三相高压功率MOS栅驱动集成电路
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能功率集成电路(SPIC)的出现对提高系统的可靠性,降低其成本、
    重量和体积,实现汽车、工业、通讯等领域中系统的小型化、智能化有着重
    要的意义。本文研制成功了一种可广泛用于大功率电机控制、开关电源等应
    用中的SPIC电路—三相高压功率MOS栅驱动集成电路,其设计指标要求
    为:最高偏置电压(VOFFSET(max))为500V、最大输出电流(I_o(max))为1A、
    最高工作频率为100KHz。该电路已进行了工艺实验,获得了满意的结果,
    其研究成果已经转让给信息产业部电子24所。在高压器件研究中,提出了
    一种外延层厚度为10μm采用N埋层结构薄外延高压LDMOS器件,对进一
    步改进驱动电路的工艺有着积极的意义。主要工作包括:驱动电路的电路设
    计;耐压为1000~1200V的高压LDMOS器件研究;驱动电路的高低压兼容
    工艺设计和器件与电路的版图设计;高压器件与驱动电路的工艺实验。
     在电路设计中,作者分析了功率器件对驱动电路的要求,设计了驱动
    电路的总体结构。对电路关键参数高低压电平位移脉冲宽度、高端滤波电路
    滤波宽度的设计及在LDMOS源端加入限流电阻的必要性进行了重点分析,
    完成了各单元电路的设计。最后给出了该驱动电路的典型应用图。
     在高压器件研究中对与现有工艺相兼容厚外延LDMOS进行研究,该
    结构采用分段变掺杂多区P~-降场层,有效降低器件的表面电场,缩短器件
    的漂移区长度,增大P~-降场层注入剂量的选择范围,并有效地抑制界面电
    荷Qss对器件耐压的不利影响。针对目前厚外延工艺的缺点,提出的薄外延
    LDMOS采用N埋层,通过优化N埋层长度、注入剂量可提高器件耐压。
    通过MEDICI模拟对两种器件进行比较,结果为两种器件耐压相当,薄外延
    LDMOS导通电阻略低。
     以标准的2μm P阱CMOS工艺的基础,参考了国际上流行的BCD工
    艺,结合本电路的特殊性,本文设计了驱动电路的高低压兼容工艺,并制定
    了版图设计规则,完成器件与电路的版图设计。
     完成了高压器件与驱动电路的工艺实验。测试结果表明,器件和电路
    的各项参数均以达到甚至超过了设计指标要求。
The emerging of smart power integrated circuit (SPIC) is important to increase the system抯 reliability and reduce its cost, weight and volume. It enables the design and production of even more miniaturized and smart systems for different applications in the field of automotive, industrial and telecommunication. In this paper, a three phases high-voltage power MOS gate drive integrated circuit has been researched and designed successfully. It is a typical SPIC, which could be widely used in high power motor control and switching power supply applications. The design goal of the circuit are V0FFsET(max) is 500V, Ia(m~) is 1 A, the highest frequency of operation (f(~x)) is 100KHz. The drive circuit抯 experiment has been done and the result is satisfied. Now this circuit has been transferred to Sichuan Solid-State Circuit Institute. A thin epitaxial layer (10gm) LDMOS device used N-burry layer structure was proposed in the paper during the high-voltage device design, which is helpful to improve the drive circu
    it抯 technology. The main work of the author includes the drive circuit design, research of high-voltage LDMOS device which breakdown voltage is 1000-1200V, the drive circuit抯 technology design and layout design, technology experiments of device and circuit.
    
     During the circuit design, author analyzed the requirement of the driver for power device, and designed its general structure. The design of the circuit抯 key parameters including pulse width in the level shifter part and delay time of the filter circuit, and the necessity to add a limiting current resistor at source the LDMOS were emphatic analyzed. Author finished the design of each sub-circuit. The circuit抯 typical applicative connection was given at last.
    
     During the high-voltage device design, the thick epitaxial layer LDMOS which is compatible with current technology was researched. This device used piecewise VLD and multiple region structure F reduce field layer. The using of the F reduce field layer effectively reduce the surface electric field of the device, shorten the length of its drift region, enlarge the choice of range of the ion implant dose of the P layer, and effectively restrain the disadvantageously affection on the breakdown voltage of the interface charge Qss. Considering
    
    
    
    the shortcoming of thick epitaxial layer technology, author proposed a thin epitaxial layer LDMOS used N-burry layer. Through optimizing the N-burry layer抯 length and impurity dose will increase the device抯 breakdown voltage. The two structure LDMOS was compared by simulation with MEDICI software. The result is that their breakdown voltage is almost the same and the thin epitaxial layer LDMOS抯 Ron is lower.
    
     Based on the standard 2j.im P-well CMOS technology, after referenced the epidemical BCD technology in the world and considered the specialty of the circuit, the drive circuit抯 high and low voltage compatible technology was designed. Author also formulated the design rules and finished the device抯 and circuit抯 layout design.
    
     Author has accomplished the experiments of high-voltage devices and drive circuits. The test results show that each parameter of the devices and circuits fulfihle the anticipative demand; some parameters even exceed the demand.
引文
[1] T. M. Jahns, "Designing intelligent muscle into industrial motor control", IEEE IECON'89, pp. 1-14, 1989
    [2] Bimal k. Bose, "Recent advances in power electronics", IEEE Tran, on Power Electronics, Vol. 7, No.l, pp. 2-16, 1992
    [3] P. J. Carlson, "Reliability implications in using intelligent power integrated circuits (PICs) ", Proceedings of Power Conversion, pp. 450-454,1989
    [4] Stephen P. Robb and Judy L. Sutor, "Recent advance in power integrated circuits with high level integration", Proc. of ISPSD, pp. 342-348, 1994
    [5] B. J. Baliga, "Impact of VLSI technology on power devices", in SSDM Dig., Abstr. A-1-2, pp. 5-9, 1990
    [6] B. J. Baliga, "Power integrated circuit-a overview", IEEE Tran. Electron Devices, Vol. ED-33, pp. 1936-1938,1986
    [7] J. Auzins and R. V. Wilhelm, "Automotive electronics-getting in gear for the 90s and beyond", IEEE Journal of Circuits and Devices, pp. 14-18, 1994
    [8] N. Fujishima, Y. Yano, Y. Nagayasu, et al., "High packing density power Bi-CDMOS technology and application for a motor driver LSI", Proc. of ISPSD, pp. 298-303, 1993
    [9] A. Biber, C. Kuratli, Q. Huang, et al., "An IGBT gate drive ASIC with 3A/12. 5V CMOS output stages", Proc. of ISPSD, pp. 411-415, 1995
    [10] G. Bruning and A. Wegener, "Off-line integrated full-bridge driver for induction motors", Proc. of ISPSD, pp. 72-77, 1990
    [11] --,“功率IC跨入智能高压新领域”,国际电子商情,pp.34-46,1995 年2月
    [12] Hideki Miyazaki, Naoki Sakurai, Kenichi Onda, et al., "A novel high voltage three-phase monolithic inverter IC with two current level sensing", Proc. of ISPSD, pp. 248-253, 1991
    [13] A. Nakagawa, Y. Yamaguchi, K. Watanabe, et al., "500V three phase inverter ICs based on a new dielectric isolation technique", Proc. of ISPSD, pp. 328-332, 1992
    [14] Naoki Sakurai, Minehiro Nemoto, Hidetoshi Arakawa, et al., "A three-phase
    
    inverter IC for AC220V with a drastically small chip size and highly intelligent functions", Proc. of ISPSD, pp. 310-315, 1993
    [15] 杨健,熊伟,方健,李肇基,“新型功率器件与智能功率集成电路的发展与应用”, 电子科学技术评论,总第32期,pp.15-20,1998
    [16] B. J. Baliga, "An overview of smart power technology", IEEE Tran. Electron Devices, Vol. ED-38, pp. 1568-1575, 1991
    [17] Wolfgang Pribyl,"Itegrated Smart Power Circuits Technology,Design and Application", IEEE Tran. Electron Devices, Vol. ED-33, pp. 542-564, 1997
    [18] C. Cini and C. Diazza, "250V integrated full bridge with driving stage and logic inputs, in multipower BCD technology", in Proc. Symp. on High Voltage and Smart Power IC's, pp. 446-456, 1989
    [19] T. P. Chow, D. N. Pattanayak, B. J. Baliga and M. S. Alder, "Latching in lateral insulated gate bipolar transistor", IEDM Tech. Dig., pp. 774-777, 1987
    [20] A. L. Robinson, D. N. Pattanayak, M. S. Adler, et al., "Lateral insulated gate transistors with improved latching characteristics", IEEE Electron Device Letters, Vol. 7, No. 2, pp.61-63, 1986
    [21] 陈星弼,《功率MOSFET和高压集成电路》,东南大学出版社,1990
    [22] J. A. Appels and H. M. J. Vaes, "High-voltage thin layer devices", IEDM Tech. Dig., pp. 238-241, 1979
    [23] J. A. Appels, M. G. Collet, P. A. H. Hart, et al., "Thin layer high-voltage devices (resurf devices)", Philips Journal of Research Vol. 35, No. 1, pp. 1-13, 1980
    [24] Mike F. Chang, George Pifer, Hamza Yilmaz, et al., "Lateral HVIC with 1200-V bipolar and field-effect devices", IEEE Tran. Electron Devices, Vol. ED-33, pp. 1992-2001,1986
    [25] Z. Parpia, C. Andre ang T.Salama, "Optimization of the breakdown voltage in RESURF LDMOSTs", in Proc. Symp. on High Voltage and Smart Power IC's, pp-23-31, 1989
    [26] E. M. Sankara Narayanan, G. Amaratunga and W. L. Milne, "A study of the RESURF principle for thin epitaxial layer high voltage integrated circuits", Proc. of ISPSD, pp. 172-175, 1992
    
    
    [27] Jose G. Mena and C. A. T. Salama, "High-voltage multiple-resistivity drift-region LDMOS", Solid-State Electronics, Vol. 29, No. 6, pp. 647-656, 1986
    [28] K.Board and M. Darwish, "LDMOS transistors with implanted and deposited surface layers", IEE Proceedings, Vol. 132, Pt. 1, No.4, Augest, 1985
    [29] G. Charitat, M. A. Bouanane and P. Rossel, "A new junction termination technique for power devices: RESURF LDMOS with SIPOS layers", Proc. ofISPSD,pp. 213-216, 1992
    [30] T. Sakai, K. C. So, Z. Shen and T. P. Chow, "Modeling and characterization of SIPOS passivated, high voltage, N-and P-channel lateral RSURF type DMOSFETs", Proc. of ISPSD, pp. 288-292, 1992
    [31] D. Jaume, G. Charitat, J. M. Reynes and P. Rossel, "High-voltage planar devices using field plate and semi-resistive layers", IEEE Tran. Electron Devices, Vol. ED-38, No.7, pp. 1681-1684,1991
    [32] Serag E.D. Habib,"The ALDMOST:A New Power MOS Transistor",IEEE Tran. ED Lett. Vol.8 No.6 pp257-259,1987
    [33] A. Nezar and C. A. T. Salama, "Breakdown voltage in LDMOS transistors using internal field rings", IEEE Tran. Electron Devices, Vol. ED-38, No. 7, pp. 1676-1680, 1991
    [34] J. S. Ajit, Dan Kinzer and Niraj Ranjan, "1200V high-side lateral MOSFET in junction-isolatedpower IC technology using two field-reduction layers", Proc. of ISPSD, pp. 230-2235, 1993
    [35] A. W. Ludikhuize, "High-voltge DMOS and PMOS in analog IC's", IEDM Tech. Dig., pp. 81-84, 1982
    [36] H. M. J. Vaes and J. A. Apples, "High voltage, high current lateral devices", IEDM Tech. Dig., pp. 87-90, 1980
    [37] A. W. Ludikhuize, "A versatile 700-1200-V IC process for analog and switching applications", IEEE Tran. Electron Devices, Vol. ED-38, No. 7, pp. 1582-1589, 1991
    [38] X. B. Chen, B. Zhang and Z. J. Li, "Theory of optimum design of reverse-biased p-n junctions using resistive field plates and variation lateral doping", Solid-State Electronics, Vol. 35, No. 9, pp. 1365-1370, 1992
    
    
    [39] 张波,陈星弼,李肇基,“JTE结的二维电场分析”,半导体学报,Vol.14, No.10,pp.626-63l,1993
    [40] X. B. Chen, P. A. Mawby, C. A. T. Salama, M. S. Towers, J. Zeng and K. Board, "Lateral high-viltage devices using an optimized variational lateral doping", Int. J. Electronics, Vol. 80, No. 3, pp. 449-459, 1996
    [41] T. Terashima, J. Yamashita and T. Yamada, "Over 1000V n-ch LDMOSFET and p-ch LIGBT with JI RESURF structure and multiple floating field plate", Proc. of ISPSD, pp. 455-459,1995
    [42] H. Yilmaz, "Optimization and surface charge sensitivity of high-voltage blocking structures with shallow junctions", IEEE Tran. Electron Devices, Vol. 38, pp. 1666-1675, 1991
    [43] P. K. Tse, "High voltage IC passivation encapsulation and failure mechanisms-a review", in Proc. Symp. on High Voltage and Smart Power IC's, pp. 182-199, 1989
    [44] S. Finco, F. H. Behrens and M. I. A. Simas, "Smart power IC for DC-DC low power regulation", IEEE LAS Conference, pp. 1024-1211,1992
    [45] 秦世才,贾香鸾,“模拟集成电子学”,天津科学技术出版社,1996
    [46] 陈星弼、唐茂成,“晶体管原理与设计”,成都电讯工程学院,1987
    [47] 张开华,“半导体集成电路”,东南大学出版社,1995