蜘蛛肽类毒素的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多肽毒素存在于自然界的很多生物物种中,生物学活性是多肽毒素研究一个极为重要的方面。综述了多肽毒素的生物学活性及相应的研究方法。
     通过离子交换和反相-HPLC从海南捕鸟蛛粗毒分离了海南捕鸟蛛毒素-Ⅳ,MALDI-TOF测定其分子量为3988.70,通过氨基酸组成分析、Cys烷基化修饰、Lys-C酶水解后HPLC分离片段序列测定和羧肽酶-Y C-端测序确定了其氨基酸序列为:ECLGFGKGCNPSNDQCCKSSNLVCSRKHRWCKYEI,该序列与从虎纹捕鸟蛛分离的HWTX-Ⅳ只相差7个氨基酸残基。其中6个Cys形成3对二硫键,在pH 3的条件下利用TCEP对海南捕鸟蛛毒素-Ⅳ进行了部分还原,收集RP-HPLC的洗脱峰,用碘乙酰胺烷基化修饰游离的-SH,经质谱鉴定后进行氨基酸序列测定,由此确定了Cys2-Cys17、Cys9-Cys24和Cys16-Cys31形成了1-4、2-5和3-6的二硫键配对方式。小鼠急性毒性实验确定海南捕鸟蛛毒素-Ⅳ的LD_(50)为0.20±0.07 mg/kg,而对美洲蜚蠊却没有影响。海南捕鸟蛛毒素-Ⅳ能使电刺激引起的大鼠输精管收缩产生先兴奋后抑制的作用,而对电刺激诱导的小鼠膈神经-膈肌收缩却只产生抑制作用,浓度为1.0×10~(-6) mol/L时的阻断时间为18.1±0.2 min(n=5),同时它对由去甲肾上腺素引起的输精管收缩和直接电刺激肌肉引起的膈肌收缩没有影响,推测其具有神经专一性。电生理实验表明海南捕鸟蛛毒素-Ⅳ能完全阻断TTX-敏感型的钠通道,而对钠通道的激活和失活没有影响,从而推测其是一种位点-1毒素。由以上结果可推断海南捕鸟蛛毒素-Ⅳ为一种新型的作用于神经细胞TTX-敏感型钠通道位点-1的阻断剂。通过固相化学合成法合成了海南捕鸟蛛毒素-Ⅳ,并对其氧化复性条件进行了摸索,确定了0.1 mol/L Tris-HCl和0.1 mol/L NaCl缓冲液、pH 8.0、样品浓度为0.1g/L、
    
    中文摘要
    5二。1/L GSH、0.5 fnmol/L GSSG为最适条件。复性样品经质谱、与天
    然毒素混合进样IIPLC分析和生物学活性分析,确定复性的海南捕鸟蛛
    毒素一Iv与天然毒素在结构和功能具有一致性。通过2D一NMR技术已初步
    确定了海南捕鸟蛛毒素一IV的空间结构由两个p一折叠和4个p一转角组
    成,三对二硫键稳定这一构象。通过与HWTx一IV和比conot。xin GlllA
    的比较分析,确定了转角一Iv为海南捕鸟蛛毒素一Iv的活性相关区域,
    而Ly 5 27为活性关键残基。
     从虎纹捕鸟蛛粗毒分离纯化到了虎纹捕鸟蛛毒素刁工I(H wTx一IH)的
    天然突变体(m一IIWTX一工H)和凝集素刁(SHL一I)的天然突变体(SLH一H).
    两种突变体的氨基酸序列都只比相应的毒素多肤少了C一端的Trp残基,
    而其它序列完全相同。两者的序列分别为:DcAGYMREcKEKLccsGYvcss-
    RWKWCVLPAP和GCLGDKCDYNNGCCSGYVCSRTWKWCVLAGP。通过比较研究它们
    的生物学活性,发现虎纹捕鸟蛛毒素一IH的天然突变体没有虎纹捕鸟蛛
    毒素一IH的使输精管收缩加强的作用,从而推测其c一端残基为生物学
    活性相关残墓。凝集活性实验表明凝集素班及其天然突变体具有相同的
    凝集活性,同时ID一NMR分析确定两者空间结构相似,从而推测其C一端
    对于凝集素一I不是活性相关残基。
A neurotoxic peptide (HNTX-IV) was purified from the venom of the spider Selenocosmia hainana with combination of ion-exchange and reverse-phase HPLC. The complete amino acid sequence (35 residues) was obtained by using automated Edman degradation, which is agreement with the molecular mass 3 988.70Da by mass spectrometry and the amino acid analysis. The amino acid sequence of HNTX-IV is similar to that of HWTX-IV except only seven residues. HNTX-IV was partially reduced by TCEP at pH 3, and the intermediates were isolated by revers-phase HPLC. Alkylation of free thiols, followed by sequencer analysis, enabled all three bridges to be identified (Cys2-Cys 17, Cys9-Cys24 and Cysl6-Cys31). HNTX-IV was synthesized by using Fmoc-chemistry methodology and the renatured peptide had the same biology activity as the native toxin. HNTX-IV indues lethal activity on rats but has no effect on cockroches. The LD50 of rats is (0.20 ± 0.07) mg/kg. HNTX-IV courses enhancement of the twitch response induced by electronical stimulation of vas deferens and then inhibition completely. HNTX-IV only inhibits the constraction of phrenic nerve hemidiaphragm preparations. HNTX-IV has no effect on the rhythmic contraction of vas deferens triggered by adding noradrenaline and the twitch response of hemidiaphragm induced by directly stimulating muscale, which indicats that is a nerve specific toxin. Electrophysiological studies showed that HNTX-IV inhibits TTX-S sodium current completely in NG108-15 cells
    
    
    
    and has no effect on the activation and inactivation of sodium current, which suggests HNTX-lV is a site-1 toxin affecting the sodium channel through a mechanism quite similar to that of TTX. The three-dimensional structure of HNTX-IV has been determined by 2DTSJMR. The resulting structure is composed of a double-stranded antiparallel (3-sheet (L22-S25 and W30-Y33) and three turns (E4-K7, PI 1-D14, K18-K21 and R26-R29) and belongs to the inhibitor cystine knot structural family. Comparison with u-conotoxin GIIIA and HWTX-IV shows that the positively charged residues of loop IV (residue 26-29), especially residue Lys 27, must play a crucial role in its binding to
    neuronal tetrodotoxin-sensitive voltage-gated sodium channel.
    Two peptide components, named m-HWTX-III and SHL-II, were isolated from the crude venom of the spider Selenocosmia huwena. The sequences of the two peptides are similar to these of HWTX-III and SHL-I besides lack of the C-terminal tryptophan residue repectively. m-HWTX-III neither causes paralysis in cockroaches (p,americana) nor enhances electrically induced contraction of rat vas deferens, while as HWTX-III does. The result indicates that Trp33 is a key residue related to the biological function of HWTX-III. SHL-II and SHL-I, However, have the same haemagglutination activity to each other, which suggests that the C-terminal of SHL-I is not important to its haemagglutination activity.
引文
1 Eugene Grishin. Polypeptide neurotoxin from spider venoms. Eur. J. Biochem. 1999, 264. 276-280
    2 Lachlan D. Rash, Wanye C. Hodgson. Pharmacology and biochemistry of spider venoms. 2002, Toxicon, 40, 225-254
    3 Lourival D. Possani, Baltazzar Becerril, Muriel Delepierre, Jan Tytgat, Scorpion toxins specific for Na+-channels, Eur. J.
    
    Biochem. 1999, 264:287-300
    4 Hugo R. Arias, Michael P. Blanton, α-conotoxins, The International Journal of Biochemistry & Cell Biology, 2000, 32:1017-1028
    5 现代药理学实验方法,张均田主编,北京医科大学中国协和医科大学联合出版社
    6 R. Ashok Balaji, Toru Sasaki, P. Gopalakrishnakone, Kazuki Sato, R. Manjunatha Kini, Boon-Huat Bay, Purification, structure determination and synthesis of covalitoxin-Ⅱ, a short insect-specific neurotoxic peptide from the venom of the Coremiocnemis validus(Singpore tarantula), FEBS Letters, 2000, 474:208-212
    7 舒芹博士论文
    8 Michael J. Lew, James P. Flinn, Paul K. Pallaghy, et al, Structure-function relationships of ω-conotoxin GVIA, The Journal of Biology Chemistry, 1997, 271(18): 12014-12023
    9 Janith C. Wickramaratna, Wayne C. Hodgson, A pharmacological examination of venoms from three species of death adder(Acanthophis antarcticus, Acanthophis praelongus and Acanthophis pyrrhus), Toxicon, 2001, 39:209-216
    10 韩虹,方达超,药根碱对肾上腺素α受体的阻断作用及部分激动作用,中国药理学报,1989,10(5):385-389
    11 陈湘定,彭宽,梁宋平,虎纹捕鸟蛛毒素-Ⅰ(HWTX-Ⅰ)对豚鼠回肠的作用机制研究,生命科学研究,1998,2(4):273-277
    12 陈湘定,彭宽,梁宋平,虎纹捕乌蛛毒素-Ⅰ(HWTX-Ⅰ)对蟾蜍心房活动的影响。
    13 Song-ping Liang, Xiang-ding Chen, Qin Shu, Yong-qun Zhang, Kuang Peng, The presynaptic activity of huwentoxin-Ⅰ, a
    
    neurotoxin from the venom of the Chinese bird spider Selenocosmia huwena, roxicon, 2000, 38:1237-1246
    14 陈湘定,潘欣,纵湘,梁宋平,虎纹捕鸟蛛(Selenocosmia huwena)粗毒对蟾蜍神经肌肉接头传递的影响,湖南师范大学自然科学学报,1994,17(4):66-73
    15 A. M. T. Gregio, M. G. Heleno, V. R. Von Eichsted, M. D. Fontana, The neuromuscular action of Ancylometes sp. Spider venom in the rat phrenic nerve-diaphragm preparation, Toxicon, 1999, 37:545-540
    16 陈军编,膜片钳技术,科学出版社,2001
    17 李韶,崔存德,关兵才,李之望,胡宏镇,5-HT 对大鼠新鲜分离DRG神经元GABA激活电流的调制作用,中国应用生理学杂志,1998,14(4):368-371
    18 Kim YS, Shin YK, Lee C, Song J. Block of sodium currents in rat dorsal root ganglion neurons by diphenhydramine. Brain Res 2000 Oct 27;881(2):190-8
    19 Tim H. Szeto Liesl C. Birinyi-Strachan, Ross Smith, Mark Connor, Macdonald J. Christie, Glenn F. King, Graham M. Nicholson Isolation and pharmacological characterjsation of δ-atracotoxin-Hvlb, a vertebrate-selective sodium channel toxin. FEBS Letters 470(3): 293-299
    20 Xiao H, Mao X, Tan Z, Shi Y, Zhao Z, Ji Y. Modulation of BmKAS-1 and BmK1-3-2 to sodium channel in rat dorsal root ganglion neurons. Chin Med J (Engl) 2001 Mar;114(3): 253-6
    21 Lalo UV, Pankratov YV, Arndts D, Krishtal OA. Omega-conotoxin GVIA potently inhibits the currents mediated by P2X receptors in rat ORG neurons. Brain Res Bull 2001 Mar 15;54(5):507-12
    22 Zhang JM, Donnelly DF, LaMotte RH. Patch clamp recording from
    
    the intact dorsal root ganglion. J Neurosci Methods 1998 Jan 31; 79(1): 97-103
    23 Scott RH, Gorton VJ, Harding L, Patel D, Pacey S, Kellenberger C, Hietter H, Bermudez I. Inhibition of neuronal high voltage-activated calcium channels by insect peptides: a comparison with the actions of omega-conotoxin GVIA. Neuropharmacology 1997 Feb; 36(2): 195-208
    24 何湘平,刘青松,刘传缋,使用电生理学研究的新生大鼠中枢神经元培养,中国应用生理学杂志,1994,10(2):179-182
    25 曾小鲁,辜清,戴惠娟,海马的形态结构与生理功能,生物学通报,1996,13(3):1-3
    26 熊顺华,李之望,樊友珍,王明江,魏劲波,P 物质抑制培养大鼠海马大锥体细胞 GABA 激活电流,生理学报,2001,53(2):103-107
    27 Raley-Susman KM, Kass IS, Cottrell JE, Newman RB, Chambers G, Wang J. Sodium influx blockade and hypoxic damage to CA1 pyramidal neurons in rat hippocampal slices. J Neurophysiol 2001 Dec; 86(6):2715-26
    28 Su H, Alroy G, Kirson ED, Yaari Y. Extracellular calcium modulates persistent sodium current-dependent burst-firing in hippocampal pyramidal neurons. J Neurosci 2001 Jun 15; 21(12):4173-82
    29 牛小伟,曾涛,瞿安连,康华光,一种豚鼠心室肌单细胞膜片钳标本制备方法,华中理工大学学报,1996,24(8):58-59
    30 Cai Shaoxi, Zou Fei, Tong Zhenqing, Liu Jiushan, Kinetic properties and sensitivity to antagonists of K~+ channels in guinea-pig tracheal smooth muscle, Chinese Journal of Phamacology and Toxicology, 1997, 11(3):206-210
    31 Dural A, Malecot CO, Pelhate M, Rochat H. Changes in Na channel
    
    properties of frog and rat skeletal muscles induced by the AaH II toxin from the scorpion Androctonus austral is. Pflugers Arch 1989 Dec; 415 (3) : 361-71
    32 Wu Y, Ji YH, Shi YL. Sodium current in NG108-15 cell inhibited by scorpion toxin BmKAS-1 and restored by its specific monoclonal antibodies.J Nat Toxins 2001 Aug; 10(3) : 193-8
    33 Peng K, Chen XD, Liang SP. The effect of Huwentoxin-I on Ca(2+) channels in differentiated NG108-15 cells, a patch-clamp study. Toxicon 2001 Apr; 39 (4) : 491-8
    34 Purkerson SL, Baden DG, Fieber LA. Brevetoxin modulates neuronal sodium channels in two cell lines derived from rat brain. Neurotoxicology 1999 Dec; 20(6) : 909-20
    35 Zholos AV, Fenech CJ, Prestwich SA, Bolton TB, Membrane currents in cultured human intestinal smooth muscle cells. J Physiol 2000 Nov 1;528(Pt 3) : 521-37
    36 Gilles N, Chen H, Wilson H, Le Gall F, Montoya G, Molgo J, Schonherr R, Nicholson G, Heinemann SH, Gordon D. Scorpion alpha and alpha-like toxins differentially interact with sodium channels in mammalian CNS and periphery. Eur J Neurosci 2000 Aug; 12 (8) : 2823-32
    37 Fairey ER, Bottein Dechraoui MY, Sheets MF, Ramsdell JS. Modification of the cell based assay for brevetoxins using human cardiac voltage dependent sodium channels expressed in HEK-293 cells. Biosens Bioelectron 2001 Sep; 16(7-8) : 579-86
    38 Goudet C, Huys I, Clynen E, Schoofs L, Wang DC, Wpelkens E, Tytgat J. Electrophysiological characterization of BmK M1, an alpha-like toxin from Buthus martensi Karsch venom. FEBS Lett 2001 Apr
    
    20; 495 (1-2) : 61-5
    39 Ziad Fajlon, Edmond Carlier, Catherine Lecomte, et al. Chemical synthesis and characterization of Pil, a scorpion toxin from Pandinus inperator active on K+ channels, B. J. Bichem. 2000, 267: 5419-5455
    40 R. Kharrat, P. Mansuell, F. Sampieri, et al. Maurotoxin, a four disulfide bridge toxin from Scorpio maurus venom: purification, structure and action on potassium channels. FEBS Letters, 1997, 406: 284-290
    41 Richard B. Jacobsen, E. Dietlind Koch, Bettin Lange-Malecki, et al, Single amino acid substitutions in K-conotoxin-PVIIA disrupt interaction with shaker K+ channel, The Journal of Biology Biochemisty, 2000, 275(32) : 24639-24644
    42 Francoise Grolleau, Maria Stankiewicz, Liesl Birinyi-strachan, et al, Electrophysiological analysis of neurotoxic action of a funnel-web spider toxin, 5-atracotoxin-HVla, on insect voltage-gated Na+ channels, The Journal of Experimental Biology, 2000, 204: 711-721
    43 Gerardo Corzo, Pierre Escoubas, Maria Stankiewicz, et al, Isolation, synthesis and pharmacology characterization of 5-palutoxins IT, novel insecticidal toxins from spider Paracoelotes luctuous(Amaurobiidae), Eur. J. Biochem, 2000, 267: 5783-5795
    44 朱奇硕士论文
    45 Sonomi Minagawa, Masami Ishida, Yuji Nagashima, Kazuo Shiomi, Primary structure of potassium channel toxin from sea anemone Actinia equina, FEBS Letters 1998, 427:149-151
    46 Michelle J. Little, Cathy Zappia, Nicoclas Gilles, et al,
    
    δ-atracotoxins from Australian funnel-web spiders compete with scorpion α-toxins binding but differentially modulate alkaloid toxin activation of voltage-gated sodium channels, The Journal of Biology Chemistry, 1998, 273(42) : 27076-27083
    47 Lizhen Yan, Michael E. Adams, The spider toxin ω-Aga IIIA difines a hign affinity site on neuronal high voltage-activated calcium channels. The Journal of Biology Chemistry, 2000, 275(28) : 21309-31316
    48 陈留存、王金星,昆虫抗菌肽研究进展,生物工程进展,1999,19(5) : 55-60
    49 Lizhen Yan, Michael E. Adams, Lycotxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis. J .Bio. Chem. 1998, 273(4) : 2059-2066
    50 Pedro I. Silva, Jr., Sirlei Daffre, Philippe Bulet, Isolation and characterization of Gemesin, an 18-residue cysteine-rich defense peptide from spider Acanthoscurria gomesiana hemocytes with sequence similarities to the horseshoe crab antimicrobial peptides of the pachyplesin family, J. Bio. Chem. 2000, 275(43) : 33464-33470
    51 Stefanie Haeberli, Lucia Kuhn-Nentiwig, Johann Schaller, Wolfgang Nenteig, Characterization of antibacterial activity of peptides isolated from the venom of the spider Cupiennius salei(Araneae: Ctenidae). TOXICON, 2000, 38: 373-380
    52 Corzo G, Escoubas P, Villegas E, Barnham KJ, He W, Norton RS, Nakajima T, Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator. Biochem J 2001 Oct 1; 359 (Pt 1) : 35-45
    53 Nakajima Y, van der Goes van Naters-Yasui A, Taylor D, Yamakawa
    
    M, Two isoforms of a member of the arthropod defensin family from the soft tick, Ornithodoros moubata (Acari: Argasidae). Insect Biochem Mol Biol 2001 Jun 22; 31 (8) : 747-51
    54 Zhu S, Li W, Jiang D, Zeng X., Evidence for the existence of insect defensin-like peptide in scorpion venom. IUBMB Life2000 Jul; 50(1) : 57-61
    55 Cociancich S, Goyffon M, Bontems F, Bulet P, Bouet F, Menez A, Hoffmann J., Purification and characterization of a scorpion defensin, a 4kDa antibacterial peptide presenting structural similarities with insect defensins and scorpion toxins. Biochem Biophys Res Commun 1993 Jul 15; 194(1) : 17-22
    56 Robert E.w. Hancock, Monisha G. Scott, The role of antimicrobial peptides in animal deferses, PNAS, 2000, 97(16) : 8856-8864
    57 Robert E. W. Hancock, Daniel S. Chappie, Peptide Antibiotics, Antimicrobial agents and chemotherapy, June, 1999, p. 1317-1323
    58 Hultmark D, Engstrom A, Bennich H, Kapur R, Boman HG., Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Bur J Biochem 1982 Sep; 127(1) : 207-17
    59 Hultmark D, Steiner H, Rasmuson T, Boman HG Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 1980 May; 106(1) : 7-16
    60李秀兰、戴祝英、张双全,抗菌肽琼脂糖孔穴扩散法与比浊测活比较及其相关性,南京师大学报(自然科学版), 21(2) : 81-85
    61 Bulet, P., Dimarcq, J-L, Hetru, C., Charlet, M., et al, A novel
    
    inducible antibacterial peptide of Drosophila carriers an 0-glycosylated substitution, J. Bio. Chem, 268: 14893-148897
    62 Ehret-Sabatier L, Loew D, Goyffon M, Fehlbaum P, Hoffmann JA, van Dorsselaer A, Bulet P., Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J Biol Chem 1996 Nov 22; 271 (47) : 29537-44
    63 T. S. Golubeva, V. M. Paromov, A. R. Tuguz,O. Yu. Chertov and M. V. Kiselevsky, Cytotoxic protein from human platelets. Eur. J. Biochem. 405 ( 3) : 312-314
    64 Nieves Olmo, Javier Turnay, Gonzalo Gonzalez de Buitrago, Isabel Lopez de Si lanes, Jose G. Gavilanes and Maria A. Lizarbe , Cytotoxic mechanism of the ribotoxin α-sarcin Induction of cell death via apoptosis, Eur. J. Biochem. 2001, 268: 2113-2123
    65 Piccoli, R., Di Gaetano, S., De Lorenzo, C., Grauso, M., Monaco, C., Spalletti-Cernia, D., Laccetti, P., Cinatl, J., Matousek, J. & D'Alessio, G. A dimeric mutant of human pancreatic ribonuclease with selective cytotoxicity toward malignant cells. Proc. Natl Acad. Sci. USA 1999, 96: 7768-7773
    66 dlund C, Hedberg M, Engstrom A, Flock JI, Wade D. Antianaerobic activity of a cecropin-melittin peptide. Clin Microbiol Infect 1998 Apr; 4(4) : 181-185
    67 Dai L, Yasuda A, Naoki H, Corzo G, Andriantsiferana M, Nakajima T. IsCT, a novel cytotoxic linear peptide from scorpion Opisthacanthus madagascariensis. Biochem Biophys Res Commun 2001 Aug 31; 286 (4) : 820-5
    68 QX, King MA, Donovan GR, Alewood D, Alewood P, Sawyer WH, Baldo BA. Cytotoxicity of pilosulin 1, a peptide from the venom of
    
    the jumper ant Myrmecia pilosula. Biochim Biophys Acta 1998 Sep 16; 1425(1): 74-80
    69 Maroto R, de la Fuente MT, Zapater P, Abad F, Esquerro E, Garcia AG. Effects of omega-conotoxin MVIIC on veratridine-induced cytotoxicity and cytosolic Ca(2+) oscillations. Brain Res 1996 Apr 1; 714(1-2): 209-14
    70 Cohen E, Quistad GB, Cytotoxic effects of arthropod venoms on various cultured cells. Toxicon 1998 Feb; 36(2): 353-8
    71 Kourie JI, Shorthouse AA., Properties of cytotoxic peptide-formed ion channels. Am J Physiol Cell Physiol 2000 Jun; 278(6): C1063-87
    72 孙册,谈谈凝集素作用的基本原理和糖蛋白的寡糖结构,生命的化学,1994,14(2):36-37
    73 Songping Liang, Xin Pan, A lectin-like peptide isolation from the venom of the Chinese bird spider selenocosmia huwena, 1995, 33(7): 875-882
    74 梁宋平,林莉,虎纹捕鸟蛛凝集素-Ⅰ(SHL-Ⅰ)的细胞凝集活性分析,中国生物化学与分子生物学学报,2000,16(1):92-95
    75 北京大学孙迎庆博士论文
    76 朱燕,陈宇江,刘国卿,生脉液与脉络宁合用对抗凝及纤溶作用的影响,中国药科大学学报,1999,30(2):130-132
    77 Mattiello-Sverzut AC, Fontana MD, Diniz CR, da Cruz-Hofling MA. Pathological changes induced by PhTxl from Phoneutria nigriventer spider venom in mouse skeletal muscle in vitro. Toxicon 1998 Oct; 36(10): 1349-61
    78 Mattiello-Sverzuta AC, da Cruz-Hofling MA. Toxin 2 (PhTx2), a neurotoxic fraction from Phoneutria nigriventer spider venom, causes acute morphological changes in mouse skeletal muscle.
    
    Toxicon 2000 Jun; 38(6) : 793-812
    79 Ferreira LA, Lucas SM, Alves EW, Hermann VV, Reichl AP, Habermehl G, Zingali RB. Isolation, characterization and biological properties of two kinin-like peptides (peptide-S and peptide-r) from Scaptocosa raptoria venom. Toxicon 1998 Jan; 36(1) : 31-9
    80 Ferreira LA, Alves WE, Lucas MS, Habermehl GG, Isolation and characterization of a bradykinin potentiating peptide (BPP-S) isolated from Scaptocosa raptoria venom. Toxicon 1996 May; 34 (5) : 599-603