
    [126] Aprem A S, Joseph K, Laxminarayanam R, et al. Physical, mechanical and viscoelastic properties of natural rubber vulcanizates cured with new binary accelerator system[J]. Journal of Applied Polymer Science, 2003, 87(14): 2193-2203
    [127] Khanra T K, Maiti S, Adhikari B. Performance level of accelerator cum antioxidants in different rubbers[J]. Journal of Elastomers and Platics, 1994, 26(3): 294-306
    [128] Siekierski S. Further observations on the regularities associated with the formation of the lanthanide and actinide complexes[J]. Journal of Inorganic and Nuclear Chemistry, 1970, 32(2): 519-29
    [129] Peppard D F. A tetrad effect in the liquid-liquid extraction ordering of lanthanides(III)[J]. Journal of Inorganic and Nuclear Chemistry, 1969, 31(7): 2271-72
    [130] Sinha S P. Application of the“Inclined W”theory in predicting the sixth and the higher ionization potentials for the lanthanide series[J]. Inorganica Chimica Acta, 1978, 27(2): 253-260
    [131] Chang TC, Yu PY, Hong YS, et al. Effect of phenolic phosphite antioxidnat on the thermo-oxidative degradation of PMMA[J]. Polymer Degradation and Stability, 2002, 77: 29-34
    [132]金冰,胡小峰,魏伯荣等.天然橡胶的热氧化研究[J].特种橡胶制品, 2003, 24(2): 41-44
    [133] Do T T, Celina M, Fredericks P M. Attenuated total reflectance infrared micro spectroscopy of aged carbon-filled rubbers[J]. Polymer Degradation and Stability, 2002, 77(3): 417-422
    [134] Narathichat M, Sahakaro K, Nakason C. Assessment degradation of natural rubber by moving die processability test and FTIR spectroscopy[J]. Journal of Applied Polymer Science, 2010, 115(3): 1702-1709
    [135] Mathew N M, De S K. Thermo-oxidative ageing and its effect on the network structure and fracture mode of natural rubber vulcanizates[J]. Polymer, 1983, 24: 1042-1054
    [136] Hrnjak-Murgic Z, Jelencic J. Change of network structure of natural rubber vulcanizate with thermal aging[J]. Macromolecular Materials and Engineering, 2000, 283(10): 21-25
    [137] Khanra T K, Adhikari B, Maiti S. Multifunctional activities of benzazole derivatives in rubber vulcanization[J]. Rubber Chemistry and Technology, 1993, 66(11): 30-37
    [138] Wang W Z, Qu B J. Photo- and thermo-oxidative degradation of photo- crosslinked ethylene-propylene-diene terpolymer[J]. Polymer Degradation and Stability, 2003, 81: 531-537
    [139] Fateh-Alavi K, Gallstedt M, Gedde U W. The effect of antioxidants on the surface oxidation and surface cracking of crosslinked polydimethylsiloxane[J]. Polymer Degradation and Stability, 2001, 74(1): 49-57
    [140] Stephen R, Siddique A M, Singh F, et al. Thermal degradation and ageing behavior of microcomposites of natural rubber, carboxylated styrene butadiene rubber latices, andtheir blends[J]. Journal of Applied Polymer Science, 2007, 105: 341-351
    [141] Cerruti P, Malinconico M, Rychly J, et al. Effect of natural antioxidants on the stability of polypropylene films[J]. Polymer Degradation and Stability, 2009, 94(11): 2095-2100
    [142]韩志东,潘海涛,董丽敏等.聚乙烯/石墨层间化合物热降解过程的TG-FTIR研究[J].无机化学学报, 2008, 24(5): 755-759
    [143] Chen M, Ao N J, Zhang B L, et al. Comparison and evaluation of the thermooxidative stability of medical natural rubber latex products prepared with a surfur vulcanization system and a peroxide vulcanization system[J]. Journal of Appiled Polymer Science, 2005, 98: 591-597
    [144] Martins M A, Moreno R M B, McMahan C M, et al. thermooxidative study of raw natural rubber from Brazilian IAC 300 series clones[J]. Thermochimica Acta, 2008, 474: 62-66
    [145] Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706
    [146] Ozawa T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881-1886
    [147] Flynn J H, Wall L A. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Journal of Polymer Science. Part B, Polymer Letters, 1966, 4(3): 323-328
    [148] Choi S S, Han D H. Comparison of recovery behaviors of thermally aged SBR composite from compressed and circular deformations[J]. Thermochimica Acta, 2009, 49(1): 8-12
    [149] Mostafa A, Abouel-Kasem A, Bayoumi M R, et al. The influence of CB loading on thermal aging resistence of SBR and NR rubber compounds under different aging temperature, 2009, 30(3): 791-795
    [150] Shehata A B, Nasr A, Farouk T. Effect of some polymeric phenolic antioxidants on the properties of SBR vulcanizates[J]. Polymer-Plastics Technology and Engineering, 2005, 44(7): 1281-1295
    [151] Tager A. Physical chemistry of polymers[M]. New York: Cornell University Press, Ithaca, 1953:463-464
    [152] Zhang J, Wang J L, Wu Y Q, et al. Thermal behavior and improved properties of SBR and SBR/natural bitumen modified bitumens[J]. Iranian Polymer Journal, 2009, 18(6): 465-478
    [153] Choi S S. Influence of rubber composition on change of crosslink density of rubber vulcanizates with EV cure system by thermal aging[J]. Journal of Applied Polymer Science, 2000, 75(11): 1378-1384
    [154] Ding S, Khare A, Ling M T K, et al. Polymer durability estimates based on apparent activation energies for thermal oxidative degradation[J]. Thermochimica Acta, 2001, 367: 107-112
    [155] Ruch D, Becker C, Riche A, et al. Photooxidation of dyed styrene-butadiene and natural rubber[J]. Polymer Science: Series A, 2008, 50(6): 716-720
    [156] Grassie N. Chemistry of high polymer degradation processess[M]. London, 1956: 261-263
    [157] Egwaikhide P A, Akporhonor E E, Okieimen F E. Effect of coconut fibre on the cure characteristics physico-mechanical and swelling properties of natural rubber vulcanizates[J]. International Journal of Physical Sciences, 2007, 2(2): 39-46
    [158] Tasakorn P, Amatyakul W. Photochemical reduction of molecular weight and number of double bonds in natural rubber film[J]. Korean Journal of Chemical Engineering, 2008, 25(6): 1532-1538
    [159] Arayapranee W, Rempel G L. Synthesis and mechanical properties of diimide-hydrogenated natural rubber vulcanizates[J]. Journal of Applied polymer Science, 2009, 114: 4066-4075
    [160] Sulekha P B, Joseph R. Use of polymer bound antioxidants in SBR vulcanizates[J]. Plasics Rubber and Composites, 2002, 31(1): 1-5
    [161] Cataldo F. The action of ozone on polymers having unconjugated and cross- or linearly conjugated unsaturation: Chemistry and technological sapects[J]. Polymer Degradation and Stability, 2001, 73: 511-520
    [162] Pal K, Rajasekar R, Pal S K, et al. Influence of fillers on NR/SBR blends containing ENR-organoclay nanocomposites: Morphology and wear[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(5): 3022-3033
    [163] Dvorak E, Kelly M, McEntyre S, et al. Flex testing of natural and butyl rubber[J]. Materials & Design, 2003, 24(5): 397-399
    [164] Jubete E, Liauw C M, Jacobson K, et al. Degradation of carboxylated styrene butadiene rubber based water born paints. Part 1: Effect of talc filler and titania pigment on UV stability[J]. Polymer Degradation and Stability, 2007, 92(8): 1611-1621
    [165] Sain M M, Hudec I, Beniska J. Use of microscopic methods for estimation of phase morphology in rubber/polyolefin blends[J]. Polymer Testing, 1988, 8(4): 249-259
    [166] Nair T M, Kumaran M G, Unnikrishnan G. Mechanical and aging properties of cross-linked ethylene propylene diene rubber styrene butadiene rubber blands[J]. Journal of Applied Polymer Science, 2004, 93(6): 2606-2621
    [167] Mathew L, Kutty S K N. Hybrid composite based on nanosilica, nylon 6 short fibre, and styrene butadiene rubber-a study on the effect of fillers and bonding agent[J]. Progress in Rubber Plastics and Recycling Technology, 2010, 26(1): 1-20
    [168] Tanrattanakul V, Vdomkichdecha W. Development of novel elastomeric blends containing natural rubber and ultra-low-density polyethylene[J]. Journal of Applied Polymer Science, 2001, 82(3): 650-660