船舶机舱火灾热流场特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶火灾在世界上被公认为最难扑救的火灾之一,它是船舶海难中较常见且危险性较大的一种事故。船舶火灾不仅威胁船舶本身、船上人员、货物等的安全,严重的还会导致人身伤亡和巨大的财产损失,甚至造成无法估量的环境破坏。
     机舱是船舶的动力源,是船舶的心脏,船舶的推进以及船上其它所有设备和系统所需要的各种能源均来自机舱。机舱内有各种运转着的机器和电器设备,又有大量油料及其它可燃物,如若不慎,很容易导致火灾。机舱内一旦着火,由于设备管线众多、通道狭窄,探火和扑救都非常困难,极易失去控制而造成重大损失。进行船舶机舱火灾的研究,对预防和扑救机舱火灾具有十分重要的意义。
     本论文以NIST开发的FDS程序为平台,采用LES方法对船舶机舱火灾热流场特性和规律进行了研究。主要完成以下几项工作:
     首先,建立适用于火灾计算的数学物理模型。火灾场内的流动属于多组分、低马赫数浮力流,依据这一特点对描述质量、动量和能量输运的通用方程组进行合理地简化和变形。对火的描述采用混合分数燃烧模型,模型中忽略燃烧过程中的反应机理,应用了层流扩散火焰理论和单步不可逆快速反应假定。辐射模型中把火焰和烟气视作灰体,离散后辐射输运方程采用FVM方法进行求解。模型方程组的离散采用限差分法和交错网格系统,时间项的离散采用显式格式,空间项的离散采用二阶精度的有限差分格式。
     其次,搭建了火灾实验平台,进行了室火轰燃的实验研究。采用耗氧原理测量火灾场的释热速率来研究室内火灾轰燃现象,得到了不同通风因子下轰燃的临界释热速率。实验结果与经验公式计算出的结果进行了比较,说明采用耗氧原理获得火灾场释热速率的方法对轰燃进行研究是可行的,且试验中能直接得到轰燃的临界释热速率。
     第三,为验证程序的可靠性与通用性,对室火轰燃和其它两个有代表性和针对性的实验进行了模拟计算。室火轰燃的模拟计算中,研究了C_S的取值对计算结果的影响,当滤波宽度△=0.1m时,取C_S≈0.20较为合适:两相邻房间(舱室)内火灾情况下的模拟计算中,依据模拟结果对起火房间竖直壁面
It is obvious that ship fire is one of the most difficult fires to control. Ship fires occurred frequently and there might be dangerous disasters. Life safety, property protection, cargoes on the ship, and the ship safety itself are the concerns. Lost of lives, damages to property and environmental pollution might be resulted from the fires.Engine plant room is the power source of a ship, regarded as the main core. Power for driving the ship and operating all other equipments and systems are supplied from there. In addition to the operating machines, equipments and wiring in the engine room, there are liquid fuel and other combustible items. Therefore, a fire is likely to occur in the ship engine room. Once a fire occurs, locating the fire and fighting against it are difficult due to obstructions by so many equipments and pipes. An engine room fire can grow to a very big size and become uncontrollable, causing big damages. Preventing and fighting engine room fires on ship vessels should be studied in more detail.Based on the advanced Computational Fluid Dynamics package Fire Dynamics Simulator released by the National Institute of Standards and Technology in the U.S.A., thermal flow field characteristics induced by a ship engine room fire were studied by the Large Eddy Simulation (LES) method. Key works performed in this thesis are:Firstly, mathematical and physical models commonly applied in fire simulations were developed. Fluid flow driven by a fire is a multi-species, low Mach number buoyant flow. The conservation equations on mass, momentum and energy are simplified and reduced to a form suitable for describing fluid flow driven by a fire. The fire was modeled by the mixture fraction combustion method with chemical reaction mechanisms neglected. Laminar diffusion flame theory with one-step irreversible fast reactions is assumed. Flame and smoke were taken as gray medium in the thermal radiation model. The radiative transport equation
    was solved using techniques similar to those for convective transport in Finite Volume Method for fluid flow. The governing equations were discretized by finite difference method with stagger grids. Spatial derivatives were approximated by second-order central differences. The flow variables were updated in time using an explicit second-order predictor-corrector scheme.Secondly, an experimental facility was built to carry out experiments on flashover in a chamber. The minimum heat release rate for flashover under different ventilation factors were measured by the oxygen consumption method. Experimental results were compared with the empirical formula reported in the literature. It is demonstrated that oxygen consumption calorimetry can be used to measure the heat release rate. In fact, the minimum heat release rate for flashover in a room was measured directly.Thirdly, two other experiments with a two-room structure were carried out for studying flashover. In simulating flashover, the results will be affected by different values of a constant Cs in using LES. cs of value 0.2 will be acceptablewhen the filter width is 0.1 m. For the two-room structure, the equation of air mass flow rate induced by the fire through a vertical opening was derived. In simulating fires occurring in a sealed chamber, the change of pressure in the chamber was studied. Simulation results show that the numerical simulation program developed can be applied to study ship engine room fires.Finally, real ship fire scenarios were simulated with the developed numerical simulation program. Fluid flow field was predicted for fires at the same source and same place under different ventilation conditions. The study was repeated for fires occurred at different locations with the same source and ventilation condition.The results achieved and the conclusion drawn in this thesis are of great importance and applicable in fire prevention and fire fighting against ship engine room fires or other similar cabin fires.
引文
[1] 姜晓燕,蔡敬标,陆守香.模糊综合评价方法在舰船机舱消防安全管理中的应用.火灾科学.2001,10(4):222-226页
    [2] 王当利.船舶火灾时现场施救措施及消防设备的维修保养.水运科技情报,1997,162(3):22-23页
    [3] 邱晖,刘一凡.船舶火灾应注意的几个问题.中国水运,2001(4):27-28页
    [4] 张锦基译.民用船航运(防火)规范.英国国家文书局,1984:60-72页
    [5] 董兴章.预防机舱火灾.船舶,1998(6):22-23页
    [6] 袁凤林,何大玉,毛朝君,孙祥云,孙永生,于祥旭.钢结构防火保护新技术的研究.消防科学与技术,1999(3):40-44页
    [7] 施丽彦.金属结构的防火问题.中外建筑(Chinese and Overseas Architcture),2002(2):39-41页
    [8] 钱建民,王良伟.钢结构耐火极限试验研究.消防科学与技术,2002(1):12-14页
    [9] 范维澄,程晓舫.火灾科学与社会发展.中国科学院院刊,1993,8(3):221-226页
    [10] 宋汝涛.论船舶火灾预防.航海技术,2002(2):50-51页
    [11] 刘一凡.船舶火灾事故成因分析及其对策.集美大学学报,1998,3(4):96-99页
    [12] 金东明.船舶机舱防爆防燃应注意的问题.世界海运,2001,24(3):17-18页
    [13] 刘一凡,周尊山.船舶火灾发生的趋势与应对措施.世界海运,2001(1):22-23页
    [14] 张永兴.试论船舶灭火的对策.航海技术,1996(5):22-24页
    [15] 张慧芳.谈谈船舶高级消防.航海技术,2002(6):66-67页
    [16] 郭香成.浅谈船舶火灾时的探火问题.航海科技动态,1997(9):9-10页
    [17] 邵建章.船舶火灾的扑救及救援.消防技术与产品信息,2002(8):44-48页
    [18] 邵建章.船舶火灾的扑救技术.消防技术与产品信息,2002(9):21-26页
    [19] 金良安,徐玉明,张民虎,白雪莲.船舶火灾施救存在的问题及对策.航海技术,2002(2):73-75页
    [20] 赵诗华,王怀亮,任松发.船舶火灾原因及其调查方法.武警学院学报,2002,18(4):23-26页
    [21] 王左,李琳,黄海.船舶消防与安全管理机制的改革.世界海运,2001,24(4):11-12页
    [22] 王志国,殷沐德.结构防火在舰船防火设计中的应用.火灾科学,2001,10(2):113-115页
    [23] 仲晨华,王志国,殷沐德.确定舰船防火主竖区舱壁分隔等级的经验公式.船海工程,2003(6):1-3页
    [24] 叶章基,孙祖信,吴诤,苏永俭.舰船舱室水性防火涂料体系的研究.材料开发与应用,2002,17(3):29-32页
    [25] 杨传祖,刘焕牢,李日福.船舶水雾灭火设计方法探讨.湛江海洋大学学报,1998,18(4):39-42页
    [26] 王英.机舱固定式局部水雾灭火系统.船舶,2002(1):52-53页
    [27] 苗兰森,邱金水,陈生春.舰船灭火系统现状与发展.海洋技术,2003,22(3):102-105页
    [28] 张春来,吴兆麟.机舱火灾事故中人为因素的研究.大连海事大学学报,1999,25(2):45-48页
    [29] 夏家武,浦金云,蔡一轮.舰艇舱室火灾危险性的评估方法.海军工程大学学报,2002,14(2):34-38页
    [30] 董华,刘忠,张人杰,范维澄,麻柏坤,成瑛文.舰船火灾中烟气沿通道蔓延特征的计算机模拟.火灾科学,1995,4(2):52-56页
    [31] 董华,范维澄.船舶密闭舱室火灾过程及其模拟计算.计算力学学报,1998,15(1):80-85页
    [32] 董华,范维澄.中国舰船消防现状及发展趋势.火灾科学,1994,3(2):44-46页
    [33] 王志国,杨志青,冯明初,仲晨华.舰船大空间舱室火灾安全设计.船舶设计技术交流,2003(3):14-16页
    [34] 王志国,杨志青,冯明初,仲晨华.舰船大空间舱室火灾模拟及防火设计.海军工程大学学报,2003,15(4):42-44页
    [35] 杨志青,王志国,仲晨华,冯明初.舰船内部通道的火灾烟气蔓延模拟及防火设计.船海工程,2003(4):1-3页
    [36] 冯明初,仲晨华,杨志青,吴晓伟.舰船火灾区域模拟及烟气成分分析.船海工程,2003(5):42-45页
    [37] 冯明初,仲晨华,杨志青,吴晓伟.舰船舱室火灾烟气成分分析.船舶设计技术交流,2003(4):43-46页
    [38] 陈国庆,陆守香.船舶机舱复杂空间烟气运动工程分析方法研究.消防科学与技术,2004,23(5):417-420页
    [39] 范维澄,廖光煊,钟茂华.中国火灾科学的今天和明天.中国安全科学学报,2000,10(1):11-16页
    [40] Yoshida K. Full-scale model tests of smoke movement in ship passenger accommodations (first report). ASTM Special Technical Publication No. 1336, American Society for Testing and Materials, 1998: 163-171P
    [41] Gottuk D T, Farley J P, Williams F W. The development and mitigation of backdraft explosions. Fire Safety Science—Proceedings of the Fifth International Symposium, International Association for Fire Safety Science, 1997: 935-946P
    [42] Gottuk D T, Peatross M J, Farley J P, Williams F W. The development and mitigation of backdraft: a real-scale shipboard study. Fire Safety Journal, 1999(33): 261-282P
    [43] Peatross M J, Betler C L, Back G G. Validation of full room involvement time correlation applicable to steel ship compartments. U. S. Coast Guard Report No. CG-D-16-94, 1993: 1-5P
    [44] Reneke P A, Peatross M J, Jones W W, Beyler C L, Richards R. A comparison of CFAST predictions to USCG real-scale fire tests. Journal of Fire Protection Engineer, 2001, 11(1): 43-68P
    [45] White D A, Beyler C L, Scheffey J L, Williams F W. Modeling the impact of post-flashover shipboard fires on adjacent spaces. Journal of Fire Protection Engineering, 2000, 10(4): 2-18P
    [46] Andersson C, Saterborn D. Smoke control systems aboard—a risk analysis of smoke control systems in accommodation spaces on passenger on passenger ships. Report 5093. Lund University, 2002: 1-10P
    [47] Wikman J. Ship fire safety engineering. ISRN LUTVDG/TVBB-1012-SE, ISSN 1102-8246, Lund University, Sweden, 1995: 1-149P
    [48] Ndubizu C C, Brown R A, Tatem P A, Williams F W. Fire hazard assessment in submarine plastic waste stowage compartments. SAMPE Journal, 2001, 37(4): 42-48P
    [49] Jaluria Y. Visualization of transport across a horizontal vent due to density and pressure differences. ASME, 1993: 65-81P
    [50] Epstien M. Buoyancy-driven exchange flow through small openings in horizontal partitions. Heat Transfer, 1998: 885-893P
    [51] Takeda H. Model experiments of ship fire. In 22nd Internal Symptom on Combustion, 1990: 1311-1317P
    [52] Than C F, Savilonis B. Modeling fire behavior in an enclosure with a ceiling vent. Fire Safety, 1993(20): 151-174P
    [53] Cooper L Y. Calculation of the flow through a horizontal ceiling/floor vent. NIST Technical Report NISTIR 89-4052, National Institute of Standards and Technology, 1989: 1-5P
    [54] Copper L Y. An algorithm for calculation of flow through a horizontal ceiling/floor vent in a zone-type compartment fire model. NIST Technical Report NISTIR 4402, National Institute of Standards and Technology, 1990: 1-15P
    [55] Copper L Y. Combined buoyancy- and pressure-driven flow through a horizontal circular vent. Heat Transfer, 1995(117): 659-667P
    [56] Copper L Y. Calculating Combined buoyancy- and pressure-driven flow through a shallow horizontal circular vent: application to a problem of steady burning in a ceiling-vented enclosure. Fire Safety Journal, 1996(27): 23-35P
    [57] Satoh K, Matsubara Y, Kumano Y. Flow and temperature oscillations of fire in a cubic enclosure with a ceiling and floor vent. Report of Fire research Institute of Japan No. 55, 1983: 1-20P
    [58] Roekett J A. Fire growth in combat ships. NBSIR 86-3451, National Bureau of Standards, 1986: 1-30P
    [59] 范维澄,程晓舫.火灾科学与社会发展.中国科学院院刊,1993(3):221-226页
    [60] 谢之康,范维澄,王清安.火灾过程与复杂性.科学,1998(2):7-9页
    [61] 程晓舫,范维澄.火灾科学.自然杂志,1998,20(1):8-12页
    [62] James G Q. Fundamentals of enclosure fire "Zone" models. Journal of Fire Protection Engineering, 1989, 1 (3): 99-119P
    [63] Chow W K. Multi-cell concept for simulating fires in big enclosures using a zone model. Journal of Fire Sciences, 1996, 14(3): 186-198P
    [64] Chow W K. Fire hazard assessment in a big hall with the multi-cell zone modelling concept. Journal of Fire Sciences, 1997, 15(1): 14-28P
    [65] Chow W K. Predictability of flashover by zone models. Journal of Fire Sciences, 1998, 16(5): 335-350P
    [66] Chow W K. An approach for evaluating fire zone models. Journal of Fire Sciences, 1998, 16(1): 25-31P
    [67] Chow W K, Meng L. Analysis of key equations in a two-layer zone model and application with symbolic mathematics in fire safety engineering. Journal of Fire Sciences, 2004, 22(2): 97-124P
    [68] Meng L, Chow W K. Mathematical analysis and possible application of the two-layer zone model FIRM. International Journal on Engineering Performance-Based Fire Codes, 2002, 4(1): 13-22P
    [69] 孟岚,周允基.Two-layer双层区域模型对单室火灾的模拟.哈尔滨工程大学学报,2002,23(4):56-61页
    [70] 傅祝满,范维澄.建筑火灾的模拟方法及进展.大自然探索,1996, 15(55):28-33页
    [71] 傅祝满,范维澄.建筑火灾区域模拟研究.自然科学进展,1997,7(3):345-349页
    [72] 赵坚行.燃烧的数值模拟.北京:科学出版社,2002:1-50页
    [73] 是勋刚.湍流.天津:天津大学出版社,1994:213-231页
    [74] Liu S L and Chow W K. A review on numerical simulation of turbulent flow. International Journal on Architectural Science, 2002, 3(2): 77-102P
    [75] 张兆顺.直接数值模拟和大涡模拟会议介绍.国际学术动态,1997(29):74-75页
    [76] Cabot W. Large-eddy simulations with wall model. Annual Research Briefs 1995, Center for Turbulence Research, 1995:41-50P
    [77] Winckelmans G S. Some progress in large-eddy simulation using the 3-D vortex particle method. Annual Research Briefs 1995, Center for Turbulence Research, 1995: 391-415P
    [78] Carati D. Perspectives for ensemble average LES. Annual Research Briefs 1997, Center for Turbulence Research, 1997: 107-112P
    [79] Duchamp L, Pitsch H. A level-set approach to large eddy simulation of premixed turbulent combustion. Annual Research Briefs 2000, Center for Turbulence Research, 2000: 105-116P
    [80] Pitsch H. Extend flamelet model for LES of non-premixed combustion. Annual Research Briefs 2000, Center for Turbulence Research, 2000: 149-240P
    [81] Choi D, Prasad D, Wang M, Pierce C. Evaluation of an industrial CFD code for LES application. Proceedings of the Summer Program 2000, Center for Turbulence Research, 2000:221-228P
    [82] Wang M. Dynamic wall modeling for LES of complex turbulent flow. Annual Research Briefs 2000, Center for Turbulence Research, 2000: 241-250P
    [83] Boersman B J, Lele S K. Large eddy simulation of compressible turbulent jets. Annual Research Briefs 1999, Center for Turbulence Research, 1999: 365-377P
    [84] Neto A S, Grand D, Metias O, Lesieur M. Large-eddy simulation of the turbulent flow in the downstream region of a backward-facing step. Physical Review Letters 1991, 66(18): 2320-2323P
    [85] Kobayashi T, Morinishi Y, Keon-Je OH. Large eddy simulation of Backward-facing step flow. Communication in Applied Numerical Methods, 1992(8):431-441P
    [86] Ravikanth V R, Richard H P. Large eddy simulation of the turbulent flow past a backward-facing step with heat transfer and property variations. International Journal of Heat Fluid Flow, 2002(23): 601-614P
    [87] Madabhushi R V, Vanka S P. Large eddy simulation of turbulence-driven secondary flow in a square duct. Physics of Fluids, 1991, A3(11): 2734-2745P
    [88] Murakami S, Mochida A. Three-dimensional numerical simulation of air flow around a cubic model by means of large eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics, 1987(25): 291-305P
    [89] Claus R W, Huang P G, Macinnes J M. Time-Accurate simulation of a shear layer forced at a single frequency. AIAA Journal, 1990,28(2): 267-275P
    [90] Bicknell G V, Gingold R A. Large eddy simulation of a two dimensional shear layer using smoothed particle hydrodynamics. Computational Fluid Dynamics, 1988: 305-314P
    [91] Hamba F. Large eddy simulation of a turbulent mixing layer. Journal of the Physical Society of Japan, 1987, 56(8): 2721-2732P
    [92] Horiuti K. Comparison of conservative and rotational forms in large eddy simulation of turbulent channel flow. Journal of computational physics, 1987(71): 343-370P
    [93] Mason P J, Callen N S. On the magnitude of the subgrid-scale eddy . coefficent in large-eddy simulations of turbulent channel flow. Journal of Fluid Mechanics, 1986(162): 439-462P
    [94] Piomelli U, Ferziger J H, Moin P. New approximate boundary conditions for large eddy simulations of wall-bounded flows. Phys. Fluids, 1989, A1(6): 1061-1068P
    [95] Piomelli U, Moin P, Ferziger J H, Model consistency in large eddy simulation of turbulent channel flows. Phys. Fluids, 1989, 31(7): 1884-1891P
    [96] Kajishima T, Miyake Y. Estimation of turbulence models by large eddy simulation with high-resolution grids. JSME International Journal, 1990, 33(1): 73-79P
    [97] Piomelli U, Zang T A, Speziale C G; Hussaini Y. The large-eddy simulations of transitional wall-bounded flows. Phys. Fluids, 1990, A2(2): 257-265P
    [98] Piomelli U. Large-eddy simulation of transitional channel flows. Computer Physics Communications, 1991 (65): 224-230P
    [99] Ciofalo M, Collins M W. Large-eddy simulation of turbulent flow and heat transfer in plane and fib-roughened channels. International Journal for Numerical Methods in Fluids, 1992(15): 453-489P
    [100] Tsai H M, Leslie D C. Large eddy simulation of a developing turbulent boundary layer at a flow Reynolds number. International Journal for Numerical in Fluids, 1990(10): 519-555P
    [101] Nieuwstadt F, Valk J. A large eddy simulation of buoyant and non-buoyant plum dispersion in the atmospheric boundary layer. Atmospheric Environment, 1987, 21 (12): 2573-2587P
    [102] Schumann U. Large-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. Atmospheric Environment. 1989, 23(8): 1713-1727P
    [103] Schmidt H, Schumann U. Coherent structure of the convertive boundary layer derived from large-eddy simulations. J. Fluid Mech., 1989(200): 511-562P
    [104] Piomelli U, Chasnov J R. Large eddy simulation: theory and applications. In: Hallback H, Henningson D S, Joansson A V, Alfredsson P H, editors. Turbulence and transition modeling, Dordrecht: Kluwer Academic Publishers, 1996: 269-336P
    [105] Lesieur M, Metais O. New trends in large-eddy simulations of turbulence. Annual Review Fluid Mechanism, 1996(28): 45-82P
    [106] Ferziger J. Large eddy simulation: an introduction and perspective. In: 0. Metais, Ferziger J, editors. New tools in turbulence modeling. Berlin: Les editions de Physique—Springer, 1997: 29-47P
    [107] Lesieur M. Recent approaches in large-eddy simulations of turbulence. In: Metais O, Ferziger J, editors. New tools in turbulence modeling. Berlin: Les editions de Physique—Springer, 1997: 1-28P
    [108] Aupoix B, Cousteix J, Chevalier G, Viala S, Malecki P. Turnulence modeling in aeronautical flows. In: Metais O, Ferziger J, editors. New tools in turbulence modeling. Berlin: Les editions de Physique—Springer, 1997: 199-214P
    [109] Grand D, Urbin G Large eddy simulations in nuclear reactors thermal-hydraulics. In: Metais O, Ferziger J, editors. New tools in turbulence modeling. Berlin: Les editions de Physique—Springer, 1997: 243-264P
    [110] Frohlich J, Rodi W. Introduction to large eddy simulation of turbulent flows. In: Launder B E, Sandham N D, editors. Closure strategies for turbulent and transitional flows. Cambridge: Cambridge University Press, 2002: 267-298P
    [111] Laurence D. Large eddy simulation of industrial flows. In: Launder B E, Sandham N D, editors. Closure strategies for turbulent and transitional flows. Cambridge: Cambridge University Press, 2002: 393-406P
    [112] Veynante D, Poinsot T. Reynolds averaged and large eddy simulation modeling for turbulent combustion. In: Metais O, Ferziger J, editors. New tools in turbulence modeling. Berlin: Les editions de Physique—Springer, 1997: 105-140P
    [113] Veynante D, Vervisch L. Turbulent combustion modeling. Progess in Energy and Combustion Science, 2002(28): 193-266P
    [114] Novozhilov V. Computational fluid dynamics modeling of compartment fires. Progress in Energy and Combustion Science, 2001(27): 611-666P
    [115] Rehm R G, Baum H R. The equations of motion for thermally driven, buoyant flows. Journal of Research of the National Bureau of Stand, 1978, 83(3): 297-308P
    [116] Rehm R G, Baum H R, Barnett P D, Corley D M. Finite difference calculations of buoyant convection in an enclosure: verification of the nonlinear algorithm. Applied Numerical Mathematics, 1985(1): 515-529P
    [117] Baum H R, McCaffrey B J. Fire induced flow field - theory and experiment. Fire Safety Science—Proceedings of the Second International Symposium, 1989: 129-148P
    [118] McGrattan K B, Rehm R G, Baum H R. Fire-driven flows in enclosures. Journal of Computational Physics, 1994(110): 285-291P
    [119] Baum H R, Ezekoye O A, McGrattan K B, Rehm R G Mathematical modeling and computer simulation of fire phenomenon. Theoretical and Computational Dynamics, 1994(6): 125-139P
    [120] McGrattan K B, Baum H R, Rehm R G Numerical simulation of smoke plumes from large oil fires. Atmospheric Environment, 1996, 30(24): 4125-4136P
    [121] Baum H R, McGrattan K B, Rehm R G Large eddy simulation of smoke movement in three dimensions. Thirteen Meeting of the UJNR Panel on Fire Research and Safety, 1996:249-256P
    [122] McGrattan K B, Baum H R, Rehm R G Smoke plumes from large fires. Thirteen Meeting of the UJNR Panel on Fire Research and Safety, 1996: 351-360P
    [123] Baum H R, McGrattan K B, Rehm R G Three dimensional simulations of fire plume dynamics. Fire Safety Science — Proceedings of the Fifth International Symposium, 1997: 511-522P
    [124] McGrattan K B, Baum H R, Rehm R G Large eddy simulation of smoke movement. Fire Safety Journal, 1998(30): 161-178P
    [125] McGrattan K B, Baum H R, Rehm R G. Large eddy simulation of smoke movement. Fire Safety Journal, 1998(30): 161-178P
    [126] Emmerich S J, McGrattan K B, Kato S, Baker A J. Application of a large eddy simulation model to study room airflow. ASHRAE Transactions, 1998(104): 1128-1137P
    [127] Baum H R, McGrattan K B. Simulation of large industrial outdoor fires. Fire Safety Science—Proceedings of the Sixth International Symposium. International Association for Fire Safety Science, 1999:611-622P
    [128] Rehm R G, McGrattan K B, Baum H R. An efficient large eddy simulation algorithm for computational wind engineering: application to surface pressure computations on a single building. NIST Technical Report NISTIR 6371, National Institute of Standards and Technology, 1999: 1-10P
    [129] Baum H R. Large eddy simulations of fires-from concepts to computations. Fire Protection Engineering, 2000(6): 36-42P
    [130] Musser A, McGrattan K B, Palmer J. Evaluation of a fast, simplified computational fluid dynamics model for solving room airflow problems. NIST Technical Report NISTIR 6760, National Institute of Standards and Technology, 2001: 1-11P
    [131] Hostikka S, McGrattan K B, Hamins A. Numerical modeling of pool fires using large eddy simulation and finite volume method for radiation. Fire Safety Science—Proceedings of the Seventh International Symposium, 2002:511-522P
    [132] Floyd J E, McGrattan K B, Hostikka S, Baum H R. CFD fire simulation using mixture fraction combustion and finite volume radiative heat transfer. Journal of Fire Protection Engineering, 2003(13): 11-36P
    [133] McGrattan K B, Fomey G P, Floyd J E, Prasad K, Hostikka S. Fire dynamics simulators (version 3)—user guide. NIST Technical Report NISTIR 6784, National Institute of Standards and Technology, 2002: 1-76P
    [134] McGrattan K B, Baum H R, Rehm R G, A. Hamins, Forney G P, Floyd J E, Hostikka S, K. Prasad. Fire dynamics simulator (version 3)-technical reference guide. NIST Technical Report NISTIR 6783, National Institute of Standards and Technology, 2002: 1-46P
    [135] McGrattan K B, Forney G P. Fire dynamics simulator (version 4)—user guide. NIST Special Publication 1019, National Institute of Standards and Technology, 2004: 1-90P
    [136] McGrattan K B. Fire dynamics simulator (version 4)—technical reference guide. NIST Special Publication 1018, National Institute of Standards and Technology, 2004: 1-85P
    [137] Zhang W, Hamer A, Klassen M, Carpenter D, Roby R. Turbulence statistics in a fire room model by large eddy simulation. Fire Safety Journal, 2002, 37: 721-752P
    [138] Wang H Y, Coutin M, Most J M. Large-eddy simulation of buoyancy-driven fire propagation behind a pyrolysis zone along a vertical wall. Fire Safety Journal, 2002, 37: 259-285P
    [139] Clement J M, Fleisehmann C M. Experimental verification of the fire dynamics simulator hydrodynamic model. Fire Safety Science—Proceedings of the Seventh International Symposium, 2002: 839-862P
    [140] Cao L Y, Guo Y C. Large eddy simulation of smoke moment in a shaft. International Journal on Engineering performance-Based Fire Codes, 2003, 5(4): 152-157P
    [141] Chow W K, Yin R. Discussion on two plume formulae with computational fluid dynamics. Journal of Fire Sciences, 2002, 20(3): 179-201P
    [142] Chow W K, Yin R. A new model on simulating smoke transport with computational fluid dynamics. Building and Environment, 2004, 39(6): 611-620P
    [143] Ma T, Quintiere J. Numerical simulation of axi-symmetrie fire plumes: accuracy and limitations. Fire Safety Journal, 2003(8): 467-492P
    [144] 苏铭德.弯曲槽道内湍流运动的大涡模拟.力学学报,1989,21(5):513-521页
    [145] Su M D. Algebraic modeling of large eddy simulation and its application. Science in China (Series A), 1990, 33(2): 185-195P
    [146] Su M D. LES of turbulent flow in straight/curve duct. Ph. D. thesis. Techinesche Universitate Muenchen, Germany, 1993: 1-30P
    [147] 苏铭德,弗里德里克.用大涡模拟检验湍流模型.应用数学和力学,1994,15(11):991-997页
    [148] 苏铭德.直方管内充分发展湍流的大涡模拟(第一部分).空气动力学学报,1995,13(1):1-8页
    [149] 苏铭德.直方管内充分发展湍流的大涡模拟(第二部分).空气动力学学报,1995,13(1):9-18页
    [150] 苏铭德,康钦军.亚临界雷诺数下圆柱绕流的大涡模拟.力学学报,1999,31(1):100-105页
    [151] 严红,苏铭德.激励小尺度模式在湍流圆管射流中的应用.力学学报,2000,32(5):513-522页
    [152] Su M D, Chen Q Y, Chiang C M. Comparison of different subgrid-scale models of large eddy simulation for indoor airflow modeling. Journal of Fluids Engineering, 2001, 123: 628-639P
    [153] 苑明顺.高雷诺数圆柱绕流的二维大涡模拟.水动力学研究与进展(A辑),1992,7(增刊):614-622页
    [154] 范全林,张会强,郭印诚,王希麟,林文漪.自由剪切湍流中颗粒—拟序结构相互作用研究进展.力学进展,2001,31(4):611-620页
    [155] 范全林,张会强,郭印诚,王希麟,林文漪.气粒两相平面湍射流拟序结构的大涡模拟.燃烧科学与技术,2001,7(1):21-25页
    [156] 范全林,张会强,郭印诚,王希麟,林文漪.入流滑移条件对两相射流特性影响的大涡模拟研究.燃烧科学与技术,2001,7(1):99-103页
    [157] 范全林,张会强,郭印诚,王希麟,林文漪.几何对称性处理对自由平面湍射流大涡模拟的影响.燃烧科学与技术,2001,7(2):144-148页
    [158] 范全林,张会强,郭印诚,王希麟,林文漪.圆湍射流的轴对称大涡模拟.燃烧科学与技术,2001,7(4):248-251页
    [159] 范全林,张会强,郭印诚等.平面自由湍射流拟序结构的大涡模拟研究. 清华大学学报(自然科学版),2001,41(11):31-34页
    [160] 范全林,王希麟,张会强,郭印诚,林文漪.圆湍射流拟序结构研究进展.力学进展,2002,32(1):109-118页
    [161] 刘奕,郭印诚,张会强,王希麟,林文漪.平面自由射流中燃料扩散的大涡模拟.燃烧科学与技术,2001,7(2):153-157页
    [162] 刘奕,郭印诚,张会强,王希麟,林文漪.大涡模拟及其在湍流燃烧中的应用.力学进展,2001,31(2):215-226页
    [163] 刘奕,郭印诚,张会强,王希麟,林文漪.混合层流动拟序结构的大涡模拟.应用力学学报,2002,19(2):22-26页
    [164] 刘奕,郭印诚,张会强,王希麟,林文漪.入口速度比对射流拟序结构的影响.计算力学学报,2003,20(2):140-145页
    [165] 刘奕,郭印诚,张会强,王希麟,林文漪.甲烷平面射流扩散火焰的大涡模拟.工程热物理学报,2003,24(2):343-346页
    [166] 王兵,张会强,王希麟,郭印诚,林文漪.不同亚格子模式后台阶湍流流动大涡模拟中的应用.工程热物理学报,2003,24(1):157-160页
    [167] 王兵,张会强,虞建丰,王希麟,郭印诚,林文漪.后台阶分离流动中大涡结构演变的数值模拟.力学季刊,2003,24(2):166-173页
    [168] 王兵,张会强,虞建丰,王希麟,郭印诚,林文漪.气粒两相二维后台阶突扩流动的大涡模拟.燃烧科学与技术,2003,9(5):447-452页
    [169] Wang B, Zhang H Q, Wang X L, Guo Y C, Lin W Y. Large eddy simulation of particle-laden turbulent flow over a backward-facing step. Tsinghua Science and Technology, 2004, 9(1): 57-63P
    [170] 樊洪明,何钟怡,王小华.弯曲管段内流动的大涡模拟.水动力学研究与进展(A辑),2001,16(1):78-83页
    [171] 樊洪明,李先庭,何钟怡,江亿.方形截面弯管二次流数值模拟.热能动力工程,2002,17:510-513页
    [172] 樊洪明等.洁净室流场大涡模拟.空气动力学学报,2001,19(3):302-309页
    [173] Fang H M, Liu S L, He Z Y, Li X T. Large eddy simulation of flow field in vector flow clean-room. Tsinghua Science and Technology, 2002, 7(3): 326-330P
    [174] Fan H M, Ren H Z, Li X T, Yi J. Numerical study on air flow around an opening with large eddy simulation. Journal of Hydrodynamics (Serial B), 2003(6): 45-48P
    [175] 王小华,何钟怡.二并列方柱绕流的大涡模拟.哈尔滨建筑大学学报,2002,35(2):49-53页
    [176] 王小华,樊洪明,何钟怡.后台阶流动的数值模拟.计算力学学报,2003,20(3):361-365页
    [177] 王小华,孙海鸥,何钟怡.船用气水分离器惯性级流场分析及阻力特性研究.应用力学学报,2003,20(1):89-93页
    [178] 王小华,何钟怡.三维方腔拖曳流的数值模拟.水动力学研究与进展(A辑),2004,19(2):174-182页
    [179] 刘难生,仲峰泉,陆夕云,庄礼贤.一种改进的分层剪切流亚格子尺度模型及其应用.中国科学(A辑),2002,32(2):121-131页
    [180] 刘难生,仲峰泉,陆夕云,庄礼贤.旋转圆管湍流的大涡模拟数值研究.力学学报,2002,34(6):834-846页
    [181] 罗坤,金晗辉,樊建人,岑可法.平面湍流射流拟序结构与颗粒的双向耦合作用.西安交通大学学报,2003,37(3):302-305页
    [182] Jin H H, Luo K, Fanand J R, Cen K F. Large eddy simulation of a particle—laden turbulent plane jet. Journal of Zhejiang University Science, 2003, 4(2): 175-180P
    [183] Jin H H, Luo K, Fanand J R, Cen K F. Large eddy simulation of the gas-particle turbulent wake flow. Journal of Zhejiang University Science, 2004, 5(1): 106-110P
    [184] 王丽丽,李家春,谢正桐.不可压缩流体三维Rayleigh-Taylor不稳定性的大涡模拟.中国科学(A辑),2002,32(2):158-169页
    [185] Liu J, Lu X Y. Large eddy simulation of smoke movement with water spray. Fire Safety Science, 2002, 11(1): 15-23P
    [186] Liu J, Lu X Y. Application of Large eddy simulation to smoke movement. Fire Safety Science, 2002, 11 (1): 5-14P
    [187] Gao P Z, Liu S L, Chow W K. Large eddy simulations for studying tunnel smoke ventilation. Tunneling and Underground Space Technology, 2004, 19(6): 577-586P
    [188] 蔡旭晖,陈家宜.一个对流边界层大涡模式的建立与调试.大气科学,1995,19(4):415-421页
    [189] 蔡旭晖,陈家宜.对流边界层中泡状结构的大涡模拟研究.大气科学,1997,21(2):223-230页
    [190] 蔡旭晖,陈家宜.水平非均匀对流边界层热量平衡和平流输送作用的大涡模拟.大气科学,2000,24(1):95-102页
    [191] 吴涧,蒋维楣.对流边界层的大涡模拟研究.气象科学,1999,19(1):33-41页
    [192] 苗世光,蒋维楣,李昕,刘衡.对流边界层大涡模式的改进及对夹卷速度的研究.大气科学,2001,25(1):25-37页
    [193] 王雪梅.大涡模拟模式研究对流层湍流.热带气象学报,2001,17(3):281-286页
    [194] 王雪梅.大涡模拟模式研究对流层湍流.热带气象学报,2001,17(3):281-286页
    [195] 蒋维楣,苗世光.大涡模拟与大气边界层研究——30年回顾与展望.自然科学进展,2004,14(1):11-19页
    [196] 赵坚行.燃烧的数值模拟,北京:科学出版社,2002,6:1-25页
    [197] 万俊华,邰冶,夏允庆.燃烧理论基础.哈尔滨:哈尔滨船舶工程学院出版社,1992:9-153页
    [198] 孟岚.燃汽轮机燃烧室三维湍流的数值仿真.哈尔滨工程大学博士学位论文,2002:61-94页
    [199] Huggett C. Estimation of the rate of heat release by means of oxygen consumption measurements. Fire and Materials, 1980(4): 61-65P
    [200] 杨世铭.传热学.第二版.北京:高等教育出版社,1994:268-338页
    [201] McGrattan K B. Computational fluid dynamics and fire modeling. NIST Technical Report Class2002, National Institute of Standards and Technology, 2001: 1-50P
    [202] Incropera F P, DeWitt D P. Introduction to Heat Transfer. Third Edition. New York: John Wiley & Sons, 1996: 595-715P
    [203] 卞伯绘(编著),王补宣(审订).辐射换热的分析与计算.北京:清华大学出版社,1988:244-315页
    [204] Raithby G D, Chui E H. A finite-volume method for predicting radiation heat transfer in enclosures with participating media. Journal of Heat Transfer, 1990, 112(2): 415-423P
    [205] Aldama A A. Filtering techniques for turbulent flow simulation. In: Brebbia C A, Orszag S A, editors. Lecture Notes in Engineering. Heidelberg: Springer-Verlag, 1990:7-41P
    [206] Su M D. Large eddy simulation of fully development turbulence in straight- or curved- square ducts and in a curved channel. Ph. D. thesis, Techinesche Universitaet Muenchen, Germany, 1993: 1-30P
    [207] Ferziger J H. Subgrid-scale modeling. In: Galperin B, Orszag S A, editors. Large eddy simulation of complex engineering and geophysical flows. Cambridge: Cambridge University Press, 1993: 37-54P
    [208] Piomelli U. Application of large eddy simulations in engineering: an overview. Galpedn B, Orszag S A, editors. Large eddy simulation of complex engineering and geophysical flows. Cambridge: Cambridge University Press, 1993: 119-137P
    [209] Germano M, Piomelli U, MoinP, Cabot W H, A dynamic subgrid-scale eddy viscosity model. Physics of Fluids, 1991, 3: 1687-1837P
    [210] Lilly D K. A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids, 1992, 4: 633-635P
    [211] Smagorinsky J. General circulation experiments with the primitive equations. Monthly Weather Review, 1963, 91: 99-164P
    [212] Lilly D K. On the application of the eddy viscosity concept in the inertial sub-range of turbulence. NCAR Manuscript 123, 1966
    [213] M. Germano. Ten years of the dynamic model. In: Geurts B J, editor. Modern simulation strategies for turbulent flow. Edwards, 2001 : 173-190P
    [214] Lilly D K. A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids (A), 1992,4: 633-635P
    [215] Zang Y, Street R L, Koseff J R. A dynamic mixed subgrid-scale model and its application to recalculating flow. Physics of Fluids (A), 1993, 5: 3186-3195P
    [216] Ghosal S, Lund T, Moin P, Akselvoll K. A dynamic localization model for large-eddy simulation of turbulent flows. Journal of Fluid Mechanics, 1995, 286: 229-255P
    [217] Piomelli U, Liu J. Large eddy simulation of rotating channel flows using a localized dynamic model. Physics of Fluids, 1995, 7: 839-848P
    [218] Meneveau C, Lund T, Cabot WH.A Lagrangian dynamic sub-grid scale model of turbulence. Journal of Fluid Mechanics, 1996, 315: 353-363P
    [219] Zhang W, Chen Q Y. Large eddy simulation of indoor airflow with a filtered dynamic subgrid scale model. International Journal of Heat and Mass Transfer, 2000,43: 3219-3231P
    [220] Zang Y, Street R L, Koseff J R. A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Physics of Fluids, 1993, 5(12): 3186-3196P
    [221] Horiuti K. A new dynamic two-parameter mixed model for large-eddy simulation. Physics of Fluids, 1997, 9: 3443-3464P
    [222] Misra A, Pullin D I. A vortex-based subgrid model for large-eddy simulation. Physics of Fluids, 1997, 9: 2243-2251P
    [223] Voelkl T, Pullin D I, Chan D C. A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation. Physics of Fluids, 2000, 12: 1810-1819P
    [224] Kosovic B, Pullin D I, Samtaney R. Subgrid-scale modeling for large-eddy simulations of compressible turbulence, Physics of Fluids, 1991, 14: 1511-1522P
    [225] Shah K B, Ferziger J H. A new non-eddy viscosity subgrid-scale model and its application to channel flow. Center for Turbulence Research Annual Research Briefs, 1995: 1-10P
    [226] Uchida T, Ohya Y. Large-eddy simulation of turbulent airflow over complex terrain. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91:219-229P
    [227] Zhou X, Luo K H, Williams J J. Large eddy simulation of a turbulent forced plume. European Journal of Mechanics - B/Fluids, 2001, 20: 233-254P
    [228] Yoshizawa A. Statistical theory for compressible turbulent shear flows with the application to subgrid modeling. Physics of Fluids, 1986, 29: 2153-2164P
    [229] Speziale C G, Erlebacher G, Zang T A. The subgrid-scale modeling of compressible turbulence. Physics of Fluids, 1988,29: 940-942P
    [230] Martin M P, Piomelli U, Candler G V. Subgrid-scale models for compressible large-eddy simulations. Theoretical and Computational Fluid Dynamics, 2000, 13: 361-376P
    [231] Speziale C G, Erlebacher G, Zang T A. The subgrid-scale modeling of compressible turbulence. Physics of Fluids, 1988, 31: 940-946P
    [232] Moin P, Squires K, Cabot W, Lee S. A dynamic subgrid-scale model for compressible turbulence and scalar transport. Physics of Fluids, 1991, 3: 2746-2757P
    [233] Lee J S, Xu X, Pletcher R H. Large eddy simulation of heated vertical annular pipe flow in fully developed turbulent mixed convection. International Journal of Heat and Mass Transfer, 2003, in press.
    [234] Avancha R V R, Pletcher R H. Large eddy simulation of the turbulent flow past a backward-facing step with heat transfer and property variations. International Journal of Heat and Fluid Flow, 2002,23: 601-614P
    [235] Vreman B, Geurts B, Kuerten H. Subgrid-modeling in LES of compressible flow. Applied Science Research, 1995, 54: 191-203P
    [236] Deardorff J W. A numerical study of three dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 1970, 41(2): 453P
    [237] Yeh T T, VanAtta C W. Spectral transfer of scalar and velocity fields in heatedgrid turbulence. Journal of Fluid Mechanics, 1973, 58: 233-261P
    [238] Ferziger J H, Leslie D C. Large eddy simulation: a predictive approach to turbulent flow computation. AIAA paper, 1979(79): 147P
    [239] Moin P, Kim J. Numerical investigation of turbulent channel flow. Journal of Fluid Mechanics, 1982,118: 341P
    [240] Piomelli U et al. Model consistency in large eddy simulation of turbulent channel flows. Physics of Fluids, 1988,31(7): 1884-1891P
    [241] Piomelli U. Large-eddy simulation of transitional channel flow. Computer Physics Communication, 1991,65: 224-230P
    [242] Tsai H M, Leslie D C. Large eddy simulation of a developing turbulent boundary layer at a low Reynolds number. International Journal for Numerical Methods in Fluids, 1990,10: 519-555P
    [243] Friedrich R. On large eddy simulation of turbulent flows. Proceedings of International Conference on Computational Methods in Flow Analysis, Okayama University, Japan, 1988, 2: 833P
    [244] Kobayashi T. Large eddy simulation of backward-facing step flow. Communications in Applied Numerical Method, 1992, 8:431-441P
    [245] Ravikanth V R A, Richard H P. Large eddy simulation of the turbulent flow past a backward-facing step with heat transfer and property variations. International Journal of Heat and Fluid Flow, 2002,23: 601-614P
    [246] Addad Y, Laurence D, Talotte C, Jacob M C. Large eddy simulation of a forward-backward facing step for acoustic source identification. International Journal of Heat and Fluid Flow, 2003, 24: 562-571P
    [247] Yu K F, Lau K S, Chan C K. Large eddy simulation of particle-laden turbulent flow over a backward-facing step. Communications in Nonlinear Science and Numerical Simulation, 2003, in press
    [248] Jones W P, Wille M. Large-eddy simulation of a plane jet in a cross-flow. International Journal of Heat and Fluid Flow, 1996, 17: 296-306P
    [249] Yuan L L, Street R L, Ferziger J H. Large eddy simulations of a round jet in crossflow. Journal of fluid mechanics, 1999, 379: 71-104P
    [250] Kim J, et al. Investigation of reattaching turbulent flow: flow over backward facing step. ASHRAE Transactions, 1980, 102: 302P
    [251] Hamba F. Large eddy simulation of a turbulent mixing layer. Journal of the Physical Society of Japan, 1987, 56(8): 2721-2732P
    [252] Schmidt H, Schumann U. Coherent structure of the convective boundary layer derived from large-eddy simulations. Journal of Fluid Mechanics, 1989, 200: 511-562P
    [253] Schumann U. Large-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. Atmospheric Environment, 1989, 23(8): 1713-1727P
    [254] 帕坦卡(著),张政(译).传热与流体流动的数值计算.北京:科学出版社,1984:130-160页
    [255] Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics the finite volume method. England: Pearson Education Limited, Edinburgh Gate, Harlow, Essex CM20 2/E, 1995:10-120P
    [256] 陶文铨.数值传热学.西安:西安交通大学出版社,1988:250-311页
    [257] 忻孝康,刘儒勋,蒋伯诚.计算流体力学.长沙:国防科技大学出版社,1989:42-158页
    [258] 吴子牛.计算流体力学基本原理.北京:科学出版社,2001:177-190页
    [259] 霍然,胡元,李元洲.建筑火灾安全工程导论.合肥:中国科技大学出版社,1999:1-115页
    [260] Karlsson B, Quintiere J G. Enclosure fire dynamics. America, Florida: CRC Press, 1999: 25-46P, 81-138P
    [261] Babranskas V, Graayson S J. Heat release rate. London and NY: Elsevier Science Publishing Co., 1992:1-111P
    [262] Peacock R D, Davis S, Babrauskas V. Data for room fire model comparisons. Journal of Research of the National Institute of Standards and Teelmology, 1991, 96(4): 411-432P
    [263] Thornton W. The relation of oxygen to the heat of combustion of organic compounds. Philosophical Magazine and Journal of Science, 1917, 33(196): 1P
    [264] Huggett C. Estimation of rate of heat release by means of oxygen consumption measurements. Fire and Materials, 1980,4(2): 61-65P
    [265] Parker W J. An investigation of the fire environment in the ASTM E-84 Tunnel test. NBS Technical Note 945, National Bureau of Standard, 1977: 1-10P
    [266] Parker W J. Calculation of the heat release rate by oxygen consumption for various applications. NBSIR81-2427-1, National Bureau of Standard, 1982: 1-30P
    [267] Parker W J. Calculation of the heat release rate by oxygen consumption for various applications. Journal of Fire Science, 1984,2: 380-395P
    [268] Krause R F, Gann R G. Rate of heat release rate measurements using oxygen consumption. Journal of Fire and Flammability, 1980, 12: 117-130P
    [269] Sensenig D L. An oxygen consumption technique for determining the contribution of interior wall finishes to room fires. NBS Technical Note 1182, National Bureau of Standard, 1980: 1-5P
    [270] Jassens M L. Measuring rate of heat release rate by oxygen consumption. Fire Technology, 1991, 27: 234-249P
    [271] McCaffrey B, Gheskestad. A robust bi-directional low-velocity-probe for flame and fire application. Combustion and Flame, 1976,26: 125-127P
    [272] ASTM D5424-94a: Standard test method for smoke obscuration of insulating materials contained in electrical or optical fiber cables when burning in a vertical cable tray configuration. American Society for Testing and Materials, Philadelphia, 1997: 505-506P
    [273] ASTM D5424-99: Standard test method for smoke obscuration of insulating materials contained in electrical or optical fiber cables when burning in a vertical cable tray configuration. American Society for Testing and Materials, Philadelphia, 2000: 17-18P
    [274] ASTM D5537-94: Standard test method for heat release, flame spread and mass loss testing of insulating materials contained in electrical or optical fiber cables when burning in a vertical cable tray configuration. American Society for Testing and Materials, Philadelphia, 1997: 540-541P
    [275] ASTM D5537-99: Standard test method for heat release, flame spread and mass loss testing of insulating materials contained in electrical or optical fiber cables when burning in a vertical cable tray configuration. American Society for Testing and Materials, Philadelphia, 2000: 11P
    [276] ASTM E1354-94: Standard test method for heat and visible smoke release rates for materials and products using oxygen consumption calorimeter. American Society for Testing and Materials, Philadelphia, 1997: 1125-1141P
    [277] ASTM E1354-99: Standard test method for heat and visible smoke release rates for materials and products using oxygen consumption calorimeter. American Society for Testing and Materials, Philadelphia, 2000: 1-18P
    [278] STM E1537-95b: Standard test method for fire testing of upholstered furniture. American Society for Testing and Materials, Philadelphia, 1997: 1327-1328P
    [279] ASTM El 537-99: Standard test method for fire testing of upholstered furniture. American Society for Testing and Materials, Philadelphia, 2000: 16-17P, 3-4P
    [280] ISO9705: 1993(E), Fire tests—full-scale room test for surface products. International Organization for Standardization, Geneva, Switzerland, 1996
    [281] Graham T L, Makhviladze G M, Roberts J P. On the theory of flashover development. Fire Safety Journal, 1995,25: 229-259P
    [282] Thomas P H. The growth of fire—ignition till full involvement. In: Cox G, editor. Combustion fundamentals of fire. New York: Academic Press, 1995: 273-328P
    [283] Peacock R D, Peneke P A, Bukowski R W, Babrauskas V. Defining
     flashover for fire hazard calculations. Fire Safety Journal, 1999, 32: 331-345P
    [284] Novozhilov V. Flashover control under fire suppression conditions. Fire Safety Journal, 2001, 36: 641-660P
    [285] Feaseya R, Buchanan A. Post-flashover fires for structural design. Fire Safety Journal, 2002, 37: 83-105P
    [286] Thomas P H., Bullen M L., Quintiere J G, McCaffrey B J. Flashover and instabilities in fire behavior. Combustion and Flame, 1980, 38: 159-171P
    [287] Thomas P.H. Fires and flashover in rooms—a simplified theory. Fire Safety Journal, 1980/81, 3: 67-76P
    [288] Beard A N, Drysdale D D, Holborn P G Bishop S R. A non-linear model of flashover. Fire Science Technology, 1992, 12: 11-27P
    [289] Bishop S R, Holborn P G Beard A N, Drysdale D D. Nonlinear dynamics of flashover in compartment fires. Fire Safety Journal, 1993, 21:11 -45P
    [290] Holborn P G Bishop S R, Drysdale D D, Beard A N. Experimental and theoretical models of flashover. Fire Safety Journal, 1993,21: 257-266P
    [291] Beard AN, Drysdale D D, Holborn P G Bishop S R. A model of instability and flashover. Journal of Applied Fire Science, 1994/1995,4: 3-16P
    [292] Graham T L, Makhviladz G M, Roberts J P. On the theory of flashover development. Fire Safety Journal, 1995,25: 229-259P
    [293] Graham T L, Makhviladze G M, Roberts J P. The effects of the thermal inertia of the walls upon flashover development. Fire Safety Journal, 1999, 32: 35-60P
    [294] Liang F M, Chow W K, Liu S D. Preliminary study on flashover mechanism in compartment fires. Journal of Fire Sciences, 2002, 20(2): 87-112P
    [295] Babrauskas V. Estimating room flashover potential. Fire Technology, 1980, 16(2): 94-103P
    [296] Quintiere J G, McCaffrey B J. The burning of wood and plastic cribs in an enclosure. NBSIR 80-2054, National Bureau of Standard, 1980: 1-3P
    [297] Huo R, Jin X H, Shi C L, Chow W K. On the equations for flashover fire in small compartments. International Journal on Engineering Performance-Based Fire Codes, 2001, 3(4): 158-165P
    [298] Luo M, Beck V. A study of non-flashover and flashover fires in a full-scale multi-room building. Fire Safety Journal, 1996,26: 191-219P
    [299] Luo M, He Y, Beck V. Application of field model and two-zone model to flashover fires in a full-scale multi-room single level building. Fire Safety Journal, 1997, 27: 1-25P
    [300] Thomas P H. Testing products and materials for their contribution to flashover in rooms. Fire and Materials, 1981, 5: 103-111P
    [301] McCaffrey B J, Quintiere J G, Harkeleroad M F. Estimating room temperatures and the likelihood of flashover using fire data correlations. Fire Technology, 1981, 17(2): 98-119P
    [302] Quintiere J G Growth of fire in building compartments. ASTM STP 614, American Society for Testing and Materials, 1976: 131-167P
    [303] Morgan H P. The influence of window flows in the onset of flashover. SFSE/FRS Symposium on Flow Through Openings, Borehamwood, BRE, Garsten,UK. 1989: 1-21P
    [304] Rodi W. Large-eddy simulation and statistical turbulence models: complementary approaches. In: O. Metais, Ferziger J H, editors. New tools in turbulence modeling. Berlin: Les editions de Physique—Springer, 1997: 49-72P
    [305] Spezial C G, So R. Turbulence modeling and simulation. In: Johnson R W, editor. The handbook of fluid dynamics. CRC Press, 1998: 14.85-14.93P
    [306] Grotzbach G. Direct numerical simulation of turbulent flows. AIAA Journal, 1986,15: 1261-1267P
    [307] Murakami S, Mochida A, Matsui K. Large eddy simulation of non-isothermal room airflow, comparison between standard and dynamic type of Smagorinsky model. Journal of Institute of Industrial Science, 1995, 47(2): 7-12P
    [308] Murakami S. Overview of turbulence models applied in CWE-1997. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 1-24P
    [309] Murakami S, Iizuka S, Ooka R. CFD analysis of turbulent flow past square cylinder using dynamic LES. Journal of Fluids and Structures, 1999, 13: 1097-1112P
    [310] Sandham N D. A review of progress on direct and large-eddy simulation. In: Geurts B J, editor. Modern simulation strategies for turbulent flow. Edwards, 2001: 1-20P
    [311] Zeng Q C, Liu X B. Numerical simulation methods for the motion of particles in turbulent flows. Journal of Sichuan University of Science and Technology, 2001(1): 33-36P
    [312] Rodi W. Large-eddy simulation of the flow past bluff bodies. In: Launder B E, Sandham N D, editors. Closure strategies for turbulent and transitional flows. Cambridge: Cambridge University Press, 2002: 361-391P
    [313] Zhang W, Chen Q Y. Large eddy simulation of indoor airflow with a filtered dynamic subgrid scale model. International Journal of Heat and Mass Transfer, 2000,43: 3219-3231P
    [314] Jiang Y, Chen Q Y. Study of natural ventilation in buildings by large eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics, 2001,89: 1155-1178P
    [315] Yaga M, Endo H, Yamamoto T, Aoki H, Miura T. Modeling of eddy characteristic time in LES for calculating turbulent diffusion flame. International Journal of Heat and Mass Transfer, 2002,45: 2343- 2349P
    [316] Yoshizawa A. Eddy-viscosity-type sub-grid-scale model with a variable Smagorinsky coefficient and its relationship with the one equation model in large eddy simulation. Physics of Fluids, 1991, 3(8): 2007-2009P
    [317] Chen Q Y. Computation of different κ-ε models for indoor airflow computations. Numerical Heat Transfer (Part B), 1995, 28: 353-369P
    [318] Quintiere J G, Braven K D. Some theoretical aspects of fire induced flows through doorways in a room-corridor scale model. NBSIR 78-1512, National Bureau of Standards, Gaithersburg, MD, U.S.A., 1978
    [319] Tanaka T, Nakaya I, Yoshida M. Full scale experiments for determining the burning conditions to be applied to toxicity tests. Proceedings of the 1 st International Symposium on Fire Safety Science, 1985,129-138P
    [320] Nakaya I, Tanaka T, Yoshida M. Doorway flow induced by a propane fire. Fire Safety Journal, 1986, 10: 185-195P
    [321] Karlsson B, Quintiere J Q. Profiles and vent flows for well-ventilated enclosures, Chapter 5, Enclosure fire dynamics. CRC Press, Boca Raton, 2000. 81-114P
    [322] Steckler K D, Baum H R, Quintiere J Q. Fire induced flows through room openings - flow coefficients. Proceedings of the 20th International Symposium on Combustion, The Combustion Institute, Pittsburgh, 1984. 1591-1600P
    [323] Chow W K. Numerical studies on the transient behaviour of a fire plume and ceiling jet. Mathematical and Computer Modelling. 1993, 17: 71-79P
    [324] Nam S, Bill R G Numerical simulation of thermal plumes. Fire Safety Journal, 1993,21:231-256P
    [325] Chow W K, Cui E. CFD simulations on balcony spill plume. Journal of Fire Science, 1998, 16: 468-485P
    [326] Li J, Chow W K. Line plume approximation on atrium smoke filling with thermal stratified environment. ASME Journal of Heat Transfer, 2003, 125: 289-300P
    [327] Quintiere J G Fundamentals of enclosure fire zone models. Journal of Fire Protection Engineering, 1989,1(2): 99-119P
    [328] Hagglund B, Nireus K, Werling P. Pressure rise due to fire growth in a closed room. Description of three full-scale tests report No. FOA-R-96-00347-2.4-SE, Defence Research Establishment (FOA) Weapons and Protection Division Stockholm Sweden, 1996: 1-27P
    [329] Peacock R D, Reneke P A, Davis W D, Jones W W. Quantifying fire model
     evaluation using functional analysis. Fire Safety Journal, 1999(33): 167-184P.
    [330] Friday P A, Mowrer F W. Comparison of FDS model predictions with FM/SNL fire test data NIST GCR 01-810, National Institute of Standards and Technology US Department of Commerce, 2001: 1-50P
    [331] 孟岚,郜冶.火灾流场中湍流、燃烧和浮力的相互作用.哈尔滨工程大学学报,2002,23(2):111-117页