甘蓝型油菜新种质资源创建及其株型性状遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜属于十字花科芸薹属植物,是世界上四大油料作物之一,也是重要的食用油源和蛋白质饲料来源及重要的工业原料。目前,在我国甘蓝型油菜已经代替了白菜型油菜和芥菜型油菜成为我国主要栽培油菜类型。但是,由于甘蓝型油菜在我国种植时间较晚,遗传基础薄弱,严重制约了我国甘蓝型油菜的育种工作。然而,芸薹属内丰富的遗传资源为甘蓝型油菜种质资源创新提供了条件。通过芸薹属内种间杂交拓宽甘蓝型油菜种质资源,发掘出油菜近缘种中关于产量和农艺性状的优良基因,已经成为改良现有甘蓝型油菜、提高产量的重要手段,也是遗传育种科研工作者研究的主要方向之一。本文利用芥菜型油菜和甘蓝进行种间杂交,采用幼胚培养技术创建异源三倍体,并对其后代进行细胞学、形态学及分子生物学鉴定;对甘蓝型油菜新种质(A+A+C+C+,由芥菜型油菜AjAjBjBj与甘蓝C°C°染色体组部分交换后形成)中半矮秆衍生系10D130进行了株高、角果长度等性状进行了遗传分析。研究结果如下:
     1.通过15份芥菜型油菜和6份甘蓝进行种间杂交,并统计30d后残留子房和获得幼胚数,结果表明不同的杂交组合子房残留情况和每100蕾获得幼胚数存在较大差异;对正反交获得幼胚数进行比较,结果表明以芥菜型油菜作母本有利于提高获得幼胚的概率。
     2.对184个种间杂种无性系进行形态学鉴定,确认真杂种43份。真杂种表现出较强的生长优势。根据花器官形态和花粉育性将三倍体真杂种分为高度不育(无粉,花粉可染率为0%)、少粉(花粉可染率为5.35%-12.00%)和微粉(花粉可染率为25.3%-47.87%)三种类型。收获时统计不同种间杂种材料自交结实情况,发现种子多表现为干瘪或者半饱满,结实率介于0-3.65%。另外,获得一株染色体加倍植株,该植株花药饱满,每角果结实2-4粒种子。
     3.选择其中20份真杂种无性系进行染色体数目调查,发现8份染色体数目为27条,9份染色体数目在27-34之间,3份染色体数目因在不同细胞间变化较大而无法确定,表明杂种细胞在有丝分裂过程中存在非均等分裂,一些细胞存在着部分染色体加倍现象。对细胞减数分裂过程进行观察,结果表明多数花粉母细胞前期联会异常,大多形成单价体和部分二价体;在减数分裂后期I和后期Ⅱ染色体落后严重,多为偏分离。染色体加倍后的植株,部分细胞仍然异常,后期Ⅰ、后期Ⅱ发现有染色体落后现象,但落后染色体数目和发生频率较异源三倍体少。
     4.利用芥菜型油菜04K220和羽衣甘蓝04K04种间杂种后代进行系统选育甘蓝型油菜新种质(A+A+C+C+)。研究发现种间杂种(So)通过幼胚挽救获得自交结实无性系(S1),其后代结实率逐代提高。通过2005年到2012年连续选育,共获得122个外部形态类似于甘蓝型油菜的后代衍生系(A+A+C+C+)。选取其中78份后代衍生系(甘蓝型油菜新种质)和2个亲本,利用37对多态性较好的SSR引物进行PCR扩增,结果表明,37对引物共扩出144多态性位点,每对引物平均扩增出3.89条,其中124条为多态性位点,占86.1%;124个位点中,较父本(04K04)和母本(04K22)新增加34个,占总扩增多态性位点的27.42%;丢失9位点,占总扩增多态性位点的7.26%。对2个亲本和78个衍生系进行聚类分析,结果表明种间杂种在多代选育过程中遗传物质发生大量丢失和重排。78个杂种衍生后代品系遗传相似系数在0.65-1.00之间变化,当相似系数在0.72时,可以将所有甘蓝型油菜新种质(A+A+C+C+)分为4个类群。
     5.对78份甘蓝型油菜新种质(A+A+C+C+)株高及其相关性状进行调查,结果部分衍生系植株高度低于重庆地区正常油菜植株高度50-60cm,分枝部位低、分枝数目多。对78份新种质的角果长度进行调查,结果该衍生群体内角果长短,部分品系角果长低于4cm。利用近红外对78份新种质的含油量、硫甙和芥酸含量进行测定,其中含油量高于45%的衍生系4个,硫甙低于35umol.g-1的衍生系3个,芥酸含量小于1%的23个,高于55%的2个。
     6.10D130是从甘蓝型油菜新种质(A+A+C+C+)中选育出的1个黄籽高油(>45%)半矮杆新种质。其平均株高162cm,比中双11号平均低54cm;有效分枝部位、主花序长、主茎长度和有效分枝间距分别较中双11号减少39.46%、14.8%、22.49%、18.86%;有效分枝数较中双11号增加28.59%。以主基因+多基因混合遗传模型对组合(10D130×中双11)6世代遗传群体(P1、P2、F1、B1、B2和F2)株高及其组成性状进行遗传分析。结果表明,其株高、主茎长、分枝部位、主花序长的遗传均受到1对加性-显性主基因+加性-显性-上位性多基因混合遗传模型控制(D-O模型)。有效分枝间距的最适宜遗传模型为E-1模型(2对加-显-上位性主基因+加-显-上位性多基因混合遗传模型)。该组合有效分枝部位高度、主花序长、有效分枝节间距和有效分枝数与株高均呈显著正相关。从性状表现、遗传来源和影响株高的遗传模型等方面与前人报道的矮秆和半矮秆种质相比,结果显示10D130是一个新型的半矮秆种质资源。
     7.10D130和中双11在果身长、角果长和果喙长3个性状差异显著(P<0.05)。采用主+多基因遗传模型对该组合6世代遗传群体(P1、P2、F1、B1、B2和F2)果身长、角果长和果喙长进行遗传分析。结果该杂交组合果身长、角果长和果喙长3个性状均受2对主基因+多基因混合遗传模型控制。其中,果身长最适宜遗传模型为E-0(2对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模型);角果长的最适宜遗传模型为E-1(2对加性-显性-上位性主基因+加性-显性多基因混合遗传模型);果喙长的最适宜遗传模型为E-3模型(2对加性主基因+加-显多基因混合遗传模型)。此外,果身长、角果长和果喙长3个性状环境因素引起的遗传变异较小,可以在早期世代进行选择。
Rapeseed is one of the major oil crops in the world, which is a kinds of Brassica plant in Cruciferous. It is not only important source of edible oil and protein feed, but also is one of major industrial raw materials. At present, Brassica napus is cultivated widely in China instead of Brassica campestris and Brassica juncea. Thus, weak and narrow genetic foundation of Brassica napus with short history of cultivation in China seriously limited the breeding of Brassica napus. However, on the other hand, abundant genetic resources within Brassica are helpful for creation of germplasm of Brassica napus. Therefore, interspecific hybrids in Brassica are important and efficient method to build and broaden Brassica napus germplasm resources, and discover some helpful genes which can improve quality and yield of rapeseed. This is also one of main research directions of genetics and breeding for rapeseed researcher. Allotriploid were artificially synthesized by culture of immature embryos from interspecific hybridization between Brassica juncea and Brassica oleracea, and the derived lines were identified at cytology, morphology and molecular level. At last, it was used to genetic analysis at the aspect of plant heights and pod lengths for Brassica napus. new germplasm and semi-dwarf10D130(A+A+C+C+), which formed by partly exchange of genome both Brassica juncea (AjAjBjBj) and Brassica oleracea (C°C°). The results are as follows:
     1. Interspecific hybridization between15Brassica juncea and6Brassica oleracea were got,30d later, the numbers of residual ovary and immature embryo were recorded, the results showed that there were obviously different number of ovary residual and active immature embryos per100buds in different crosses, and the numbers of immature embryos from positive and negative cross were compared, the results showed that Brassica juncea as female help to improve the probability of immature embryo.
     2.43true hybrids were confirmed by identification of and chromosome number among184kinds of hybrid clones. Vegetative of true hybrids showed strong growth advantage, and apparent morphology was more close to the Brassica napus. These triploid hybrids were divided into three types according to floral organ morphology and pollen fertility, including the highly sterile (no powder, pollen contamination rate was0%), less powder (pollen efficiency was5.35%-12.00%) and fine powder (pollen efficiency was25.3%-47.87%), respectively. Seeds from different kinds of hybrids were recorded at harvest periods, the results found most of seeds were empty or semi-full, and seed setting rate change from0to3.65%. In addition, a plant doubled chromosome was got with full anther, and developed2-4seeds per pod.
     3. Chromosome numbers among20clones were surveyed, the results found8clones had27chromosomes and9clones had27-34chromosomes, respectively, and others clones could hardly be determined number of chromosome because of great changes among different cell. This indicated that the unequal divisions and chromosome doubling happened during mitosis of some cells. By observing the process of meiosis, the results show that the majority of pollen mother cells early joint abnormalities, mostly formed univalents and some bivalents; due to segregation distortion, chromosomes serious backward during meiosis anaphase Ⅰ and anaphase Ⅱ. For plants of Chromosome doubling, some cells remain chromosome lag during late Ⅰ, anaphase Ⅱ, but the rate and number of lagging chromosomes were less than allotriploid.
     4. Brassica napus (A+A+C+C+) were artificially synthesized by systematic selection and breeding of Hybrids between Brassica juncea (04K220) and Brassica napus (04K04). The study showed that the interspecific hybrids (So) selfed to get clones (S1) by rescue of immature embryo, and seed setting rate improved from generation to next generation. Through continuous selection and breeding from2005to2012, there were122descendant lines whose morphologies were similar to be Brassica napus.78of122descendant lines and the two parents conducted PCR amplification by37 polymorphic efficient SSR primers, the results showed that the expansion of144with37pairs of primers, each primer pair amplified by an average of3.89, of which124were polymorphic, accounting for86.1%; comparing with the male parent (04K04) and female parent (04K22),34bands increase and9bands missing among124bands, which accounted for27.42%and7.26%of the amplified polymorphic bands, respectively. cluster analysis among two parents and78lines showed that genetic material from the interspecific hybrid happen great loss and rearrangement during the multi-generation breeding process. Genetic similarity coefficient of78hybrid derivative lines varies between0.65-1.00. When the similarity coefficient is0.72, all hybrid derivative lines and parents can be divided into four groups.
     5. Plant heights and pod lengths and their components of78derived lines were surveyed, the results showed that some of derived lines were lower50-60cm plant height, lower mycobacterium site, more branches, shorter pod length than those of normal rapeseed in Chongqing. The oil content, glucosinolate and erucic acid content of78lines were skimmed by using near infrared, in which oil content of4derived lines higher than45%, the glucosinolates content3of them is less than35umol.g, erucic acid content of23lines is less than1%and that2of them lines is higher than55%.
     6.10D130is a kind of new and semi-dwarf germplasm with yellow seed coat and high oil contents, which was artificially synthesized to Brassica napus.(A+A+C+C+). average plant height of10D130is162cm in the rapeseed planting areas of Chongqing, which decreased by54cm comparing with conventional elite cultivars of Zhongshuang11. Its branch height, length of main inflorescence, main stem length and valid branch space reduced39.46%,14.8%,22.49%,18.86%comparing with Zhongshuang11, respectively, and numbers of its valid branch rose28.59over Zhongshuang11. These traits above mentioned were significant difference (P<0.05). Six generations (P1, P2, F1, F2, B1, and B2) were produced from a cross between semi-dwarf10D130and Zhongshuang11(ZS11) to analyze inheritances of plant height and related characteristics by the mixed major gene plus polygene inheritance model. The results showed that the plant height, branch height, length of main inflorescence and valid branch space of10D130×ZS11were dominated by a pair of major gene with additive-dominant effects plus polygenes with additive-dominance-epistasis effects (D-0model). The first valid branch space of10D130×ZS11was dominated by two pairs of major gene with additive-dominant-epistasis effects plus polygenes with additive-dominance-epistasis (E-1model). The branch height, length of main inflorescence, valid branch space and number of valid branch were significantly and positively correlated with plant height. Therefore, judged from traits, genetic sources and genetic models,10D130is a different new germplasm with semi-dwarf comparing with previous research.
     7. Genetic models of silique body length (SBL), valid silique length (SL) and beak length (BL) were studied in the cross of Zhongshuangll(P1)×10D130(P2), in which difference between P1with long-silique variety and P2with short-silique line is significant (P<0.05). SBL, SL and BL of six populations (P1, P2, F1, F2, B1and B2) were analyzed by joint segregation analysis. The frequency distributions of the F2, BCP1and B2generation exhibited to have multi-modal patterns, indicating the influence of major genes mixed with polygenes. To test and disclose the genetic bases of SBL, SL and BL, the most suitable genetic models were selected among twenty-three genetic models established about three silique traits. The results showed that SBL was well described by E-0model, a case of two additive-dominant-epistasis major gene as well as additive-dominant-epistasis polygenes,. and SL was controlled by two additive-dominant-epistasis major gene as well as additive-dominant polygene (E-1model). In addition, BL was controlled by two additive major genes as well as additive-dominance polygene (E-3). In addition, it is a few little genetic variations of silique body length (SBL), valid silique length (SL) and beak length (BL) caused by environmental factors so as to select and breed in the early generations.
引文
Armstrong K., Keller W. (1981) Chromosome pairing in haploids of Brassica campestris. Theoretical and Applied Genetics 59:49-52.
    Armstrong K., Keller W. (1982) Chromosome pairing in haploids of Brassica oleracea. Canadian Journal of Genetics and Cytology 24:735-739.
    Attia T., Robbelen G (1986) Cytogenetic relationship within cultivated Brassica analyzed in amphihaploids from the three diploid ancestors. Canadian Journal of Genetics and Cytology 28:323-329.
    Barret P., Delourme R., Foisset N., Renard M. (1998) Development of a SCAR (sequence characterised amplified region) marker for molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus L. Theoretical and Applied Genetics 97:828-833.
    Bechyne M., Kondra Z. (1970) Effect of seed pod location on the fatty acid composition of seed oil from rapeseed(Brassica napus and B. campestris). Canadian Journal of Plant Science 50:151-154.
    Bennett E.J., Roberts J.A., Wagstaff C. (2011) The role of the pod in seed development:strategies for manipulating yield. New Phytologist 190:838-853.
    Beschorner M., Plumper B., Odenbach W. (1995) Analysis of self-incompatibility interactions in 30 resynthesized Brassica napus lines. I. Fluorescence microscopic studies. Theoretical and Applied Genetics 90:665-670.
    Busso C., Attia T., Robbelen G. (1987) Trigenomic combinations for the analysis of meiotic control in the cultivated Brassica species. Genome 29:331-333.
    Cahaner A. (1990) Genotype by environment interactions in poultry, Proceedings of the 4th World Congress on Genetics applied to Livestock Production, Edinburgh 23-27 July 1990. XVI. Poultry, fish and horse genetics and breeding, growth and reproduction, immune response and disease resistance, pp.13-20.
    Chay P., Thurling N. (1989) Identification of genes controlling pod length in spring rapeseed, Brassica napus L., and their utilization for yield improvement. Plant breeding 103:54-62.
    Chen B., Heneen W., Jonsson R. (1988) Resynthesis of Brassies napus L. through Interspecific Hybridization between B. alboglabra Bailey and B. campestris L. with Special Emphasis on Seed Colour. Plant breeding 101:52-59.
    Chen H.-F., Wang H., Li Z.-Y. (2007) Production and genetic analysis of partial hybrids in intertribal crosses between Brassica species (B. rapa, B. napus) and Capsella bursa-pastoris. Plant Cell Reports 26:1791-1800.
    Chevre A., Eber F., Barret P., Dupuy P., Brace J. (1997) Identification of the different Brassica nigra chromosomes from both sets of B. oleracea-B. nigra and B. napus-B. nigra addition lines with a special emphasis on chromosome transmission and self-incompatibility. Theoretical and Applied Genetics 94:603-611.
    Choudhary B., Joshi P. (2001) Crossability of Brassica tournefortii and B. rapa, and morphology and cytology of their F1 hybrids. Theoretical and Applied Genetics 102:1123-1128.
    Choudhary B., Joshi P., Ramarao S. (2000) Interspecific hybridization between Brassica carinata and Brassica rapa. Plant breeding 119:417-420.
    Cockerham C.C. (1954) An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics 39:859.
    Cockerham C.C. (1963) Estimation of genetic variances. Statistical genetics and plant breeding 982:53-94.
    Cockerham C.C. (1984) Additive by additive variance with inbreeding and linkage. Genetics 108:487-500.
    Comstock R., Robinson H. (1952) Genetic parameters, their estimation and significance, Proceedings of the 6th International Grassland Congress. pp.284-291.
    Comstock R., Robinson H., GO WEN J. (1952) Estimation of average dominance of genes. Heterosis.:494-516.
    Comstock R.E., Robinson H.F. (1948) The components of genetic variance in populations of biparental progenies and their use in estimating the average degree of dominance. Biometrics 4:254-266.
    Comstock R.E., Robinson H., Harvey P. (1949) A breeding procedure designed to make maximum use of both general and specific combining ability. Agronomy Journal 41:360-367.
    Delseny M., McGrath J., This P., Chevre A., Quiros C. (1990) Ribosomal RNA genes in diploid and amphidiploid Brassica and related species:organization, polymorphism, and evolution. Genome 33:733-744.
    Diepenbrock W. (2000) Yield analysis of winter oilseed rape(Brassica napus L.):a review. Field Crops Research 67:35-49.
    Elkind Y., Cahaner A. (1986) A mixed model for the effects of single gene, polygenes and their interaction on quantitative traits. Theoretical and Applied Genetics 72:377-383.
    ELLERSTRoM S., ZAGORCHEVA L. (1977) Sterility and apomictic embryo-sac formation in Raphanobrassica. Hereditas 87:107-119.
    Elston R. (1984) The genetic analysis of quantitative trait differences between two homozygous lines. Genetics 108:733-744.
    Elston R.C., Stewart J. (1973) The analysis of quantitative traits for simple genetic models from parental, F1 and backcross data. Genetics 73:695-711.
    Foisset N., Delourme R., Barret P., Renard M. (1995) Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theoretical and Applied Genetics 91:756-761.
    Ge X.-H., Li Z.-Y. (2007) Intra-and intergenomic homology of B-genome chromosomes in trigenomic combinations of the cultivated Brassica species revealed by GISH analysis. Chromosome Research 15:849-861.
    Hedden P. (2003) The genes of the Green Revolution. Trends in Genetics 19:5-9.
    Howell E.C., Kearsey M.J., Jones GH., King GJ., Armstrong S.J. (2008) A and C genome distinction and chromosome identification in Brassica napus by sequential fluorescence in situ hybridization and genomic in situ hybridization. Genetics 180:1849-1857.
    Inomata N. (2005) Intergeneric hybrid between Brassica napus and Diplotaxis harra through ovary culture and the cytogenetic analysis of their progenies. Euphytica 145:87-93.
    Islam N., Evans E. (1994) Influence of lodging and nitrogen rate on the yield and yield attributes of oilseed rape(Brassica napus L.). Theoretical and Applied Genetics 88:530-534.
    Karpechenko G (1922) The number of chromosomes and the genetic correlation of cultivated Cruciferae. Bull. Appl. Bot., Genet, P,. Breed 13:3-14.
    Kempthorne O. (1955) The theoretical values of correlations between relatives in random mating populations. Genetics 40:153.^
    Kempthorne O. (1956) The theory of the diallel cross. Genetics 41:451.
    Kempthorne O. (1957) An introduction to genetic statistics.
    Kianian S., Quiros C. (1992) Generation of a Brassica oleracea composite RFLP map:linkage arrangements among various populations and evolutionary implications. Theoretical and Applied Genetics 84:544-554.
    Luhs W., Friedt W. (1995) Natural fatty acid variation in the genus Brassica and its exploitation through resynthesis. Eucarpia Cruciferae Newsletter 17:14-15.
    Liihs W.W., Voss A., Seyis F., Friedt W. (1999) Molecular genetics of erucic acid content in the genus Brassica, Proc.10th Intl. Rapeseed Congress, pp.26-29.
    Lagercrantz U., Lydiate D.J. (1996) Comparative genome mapping in Brassica. Genetics 144:1903-1910.
    Li M., Qian W., Meng J., Li Z. (2004) Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization. Chromosome Research 12:417-426.
    Li M., Li Z., Zhang C., Qian W., Meng J. (2005) Reproduction and cytogenetic characterization of interspecific hybrids derived from crosses between Brassica carinata and B. rapa. Theoretical and Applied Genetics 110:1284-1289.
    Li Z., Wu J., Liu Y., Liu H., Heneen W. (1998) Production and cytogenetics of the intergeneric hybrids Brassica juncea× Orychophragmus violaceus and B. carinata× O. violaceus. Theoretical and Applied Genetics 96:251-265.
    Mather K. (1949) Biometrical Genetics. Methuen and Co. Ltd., London
    Mathias R. (1985) Transfer of cytoplasmic male sterility from brown mustard (Brassica juncea [L.] Coss.) into rapeseed (Brassica napus L.). Zeitschrift fuer Pflanzenzuechtung 95:371-374.
    Meng J., Shi S., Gan L., Li Z., Qu X. (1998) The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica 103:329-333.
    Mizushima U. (1972) Evolution of species in Brasciceae and their breeding. Kagaku to seibutsu 10:78-85.
    MORINAGA T. (1928) Preliminary note on interspecific hybridization in Brassica. Proceedings of the Imperial Academy 4:620-622.
    Morinaga T. (1929a) Interspecific hybridisation in Brassica Ⅱ. The cytology of F 1 hybrids of B. cernua and various other species with 10 chromosomes. Japanese Journal of Botany 4:277-289.
    Morinaga T. (1929b) Interspecific Hybridization in Brassica. Cytologia 1:16-27.
    Morinaga T. (1934a) Interspecific hybridization in Brassica. Cytologia 6:62-67.
    Morinaga T. (1934b) On the Chromosome number of Brassica juncea and B. napus, on the hybrid between the two, and an offspring line of the hybrid. Jap. J. Genet 9:161-163.
    Muangprom A., Osborn T. (2004) Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theoretical and Applied Genetics 108:1378-1384.
    Muangprom A., Mauriera I., Osborn T.C. (2006) Transfer of a dwarf gene from Brassica rapa to oilseed B. napus, effects on agronomic traits, and development of a 'perfect' marker for selection. Molecular Breeding 17:101-110.
    Muangprom A., Thomas S.G., Sun T.-p., Osborn T.C. (2005) A novel dwarfing mutation in a green revolution gene from Brassica rapa. Plant physiology 137:931-938.
    Nagaharu U. (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jap J Bot 7:389-452.
    Olsson G. (1960) Self-incompatibility and outcrossing in rape and white mustard. Hereditas 46:241-252.
    Olsson G, Hagberg A. (1955) Investigations on haploid rape. Hereditas 41:227-237.
    Pelletier G., Primard C., Vedel F., Chetrit P., Remy R., Renard M. (1983) Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Molecular and General Genetics MGG 191:244-250.
    Poulsen G., Kahl G, Weising K. (1994) Differential abundance of simple repetitive sequences in species of Brassica and related Brassicaceae. Plant systematics and evolution 190:21-30.
    Prakash S. (1973) Haploidy in Brassica nigra Koch. Euphytica 22:613-614.
    Quiros C.F. (1995) Brassica Diversity and Wide Hybridization, Proceedings of the 9th International GCIRC Rapeseed Congress, Cambridge, UK. pp.105.
    Robbelen S., Downey R.K., Ashri A. (1989) Oilcrops of the world:their breeding and utilization Mcgraw-Hill Publishing Company. New York:Mcgraw-Hill Publishing Co.,17.
    Rahman M. (2001) Production of yellow-seeded Brassica napus through interspecific crosses. Plant breeding 120:463-472.
    Rashid A., Rakow G, Downey R. (1994) Development of yellow seeded Brassica napus through interspecific crosses. Plant breeding 112:127-134.
    Robbelen G (1960) Beitrage zur analyse des Brassica genomes. Chromosoma 11:205-228.
    Rood S., Major D., Charnetski W. (1984) Seasonal changes in 14CO2 assimilation and 14 C translocation in oilseed rape. Field Crops Research 8:341-348.
    Rood S.B.. Zanewich K.P., Bray D.F. (1990) Growth and development of Brassica genotypes differing in endogenous gibberellin content. Ⅱ. Gibberellin content, growth analyses and cell size. Physiologia Plantarum 79:679-685.
    Rosen B., Hallden C., Heneen W. (1988) Diploid Brassica napus somatic hybrids:characterization of nuclear and organellar DNA. Theoretical and Applied Genetics 76:197-203.
    Schenck H., R8obbelen G. (1982) Somatic hybrids by fusion of protoplasts from Brassica oleracea and B. campestris. Z Pflanzenzzicht 89:278-288.
    Snowdon R., Kohler W., Friedt W., Kohler A. (1997) Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theoretical and Applied Genetics 95:1320-1324.
    Song K. (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphisms. Nine 19:C23.
    Song K., Osborn T., Williams P. (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Theoretical and Applied Genetics 75:784-794.
    Song K., Osborn T.C., Williams P.H.(1990). Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Theoretical and Applied Genetics 79:497-506.
    Sundberg E., Glimelius K. (1986) A method for production of interspecific hybrids within Brassiceae via somatic hybridization, using resynthesis of Brassica napus as a model. Plant science 43:155-162.
    Thompson K. (1956) Production of haploid plants of marrow-stem kale. Nature 178:748.
    Tian E., Jiang Y., Chen L., Zou J., Liu F., Meng J. (2010) Synthesis of a Brassica trigenomic allohexaploid (B. carinata× B. rapa) de novo and its stability in subsequent generations. Theoretical and Applied Genetics 121:1431-1440.
    Tonguc M., Griffiths P.D. (2004) Development of black rot resistant interspecific hybrids between Brassica oleracea L. cultivars and Brassica accession A 19182, using embryo rescue. Euphytica 136:313-318.
    Truco M., Hu J., Sadowski J., Quiros C. (1996) Inter-and intra-genomic homology of the Brassica genomes:implications for their origin and evolution. Theoretical and Applied Genetics 93:1225-1233.
    Vaughan J. (1977) A Multidiscipkubart Study of the Taxonomy and Origin of Brassica Crops. Bioscience:35-40.
    Warwick S., Black L. (1991) Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae)—chloroplast genome and cytodeme congruence. Theoretical and Applied Genetics 82:81-92.
    Williams P.H., Hill C.B. (1986) Rapid-cycling populations of Brassica. Science 232:1385-1389.
    Zanewich K.P., Rood S.B., Southworth C.E., Williams P.H. (1991) Dwarf mutants of Brassica: Responses to applied gibberellins and gibberellin content. Journal of plant growth regulation 10:121-127.
    .蔡明,刘贵华,秦选佑,石淑稳.(1991)甘蓝型油菜与埃塞俄比亚芥种间杂种的无花瓣性状表现.中国油料1:86-87.
    丛野,程勇,邹崇顺,张学昆,王汉中.(2009)甘蓝型油菜发芽种子耐湿性的主基因+多基因遗传分析.作物学报35:1462-1467.
    邓武明,阳小虎,文凤君,陈胜荣,赵昌斌.(2003)甘蓝型油菜产量性状的遗传及相关与通径分析.中国油料作物学报25:27-30.
    邓婧,李栒.(2006)芸薹属植物远缘杂交不亲和性以及杂种后代遗传特性的研究进展.作物研究
    丁秀琦.(1996)白菜型春油菜角果和种子性状研究.中国油料18:28-30.
    盖钧镒,章元明,王建康.(2003)植物数量性状遗传体系科学出版社.
    高勇.(2007)甘蓝型油菜(Brassica napus L.)矮化突变体突变类型的鉴定及矮化机理的初步研究[D],四川大学.
    苟红英,高雪.(2003)氮,磷,钾施用量对杂选1号经济性状的影响.耕作与栽培.
    顾慧,戚存扣.(2008)甘蓝型油菜(Brassica napus L)抗倒伏性状的主基因+多基因遗传分析[J].作物学报34:376-381.
    韩甫.(2011)芥菜型油菜与芥蓝种间杂交初步研究,西南大学.
    黄中文,王伟,徐新娟,文自翔,李海朝,李金英,卢为国.(2011)大豆重组自交家系群体动态株高及其相对生长速率与产量的关系.作物学报37:559-562.
    黄天带.(2003)甘蓝型油菜矮秆突变体及矮秆基因分子标记的研究,华中农业大学.
    黄天带,吴江生,王令强,华玉伟.甘蓝型油菜矮秆突变体的遗传及其矮秆基因RAPD标记的研究.
    黄天带,吴江生,王令强,华玉伟.(2006)甘蓝型油菜矮秆突变体的遗传及其矮秆基因的RAPD标记木.农业生物技术学报14:942-945.
    姜长鉴,莫惠栋.(1995)质量-数量性状的遗传分析Ⅳ极大似然法的应用.作物学报21:641-648.
    冷锁虎,朱耕如.(1989)油菜花角期叶片对产量的影响.中国油料3:25-29.
    李纯,陈江华,商五一.(1988)甘蓝型油菜角果及种子发育过程的研究.中国油料2:23-25.
    栗茂腾,张椿雨,李宗芸,孟金陵.(2005)埃塞俄比亚芥与白菜型油菜间六倍体杂种的获得及其生物学特性研究.作物学报31:1579-1585.
    郦美娟,顾菊生.(1989)油菜品种的产量和品质性状的稳定性分析.浙江农业学报1:t1989.
    李加纳,邱厥,唐章林,谌利.(1992)甘蓝型油菜主要农艺性状的遗传模型和基因效应分析.遗传学报19:162-168.
    李再云,刘后利.(1995)甘蓝型油菜与诸葛菜的属间新杂种.华中农业大学学报14:33-37.
    李宗芸,栗茂腾,黄荣桂,伍晓明,宋运淳.(2002)基因组原位杂交辨别芸薹属异源四倍体AA, BB, CC基因组研究.中国油料作物学报24:10-14.
    李华鹏.(2004)油菜(Brassica napus L)矮秆突变相关基因的RAPD标记与其序列特异扩增片段的分析,四川大学.
    刘爱华,王建波,朱英国.(2003)芸薹属多倍体植物基因组进化的RAPD分析.植物分类学报41:520-530.
    刘定富,蔡怀武.(1994)甘蓝型油菜特长荚突变体的发现和鉴定.湖北农学院学报14:1-5.
    刘后利.(1985)油菜的遗传和育种上海科学技术出版社.
    刘宏波,刘忠松,官春云,陈社员,刘显军,杨晔宇.(2007)油菜芥甘种间杂交培育的渐渗系的表型鉴定.湖南农业大学学报:自然科学版.
    刘淑艳,刘宏波,刘忠松,官春云.(2007)油菜矮杆抗倒新种质的培育与研究.湖南农业科学5:42-43.
    刘志文,毛玮,周芳彬,傅廷栋.(2008)甘蓝型油菜种皮颜色的遗传分析.华北农学报23:84.
    刘忠松,官春云,李木旬,陈社员,王国槐.(2001)甘蓝型油菜与芥菜型油菜种间杂交研究.中 国油料作物学报23:82-86.
    马占强,林良斌,董娜,祁永琼,李飞,桂敏,朱媛.(2005)甘蓝型油菜与紫罗兰远缘杂交亲和性初探.江苏农业科学1:32-33.
    孟金陵.(1987)芸薹属植物远缘杂交不亲和性的研究进展.中国油料4:71-77.
    孟金陵,严准,甘莉.(1998) Moricandia arvensis与甘蓝型油菜属间杂种的获得及其生物学特性研究.作物学报24:396-401.
    明道绪.(1991)利用各世代的小区平均数估计遗传参数的加权最小二乘法.遗传学报5:007.
    梅德圣.(2005)甘蓝型油菜株高和开花时间的QTL定位及黄籽性状的分子标记,中国农业科学院.
    梅德圣,王汉中,李云昌,胡琼,李英德,徐育松.(2006)甘蓝型油菜矮秆突变材料99CDAM的发现及遗传分析.遗传28:851-857.
    莫惠栋.(1993)质量-数量性状的遗传分析.作物学报19:193-200.
    牛永超.(2010)芥菜型油菜与羽衣甘蓝杂种后代的遗传分析及芥菜型油菜小孢子培养,重庆:西南大学.
    牛永超,李加纳,殷家明,林呐,徐新福,韩甫,周清元.(2010)基因型和处理温度对芥菜型油菜游离小孢子培养的影响.西南大学学报(自然科学版)ISTIC 32.
    牛应泽,汪良中,刘玉贞,郭世星.(2003)利用人工合成甘蓝型油菜创建油菜新种质.中国油料作物学报25:11-15.
    牛应泽,汪良中,刘玉贞,郭世星,路阳.(2002)人工合成甘蓝型油菜特长果突变系选育初报.四川农业大学学报20:212-215.
    牛应泽,郭世星,付绍红,刘玉贞,汪良中.(2005)人工合成甘蓝型油菜特长角变异系的选育.植物遗传资源学报6:151-155.
    潘大仁.(1999)油菜(B. napus)属种间杂种后代的遗传研究.农业生物技术学报7:141-146.
    潘大仁,Firedt W. (1997)甘蓝型油菜与萝卜属间杂种的获得及其酶学分析.福建农业大学学报26:492-497.
    浦惠明,戚存扣,傅寿仲.(1993)油菜角果的生长特性及其源库效应.江苏农业科学3:22-25.
    浦惠明,戚存扣,傅寿仲.(1995)甘蓝型矮秆油菜“矮源1号”鉴定研究初报.作物品种资源1:23-24.
    戚存扣,仲裕泉.(1996)埃塞俄比亚芥黄种皮性状向甘蓝型油菜的转移研究.江苏农业学报12:23-28.
    戚存扣,盖钧镒,章元明.(2001)甘蓝型油菜芥酸含量的主基因+多基因遗传.遗传学报28:182-187.
    戚存扣,盖钧镒,傅寿仲,浦惠明,张洁夫,高建琴,陈新军.(2004)甘蓝型油菜(Brassica napus L.)千粒重性状遗传体系分析.作物学报30:1274-1277.
    石淑稳,吴江生,刘后利.(1995)离体诱发甘蓝型油菜长角果和矮秆突变体.核农学报9:252-253.
    田露申.(2007)人工合成甘蓝型油菜白花性状的遗传研究,雅安:四川农业大学.
    田露申,江光富,牛应泽,郭世星.(2007)人工合成白花甘蓝型油菜的初步遗传研究(英文).第十二届国际油菜大会论文集.
    危文亮.(2000)甘蓝型油菜长角果变异体的遗传研究.遗传22:93-95.
    文雁成,栗根义.(1999)对甘蓝与大白菜种间杂交合成的甘蓝型油菜的研究.中国油料作物学报21:8-11.
    王幼平,罗鹏,贾勇炯,蓝乐夫.(1997)海甘蓝与芸薹属属间杂交的受精和胚胎发育.作物学报23:538-544.
    王春娥,盖钧镒,傅三雄,喻德跃,陈受宜.(2008)大豆豆腐和豆乳得率的遗传分析与QTL定位.中国农业科学41:1274-1282.
    王茂林.(2005)油菜(Brassica napus L.)矮秆和无花瓣突变体的创制,遗传及优质杂交油菜选育研究.成都:四川大学博士论文.
    王爱云,李枸,胡大有.(2006)诸葛菜--+3薹属间花粉与柱头相互作用的研究.湖南农业大学学报(自然科学版)32.
    王记林.(2008)甘蓝型油菜矮秆基因BnRGAl的定位和候选基因鉴定,华中农业大学.
    肖国滨,郑伟,叶川,刘小三,黄天宝,张昆,赵美珍.(2011)氮肥运筹对红壤稻田移栽油菜产量及生长发育的影响.江西农业学报23:112-115.
    徐利远,罗鹏,兰泽蘧.(1996)甘蓝型油菜与蓝花子远缘杂交及双二倍体的合成研究.遗传学报23:124-130.
    徐利远,杨吉秀,宣朴,罗鹏,兰泽遽.(1995)油菜与蓝花子远缘杂交的研究.西南农业大学学报17:102-106.
    殷家明,陈树忠,唐章林,谌利,李加纳.(2004)黄籽羽衣甘蓝和白菜型油菜杂交再合成甘蓝型油菜研究.西南农业学报17:149-151.
    赵合句,黄永菊.(1995)油菜与菘蓝和荠菜属间杂交新品系比较试验.湖北农业科学:8-11.
    赵合句,黄永菊,王玉叶.(1993)油菜与荠菜,菘蓝属间杂交初探.湖北农业科学5:17-18.
    章元明,盖钧镒,王永军.(2001)利用P1,P2和DH或RIL群体联合分离分析的拓展.遗传23:467-470.
    张洁夫,戚存扣,浦惠明,陈松,陈锋,高建芹,陈新军,顾慧,傅寿仲.(2007)甘蓝型油菜含油量的遗传与QTL定位.作物学报33:1495-1501.
    张崇国.(1989)油菜倒伏的原因及防治.今日种业5:010.
    张书芬,宋文光,任乐见,田保明,文雁成,刘建民,王建平.(1996)甘蓝型双低油菜数量性状的遗传力及基因效应.中国油料18:1-3.
    张晓伟,高睦枪,原玉香,耿建峰,文雁成,张书芬,栗根义.(2001)人工合成甘蓝型油菜研究.河南农业科学2.
    张涛,孙万仓.(2003)芝麻菜属与芸薹属属间远缘杂交研究进展.中国油料作物学报25:107-109.
    赵云,潘埒,王茂林,刘立.(1993)油菜与诸葛菜属间远缘杂交的初步研究.
    钟新民,吕建华.(1998)大白菜与甘蓝型油菜,甘蓝远缘杂交试验.山西农业科学26:35-37.
    周清元,李加纳,殷家明,唐章林,谌利,陶澜.(2003)白菜型油菜和羽衣甘蓝种间杂交的初步研究[J].西南农业大学学报(自然科学版).
    周清元,李加纳,崔翠,殷家明,谌利,唐章林.(2005)芥菜型油菜×羽衣甘蓝种间杂种的获得及其性状表现.作物学报31:1058-1063.
    周清元,李加纳,殷家明,唐章林,谌利,林呐.(2009)羽衣甘蓝×芥菜型油菜种问杂种再生和染色体加倍[J].西南大学学报自然科学版.
    周清元,殷家明,崔翠,林呐,谌利,唐章林,李加纳.(2006)白菜型油菜×羽衣甘蓝种间杂种的性状表现.西南农业大学学报28:1-3.
    周清元,李加纳,殷家明,崔翠,唐章林,諶利,林呐.(2007)利用幼胚培养进行甘蓝型油菜人工再合成研究(英文).第十二届国际油菜大会论文集.
    周晓彬,肖数数,王莹莹,冯星星,王德鹏,唐浩月,范玉刚,龚德平.(2011)油菜倒伏问题研究进展.湖北农业科学50:4105-4108.
    朱军,农业部,教育司.(1997)遗传模型分析方法中国农业出版社.