家蚕嗅觉相关谷胱甘肽-S-转移酶BmGSTD1的结构与功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷胱甘肽-S-转移酶(Glutathione S-transferases, GSTs, EC2.5.1.18)是一种多功能的超家族酶,广泛存在于哺乳动物、昆虫、植物、真菌以及细菌等好氧生物体中。谷胱甘肽-S-转移酶在生物体内是重要的第二相解毒酶,其主要功能是对异生质或内源的有毒物质进行代谢,从而达到解毒目的。除此外,谷胱甘肽-S-转移酶还具有许多其它的功能。例如,具有过氧化酶功能,能在氧化应激环境中保护有机体;还具有异构酶功能;参与细胞生物信号通路及生物合成方面。此外,谷胱甘肽-S-转移酶能非催化性的结合和转运大量内源或异生的成分。
     有一类嗅觉相关谷胱甘肽-S-转移酶在牛、大鼠、烟草天蛾、棉铃虫和柑橘凤蝶中报道。该类酶在嗅觉系统中推测的功能:一方面对有毒物质进行代谢解毒以保护嗅觉组织;另一方面参与嗅觉进程。
     家蚕delta亚家族谷胱甘肽-S-转移酶有4个成员,其中BmGSTd1在NCBI登录为从家蚕触角克隆得到,其编码氨基酸与烟草天蛾中鉴定的触角特异GST-msolfl在序列相似性上达到74.4%,并且在已有报道的进化树分析上,家蚕BmGSTd1、BmGSTd4与烟草天蛾的(GST-msolfl聚为一簇。基于这些线索,从家蚕谷胱甘肽-S-转移酶鉴定嗅觉相关谷胱甘肽-S-转移酶,并进行相关功能研究。
     本研究,从家蚕五龄第3天幼虫不同组织的基因芯片数据分析出发,结合RT-PCR从家蚕delta亚家族谷胱甘肽-S-转移酶的4个成员中鉴定了家蚕嗅觉相关谷胱甘肽-S-转移酶候选基因BmGSTd1和BmGSTd4。同时,对家蚕BmGSTd1进行了克隆和分析;利用原核表达、蛋白纯化等技术获得了家蚕BmGSTD1重组蛋白;利用结构生物学手段解析了BmGSTD1不结合底物和结合底物谷胱甘肽的晶体结构,并对活性位点进行分析;利用分光光度法和薄层层析法进行了功能研究。
     本研究的主要结果如下:
     1.家蚕嗅觉相关谷胱甘肽-S-转移酶的鉴定
     从NCBI GenBank下载家蚕BmGSTd1、BmGSTd2和BmGSTd3的基因全长序列,并在家蚕基因组上进行BlastN比对获取3个基因的基因芯片探针号。基于家蚕五龄第3天不同组织芯片数据分析,家蚕BmGSTd1在头部高量表达,在精巢少量表达。BmGSTd2基因在雌雄头、脂肪体、中肠、血液和前中部丝腺中有表达。BmGSTd3基因在除丝腺外其它组织中具有表达。
     进一步进行RT-PCR验证。RT-PCR检测结果,在五龄第3天幼虫各组织中,家蚕BmGSTd1基因在雌雄头部、触角和下颚须表达,而其它组织没有表达;BmGSTd2和BmGSTd3基因在雌雄各个组织表达均有表达。BmGSTd4基因在各个组织中都未检测到表达。在成虫蛾各组织中,家蚕BmGSTd1基因在雄蛾触角中高量表达,在足、尾鞘和生殖腺有微量表达,在雌蛾触角中特异高量表达;BmGSTd2基因在雄蛾中各个组织都有表达,在雌蛾中除脂肪体外各个组织中都有表达;BmGSTd3基因表达情况和BmGSTd2基因相似;BmGSTd4基因只在雄蛾触角特异高量表达,在雌蛾各个组织中都没有表达。
     2.家蚕嗅觉相关谷胱甘肽-S-转移酶的分析
     家蚕BmGSTd1与BmGSTd4基因都在第6号染色体同一scaffold上,两者转录方向相同。BmGSTd1的ORF长为657bp,编码218个氨基酸,预测其蛋白质分子量为25.2kDa,等电点为5.16,不含有信号肽;BmGSTd4的ORF长为738bp,编码245个氨基酸,预测其蛋白质分子量为27.7kDa,等电点为4.63,含有信号肽。结构域预测显示BmGSTD1和BmGSTD4均具有完整的谷胱甘肽N端结构域和C端结构域。
     BmGSTD1和BmGSTD4氨基酸序列相似性为61.2%,两者与烟草天蛾GST-msolf1氨基酸序列相似性分别为74.4%和59.1%。BmGSTD1和BmGSTD4与已报道的嗅觉相关谷胱甘肽-S-转移酶氨基酸序列比对结果显示从第50位氨基酸残基开始,序列趋于保守,特别是第50位至第190位的氨基酸残基,其中部分残基高度保守。BmGSTD与已解析结构的昆虫谷胱甘肽-S-转移酶的delta和epsilon亚家族氨基酸序列比较保守,特别是活性位点的氨基酸残基,包括催化关键残基。氨基酸序列特征分析显示BmGSTD1和BmGSTD4具有完整的二级结构基序。
     3.家蚕BmGSTD1的原核表达和纯化
     为了进一步研究基因功能,根据BmGSTd1的ORF序列设计引物进行克隆,将得到的ORF全长片段亚克隆到原核表达载体p28,经过双酶切鉴定和测序获得了原核重组表达质粒p28-BmGSTd1。重组表达质粒转化表达菌株Rosetta(DE3)感受态细胞,在以加入终浓度为0.2mM的IPTG,37℃培养4h诱导表达条件下获得了可溶性形式表达产物,并且特异条带在25kDa位置处,与目的蛋白预测分子质量大小相一致,获得了重组表达的BmGSTD1可溶蛋白。通过Ni-NTA亲和层析和凝胶过滤层析纯化原核表达的重组BmGSTD1蛋白。以同样的方法获得了重组BmGSTD2和BmGSTD3蛋白。纯化后的蛋白浓缩后,保存在-80℃用于后续实验。
     4.家蚕BmGSTDl的功能
     以1-氯-2,4-二硝基苯为底物,通过分光光度法测定重组家蚕BmGSTD1的酶活性参数为:结合常数Km=0.28mM,最大反应速度Vmax=456.47μmol/mg/min。与已报道的家蚕谷胱甘肽-S-转移酶对1-氯-2,4-二硝基苯酶动力学参数比较,重组家蚕BmGSTD1具有很好的结合常数和最大反应速度,说明其具有较好的GST活性,暗示其可能参与有毒物质的代谢解毒。以气味分子反-2-己烯醛和反苯丙烯醛为底物,在100mM NaAc,pH4.5(10%DMF)缓冲液条件下,利用薄层层析法鉴定了BmGSTD1能催化GSH与这两种气味分子反应。家蚕BmGSTd1基因在家蚕嗅觉器官中占优势表达,除了具有很好的GST活性,还能催化气味分子与谷胱甘肽反应,根据这些结果推测BmGSTD1在家蚕嗅觉系统的作用是:一方面是对有毒物质进行解毒以保护嗅觉器官;一方面是作为清道夫对进入细胞内的气味分子进行清理,维持嗅觉系统的敏感性和高效性。
     5.家蚕BmGSTD1的晶体结构解析
     将纯化获得的重组BmGSTD1蛋白浓缩至4mg/mL,利用悬滴气象扩散法,1μL蛋白溶液(含10mM DTT)与1μL蛋白结晶下槽液(含100mM NaAc, pH4.6,8%pEG4000)在16℃静置一天,获得了BmGSTD1不结合底物的晶体。为了获得BmGSTD1结合底物谷胱甘肽的晶体,在同样条件下加入5mM谷胱甘肽。获得的晶体在上海光源用X-射线衍射后收集衍射数据,衍射数据用HKL2000处理。以大劣按蚊AdGSTD5的结构(PDB ID:1R5A)为模型利用分子置换获得BmGSTD1不结合底物结构正确的解,再利用REFMAC和WinCoot进行结构模型精修。BmGSTD1结合底物谷胱甘肽的以精修后的BmGSTD1不结合底物结构为模型,进行同样处理。最后获得了家蚕BmGSTD1不结合底物和结合底物谷胱甘肽的结构。最终分辨率分别为2.51A和2.12A。
     家蚕BmGSTD1结构上活性形式是二聚体,衍射数据中显示一个非对称单元中存在4个分子,推测是蛋白质结晶过程中晶体堆积造成。二聚体结构中,两个亚基通过α3、α4、α5、β4的一侧和α2与β3之间的柔性区域上的氨基酸残基的相互作用形成作用界面。二聚体的界面包埋面积接近2800A2。
     家蚕BmGSTD1整体结构,属于经典的谷胱甘肽-S-转移酶结构。每个亚基可分为两个独立的结构域。N端结构域是βαβαββα拓扑基序的硫氧还蛋白结构,C端是由5个α螺旋以右手螺旋构成的独立结构域,两者之间由一短的柔性区域连接。谷胱甘肽-S-转移酶结构中其它的相同特征在家蚕BmGSTD1结构中也存在,如顺式构象的Pro58,引起α4螺旋中间断裂的Gly107。
     组成家蚕BmGSTD1的谷胱甘肽结合位点的氨基酸残基比较保守,大部分是亲水性和极性的,它们通过氢键作用对谷胱甘肽进行结合和稳定。其中的Ser14与谷胱甘肽的巯基形成3.65A的氢键,该残基是推测的起催化作用关键残基。家蚕BmGSTD1的疏水底物结合位点呈开放式,位于谷胱甘肽结合位点上方,形成一个浅的疏水通道,并存在类似大劣按蚊AdGSTD4-4结构中的芳香“拉链”结构。
Glutathione S-transferases (GSTs, EC2.5.1.18) are a superfamily of multifunctional enzymes ubiquitously distributed in mammals, insects, plants, fungi, and microorganisms. As phase Ⅱ detoxification enzymes, they play a crucial role in metabolizing xenobiotics and/or endobiotics to detoxification. GSTs are also involved in other functions. They exhibit peroxidase activity in protecting against oxidative stress and oxidative damage. In addition, they have been implicated in the isomerization of certain steroids, cellular signal passway and various biosynthetic processes. Additionally, some GSTs can non-catalytically bind numerous endogenous and exogenous ligands.
     Beyond, olfactory-related GSTs have been identified in cattle, rat, Manduca sexta, Helicoverpa armigera and Papilio xuthus L.. They are proposed to have roles in olfactory system:protecting olfactory system by detoxifying harmful xenobiotics; participating in olfactory process.
     The silkworm Bombyx mori encodes four isoforms of delta class GSTs, among which BmGSTd1logged in NCBI was cloned from silkworm antenna, and amino acids encoded share similarity of74.4%with antennal-specific GST-msolfl in M. sexta. And BmGSTd1, BmGSTd4and GST-msolfl formed a distinct cluster in phylogenetic analysis reported. Based on these clues, we identified olfactory-related GSTs in GSTs genes of Bombyx mori.
     In present study, we identified BmGSTdl and BmGSTd4as olfactory-related GSTs candidate genes from delta class GSTs in B. mori based on microarray data combined with RT-PCR. Meanwhile, BmGSTdl was cloned and analyzed. Furthermore, we obtained recombinant BmGSTD1by prokaryotic expression and protein purification.
     The structures of BmGSTD1apo form and GSH-bound form were resolved through methods of structural biology, and the active site GSH-binding site and hydrophobic substrate binding site were analyzed. Also the functional study of BmGSTD1was performed using spectrophotometry and thin layer chromatography.
     The main results are as follows:
     1. Identification of olfactory-related GSTs in B. mori
     By doing BlastN in silkworm databes using the full-length cDNA sequences of BmGSTd1, BmGSTd1and BmGSTd3downloaded from GenBank as query sequences, we obtained microarray probe ID. Based on microarray data analysis in various different tissues on day3of the fifth instar larval stage, BmGSTdl shows high levels expression in head and a small amount expression in testis. BmGSTd1expresses in male and female head, fat body, midgut, and hemocyte and the former middle silk gland. BmGSTd3expresses in various tissues except silk gland.
     Semi-quantitative RT-PCR was carried out to validate the microarray data. In various different tissues on day3of the fifth instar larval stage, BmGSTdl only expresses in head, antennae and maxillary palpus; BmGSTd1and BmGSTd3show expression in all tissues. However the expression of BmGSTd4has not been detected in all tissues. In different tissues of adult moth, BmGSTdl shows high levels expression in antennae and a small amount expression in legs, tail casing and gonad of male, has high and special expression in antennae of female. BmGSTd2and BmGSTd3have the similar expression pattern. BmGSTd4only highly and specific expresses in antennae of male.
     2. Analysis of B. mori olfactory-related GSTs
     BmGSTdl and BmGSTd4located on the same scaffold in chromosome6, and have the same transcriptional orientation. The ORF of BmGSTdl is657bp, encoding218amino acids with putative molecular weight is25.2kDa and pI is5.16, and no signal peptide. The ORF of BmGSTd4is738bp, encoding245amino acids with putative molecular weight is27.7kDa and pI is4.63, and containing signal peptide. Domain prediction shows that both of BmGSTDl and BmGSTD4have complete GST N-terminal and C-terminal domains.
     Amino sequences of BmGSTD1and BmGSTD4show share similarity of61.2%, and each other has similarity in74.4%and51.9%with GST-msolfl in M. sexta, respectively. The amino acid sequences multi-alignment of reported olfactory-related GSTs with BmGSTD1and BmGSTD4shows that the sequences trend to be conservative from the50th residue, especially the50th to190th, some of which are highly conserved. The amino acid sequences multi-alignment of reolved insect delta and epsilon class GSTs with BmGSTD1indicates that they are conserved, especially the residues in active site, including catalytic essential residue. Characteristic analysis of the amino acid sequences of BmGSTD1and BmGSTD4display that both of them have complete secondary structural motif.
     3. Prokaryotic expression and protein purification of BmGSTD1
     The ORF fragment of BmGSTD1was subcloned into p28(derived from pET28), and recombinant expression plasmid p28-BmGSTdl was constructed after identification of digestion and being sequenced. The recombinant plasmid was transformed into E. Coli strain Rosetta(DE3) competent cells, a soluble form of expression products were obtained under the induced expression condition of final concentration of0.2mM IPTG, at37℃for4h, and the products showed band on SDS-PAGE, with an approximate size of25kDa, which is consistent with the calculated molecular mass of the BmGSTD1subunit. By Ni-NTA affinity chromatography and gel filtration chromatography, recombinant BmGSTDl were purified. The same way was repeated to recombinant BmGSTD2and BmGSTD3. The purified protein was concentrated and stored at-80°C for subsequent experiments.
     4. Functions of BmGSTD1
     GST activity of BmGSTD1was measured using CDNB and GSH as standard substrates with a spectrophotometer. Kinetic parameters Km and Vmax values were0.28mM and456.47μmol/mg/min, respectively. Comparison with kinetic parameters of reported B. mori GSTs, BmGSTDl has well GST activity. BmGSTDl conjugation activities towards odorants trans-2-hexenal and trans-cinnamaldehyde were determined via thin-layer chromatography under condition of100mM NaAc, pH4.5(containg10%DMF). The results clearly show that BmGSTDl can catalyze GSH conjugation to candidate odorant substrate. High and preferential expression in olfactory organs, excellent GST activity, and evident participation in odorant modifications all suggest that BmGSTD1has dual roles in the silkworm olfactory system:protecting olfactory system by detoxifying toxic compounds, and function as a scavenger against certain odorants to maintain the sensitivity and effectiveness of the olfactory system.
     5. The crystal structures of BmGSTD1
     The purified recombinant protein was concentrated to10mg/mL via ultrafiltration (Millipore Amicon). A1μL sample for crystallization was mixed with a1μL reservoir solution of0.1M sodium acetate trihydrate (pH4.6) and8%pEG4000. The sample for the apo form contained4mg/mL protein and10mM dithiothreitol. For the GSH-bound form, an extra10mM GSH was added. Crystals were grown in hanging drops equilibrated against the reservoir solution at16℃for1d before being flash-frozen in liquid nitrogen using a reservoir solution with30%glycerol (vol/vol) as cryoprotectant. X-ray diffraction data were collected at100K in a liquid nitrogen stream, using beamline17U with an MX225CCD at the Shanghai Synchrotron Radiation Facility. All diffraction data were indexed, integrated, and scaled using the program HKL2000. Molecular replacement of the BmGSTDl apo form was carried out with MOLREP within the CCP4i suite, using the Anopheles dirus GSTD5monomer (RCSB Protein Data Bank code1R5A) as a search model. REFMAC and WinCoot were employed to perform refinement. The final model quality was checked using MolProbity. The resolved BmGSTD1apo form model was used for the model building of BmGSTD1GSH-bound form. The same refinement procedures were carried out for the apo form. We elucidated on the tertiary structures of BmGSTD1in the apo form (2.51A) and GSH-bound form (2.12A).
     BmGSTD1exists as a dimer in solution. An asymmetric unit is composed of four monomers, which may be generated during crystal packing. In dimer, the interface of subunits was formed through the residues located on flank of a3, a4, a5, β4and flexible region between a2and a3. The dimeric interface buries a large area of approximately2800A2.
     BmGSTD1adopts the canonical fold of cytosolic GSTs. Each subunit is obviously organized into two distinct domains linked by a short segment. The N-terminal domain consists of the typical βαβαββα motif of the thioredoxin fold. Five helices (a4-a8) of the C-terminal domain resemble a right-handed a-helical bundle. Other common features in cytosolic GSTs include an equivalent cis conformation Pro58, and the middle interrupting of helix a4induced by equivalent Gly107.
     The residues formed GSH-binding site are conserved, most of them are are hydrophilic and polar in nature, combine and stable GSH via hydrogen bonds. The thiolate of GSH is located3.65A away from the hydroxyl group of Ser14, which is the putative essential residue for catalysis. The hydrophobic substrate binding site is open and sharps as a shallow hydrophobic channel, which lies adjacent to the G-site. A similar aromatic "zipper" motif in AdGSTD4may exist in H-site of BmGSTDl.
引文
[1]Dourado, D. F., Fernandes, P. A., Ramos, M. J. Mammalian cytosolic glutathione transferases[J]. Curr Protein Pept Sci,2008,9(4):325-337.
    [2]Enayati, A. A., Ranson, H., Hemingway, J. Insect glutathione transferases and insecticide resistance[J]. Insect Mol Biol,2005,14(1):3-8.
    [3]Dixon, D. P., Lapthorn, A., Edwards, R. Plant glutathione transferases[J]. Genome Biol, 2002,3(3):REVIEWS3004.
    [4]Morel, M., Ngadin, A. A., Droux, M. et al. The fungal glutathione S-transferase system. Evidence of new classes in the wood-degrading basidiomycete Phanerochaete chrysosporium[J].Cell Mol Life Sci,2009,66(23):3711-3725.
    [5]Allocati, N., Federici, L., Masulli, M. et al. Glutathione transferases in bacteria[J]. FEBS J, 2009,276(1):58-75.
    [6]Booth, J., Boyland, E., Sims, P. An enzyme from rat liver catalysing conjugations with glutathione[J]. Biochem J,1961,79(3):516-524.
    [7]Combes, B., Stakelum, G. S. A liver enzyme that conjugates sulfobromophthalein sodium with glutathione[J]. J Clin Invest,1961,40(6):981-988.
    [8]Singh, S. P., Coronella, J. A., Benes, H. et al. Catalytic function of Drosophila melanogaster glutathione S-transferase DmGSTS1-1 (GST-2) in conjugation of lipid peroxidation end products[J]. Eur J Biochem,2001,268(10):2912-2923.
    [9]Hayes, J. D., Flanagan, J. U., Jowsey, I. R. Glutathione transferases[J]. Annu Rev Pharmacol Toxicol,2005,45:51-88.
    [10]Bhargava, M. M., Listowsky, I., Arias, I. M. Ligandin. Bilirubin binding and glutathione-S-transferase activity are independent processes[J]. J Biol Chem,1978,253(12): 4112-4115.
    [11]Lo Bello, M., Nuccetelli, M., Caccuri, A. M. et al. Human glutathione transferase P1-1 and nitric oxide carriers; a new role for an old enzyme[J]. J Biol Chem,2001,276(45): 42138-42145.
    [12]Dulhunty, A., Gage, P., Curtis, S. et al. The glutathione transferase structural family includes a nuclear chloride channel and a ryanodine receptor calcium release channel modulator[J]. J Biol Chem,2001,276(5):3319-3323.
    [13]Edwards, R., Dixon, D. P. Plant glutathione transferases[J]. Methods Enzymol,2005,401: 169-186.
    [14]Mannervik, B., Awasthi, Y. C., Board, P. G. et al. Nomenclature for human glutathione transferases[J]. Biochem J,1992,282 (Pt 1):305-306.
    [15]Sheehan, D., Meade, G., Foley, V. M. et al. Structure, function and evolution of glutathione transferases:implications for classification of non-mammalian members of an ancient enzyme superfamily[J]. Biochem J,2001,360(Pt 1):1-16.
    [16]Fournier, D., Bride, J. M., Poirie, M. et al. Insect glutathione S-transferases. Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides[J]. J Biol Chem,1992,267(3):1840-1845.
    [17]Chelvanayagam, G., Parker, M.W. and Board, P.G. Fly fishing for GSTs:a unified nomenclature for mammalian and insect glutathione transferases[J]. Chem Biol Interact, 2001,133:256-260.
    [18]Lumjuan, N., Stevenson, B. J., Prapanthadara, L. A. et al. The Aedes aegypti glutathione transferase family[J]. Insect Biochem Mol Biol,2007,37(10):1026-1035.
    [19]Ding, Y., Ortelli, F., Rossiter, L. C. et al. The Anopheles gambiae glutathione transferase supergene family:annotation, phylogeny and expression profiles[J]. BMC Genomics,2003, 4(1):35.
    [20]Sesay, M. A., Ammon, H. L., Armstrong, R. N. Crystallization and a preliminary X-ray diffraction study of isozyme 3-3 of glutathione S-transferase from rat liver[J]. J Mol Biol, 1987,197(2):377-378.
    [21]Reinemer, P., Dirr, H. W., Ladenstein, R. et al. The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution[J]. EMBO J,1991,10(8):1997-2005.
    [22]Dirr, H. W., Mann, K., Huber, R. et al. Class pi glutathione S-transferase from pig lung. Purification, biochemical characterization, primary structure and crystallization[J]. Eur J Biochem,1991,196(3):693-698.
    [23]Armstrong, R. N. Structure, catalytic mechanism, and evolution of the glutathione transferases[J]. Chem Res Toxicol,1997,10(1):2-18.
    [24]Luo, J. K., Hornby, J. A., Wallace, L. A. et al. Impact of domain interchange on conformational stability and equilibrium folding of chimeric class micro glutathione transferases[J]. Protein Sci,2002,11(9):2208-2217.
    [25]Board, P. G., Coggan, M., Chelvanayagam, G. et al. Identification, characterization, and crystal structure of the Omega class glutathione transferases[J]. J Biol Chem,2000,275(32): 24798-24806.
    [26]Wang, Y., Qiu, L., Ranson, H. et al. Structure of an insect epsilon class glutathione S-transferase from the malaria vector Anopheles gambiae provides an explanation for the high DDT-detoxifying activity [J]. J Struct Biol,2008,164(2):228-235.
    [27]Low, W. Y, Feil, S. C., Ng, H. L. et al. Recognition and detoxification of the insecticide DDT by Drosophila melanogaster glutathione S-transferase D1 [J]. J Mol Biol,2010,399(3): 358-366.
    [28]DeLano, W. L. The PyMOL Molecular Graphic System[J]. San Carlos, CA, USA.DeLano Scientific,2002.
    [29]Allocati, N., Casalone, E., Masulli, M. et al. Functional analysis of the evolutionarily conserved proline 53 residue in Proteus mirabilis glutathione transferase B1-1 [J]. FEBS Lett, 1999,445(2-3):347-350.
    [30]Wilce, M. C., Parker, M. W. Structure and function of glutathione S-transferases[J]. Biochim Biophys Acta,1994,1205(1):1-18.
    [31]Ji, X., Zhang, P., Armstrong, R. N. et al. The three-dimensional structure of a glutathione S-transferase from the mu gene class. Structural analysis of the binary complex of isoenzyme 3-3 and glutathione at 2.2-A resolution[J]. Biochemistry,1992,31(42): 10169-10184.
    [32]Sinning, I., Kleywegt, G. J., Cowan, S. W. et al. Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes[J]. J Mol Biol,1993,232(1):192-212.
    [33]Frova, C. Glutathione transferases in the genomics era:new insights and perspectives[J]. Biomol Eng,2006,23(4):149-169.
    [34]Jemth, P., Mannervik, B. Active site serine promotes stabilization of the reactive glutathione thiolate in rat glutathione transferase T2-2. Evidence against proposed sulfatase activity of the corresponding human enzyme[J].J Biol Chem,2000,275(12):8618-8624.
    [35]Board, P. G., Coggan, M., Wilce, M. C. et al. Evidence for an essential serine residue in the active site of the Theta class glutathione transferases[J]. Biochem J,1995,311 (Pt 1): 247-250.
    [36]Dirr, H., Reinemer, P., Huber, R. X-ray crystal structures of cytosolic glutathione S-transferases. Implications for protein architecture, substrate recognition and catalytic function[J]. Eur J Biochem,1994,220(3):645-661.
    [37]Atkins, W. M., Wang, R. W., Bird, A. W. et al. The catalytic mechanism of glutathione S-transferase (GST). Spectroscopic determination of the pKa of Tyr-9 in rat alpha 1-1 GST[J]. J Biol Chem,1993,268(26):19188-19191.
    [38]Liu, S., Zhang, P., Ji, X. et al. Contribution of tyrosine 6 to the catalytic mechanism of isoenzyme 3-3 of glutathione S-transferase [J]. J Biol Chem,1992,267(7):4296-4299.
    [39]Mannervik, B., Danielson, U. H. Glutathione transferases--structure and catalytic activity[J]. CRC Crit Rev Biochem,1988,23(3):283-337.
    [40]Agianian, B., Tucker, P. A., Schouten, A. et al. Structure of a Drosophila sigma class glutathione S-transferase reveals a novel active site topography suited for lipid peroxidation products[J]. J Mol Biol,2003,326(1):151-165.
    [41]Perbandt, M., Hoppner, J., Betzel, C. et al. Structure of the major cytosolic glutathione S-transferase from the parasitic nematode Onchocerca volvulus[J]. J Biol Chem,2005, 280(13):12630-12636.
    [42]Ames, B. N., Profet, M., Gold, L. S. Nature's chemicals and synthetic chemicals: comparative toxicology[J]. Proc Natl Acad Sci USA,1990,87(19):7782-7786.
    [43]Hayes, J. D., McLellan, L. I. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress[J]. Free Radic Res,1999,31(4): 273-300.
    [44]Hayes, J. D., Pulford, D. J. The glutathione S-transferase supergene family:regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance[J]. Crit Rev Biochem Mol Biol,1995,30(6):445-600.
    [45]Kavallaris, M. The role of multidrug resistance-associated protein (MRP) expression in multidrug resistance[J]. Anticancer Drugs,1997,8(1):17-25.
    [46]Jedlitschky, G., Leier, I., Buchholz, U. et al. ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein[J]. Cancer Res,1994,54(18): 4833-4836.
    [47]Gottesman, M. M., Pastan, I. Biochemistry of multidrug resistance mediated by the multidrug transporter[J]. Annu Rev Biochem,1993,62:385-427.
    [48]Ishikawa, T. The ATP-dependent glutathione S-conjugate export pump[J]. Trends Biochem Sci,1992,17(11):463-468.
    [49]Heijn, M., Oude Elferink, R. P., Jansen, P. L. ATP-dependent multispecific organic anion transport system in rat erythrocyte membrane vesicles[J]. Am J Physiol,1992,262(1 Pt 1): C104-110.
    [50]Salinas, A. E., Wong, M. G. Glutathione S-transferases--a review[J]. Curr Med Chem,1999, 6(4):279-309.
    [51]Prabhu, K. S., Reddy, P. V., Jones, E. C. et al. Characterization of a class alpha glutathione-S-transferase with glutathione peroxidase activity in human liver microsomes[J]. Arch Biochem Biophys,2004,424(1):72-80.
    [52]Marnett, L. J., Riggins, J. N., West, J. D. Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein[J]. J Clin Invest,2003,111(5): 583-593.
    [53]Yang, Y., Sharma, R., Zimniak, P. et al. Role of alpha class glutathione S-transferases as antioxidant enzymes in rodent tissues[J]. Toxicol Appl Pharmacol,2002,182(2):105-115.
    [54]Hurst, R., Bao, Y., Jemth, P. et al. Phospholipid hydroperoxide glutathione peroxidase activity of human glutathione transferases[J]. Biochem J,1998,332 (Pt 1):97-100.
    [55]Hiratsuka, A., Hirose, K., Saito, H. et al.4-Hydroxy-2(E)-nonenal enantiomers: (S)-selective inactivation of glyceraldehyde-3-phosphate dehydrogenase and detoxification by rat glutathione S-transferase A4-4[J]. Biochem J,2000,349 Pt 3:729-735.
    [56]Hubatsch, I., Ridderstrom, M., Mannervik, B. Human glutathione transferase A4-4:an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation[J]. Biochem J,1998,330 (Pt 1):175-179.
    [57]Dagnino-Subiabre, A., Cassels, B. K., Baez, S. et al. Glutathione transferase M2-2 catalyzes conjugation of dopamine and dopa o-quinones[J]. Biochem Biophys Res Commun,2000, 274(1):32-36.
    [58]Esterbauer, H., Schaur, R. J., Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes[J]. Free Radic Biol Med,1991,11(1):81-128.
    [59]Mano, J., Torii, Y., Hayashi, S. et al. The NADPH:quinone oxidoreductase P1-zeta-crystallin in Arabidopsis catalyzes the alpha,beta-hydrogenation of 2-alkenals:detoxication of the lipid peroxide-derived reactive aldehydes[J]. Plant Cell Physiol,2002,43(12):1445-1455.
    [60]Yoritaka, A., Hattori, N., Uchida, K. et al. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease[J]. Proc Natl Acad Sci U S A,1996, 93(7):2696-2701.
    [61]Montine, T. J., Huang, D. Y., Valentine, W. M. et al. Crosslinking of apolipoprotein E by products of lipid peroxidation[J]. J Neuropathol Exp Neurol,1996,55(2):202-210.
    [62]Mark, R. J., Lovell, M. A., Markesbery, W. R. et al. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide[J]. JNeurochem,1997,68(1):255-264.
    [63]Butterfield, D. A. Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. A review[J]. Free Radio Res,2002,36(12):1307-1313.
    [64]Tsuneyama, K., Harada, K., Kono, N. et al. Damaged interlobular bile ducts in primary biliary cirrhosis show reduced expression of glutathione-S-transferase-pi and aberrant expression of 4-hydroxynonenal[J]. JHepatol,2002,37(2):176-183.
    [65]Parola, M., Bellomo, G., Robino, G. et al.4-Hydroxynonenal as a biological signal: molecular basis and pathophysiological implications[J]. Antioxid Redox Signal,1999,1(3): 255-284.
    [66]Ansari, N. H., Wang, L., Srivastava, S. K. Role of lipid aldehydes in cataractogenesis: 4-hydroxynonenal-induced cataract[J]. Biochem Mol Med,1996,58(1):25-30.
    [67]Fernandez-Canon, J. M., Penalva, M. A. Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue[J]. J Biol Chem,1998,273(1): 329-337.
    [68]Johansson, A. S., Mannervik, B. Human glutathione transferase A3-3, a highly efficient catalyst of double-bond isomerization in the biosynthetic pathway of steroid hormones[J]. J Biol Chem,2001,276(35):33061-33065.
    [69]Beuckmann, C. T., Fujimori, K., Urade, Y et al. Identification of mu-class glutathione transferases M2-2 and M3-3 as cytosolic prostaglandin E synthases in the human brain[J]. Neurochem Res,2000,25(5):733-738.
    [70]Bogaards, J. J., Venekamp, J. C., van Bladeren, P. J. Stereoselective conjugation of prostaglandin A2 and prostaglandin J2 with glutathione, catalyzed by the human glutathione S-transferases A1-1, A2-2, Mla-la, and P1-1[J]. Chem Res Toxicol,1997,10(3):310-317.
    [71]Jakobsson, P. J., Morgenstern, R., Mancini, J. et al. Common structural features of MAPEG a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism[J]. Protein Sci,1999,8(3):689-692.
    [72]Paumi, C. M., Wright, M., Townsend, A. J. et al. Multidrug resistance protein (MRP) 1 and MRP3 attenuate cytotoxic and transactivating effects of the cyclopentenone prostaglandin, 15-deoxy-Delta(12,14)prostaglandin J2 in MCF7 breast cancer cells[J]. Biochemistry,2003, 42(18):5429-5437.
    [73]Paumi, C. M., Smitherman, P. K., Townsend, A. J. et al. Glutathione S-transferases (GSTs) inhibit transcriptional activation by the peroxisomal proliferator-activated receptor gamma (PPAR gamma) ligand,15-deoxy-delta 12,14prostaglandin J2 (15-d-PGJ2)[J]. Biochemistry, 2004,43(8):2345-2352.
    [74]Jowsey, I. R., Smith, S. A., Hayes, J. D. Expression of the murine glutathione S-transferase alpha3 (GSTA3) subunit is markedly induced during adipocyte differentiation:activation of the GSTA3 gene promoter by the pro-adipogenic eicosanoid 15-deoxy-Deltal2,14-prostaglandin J2[J]. Biochem Biophys Res Commun,2003,312(4): 1226-1235.
    [75]Itoh, K., Mochizuki, M., Ishii, Y. et al. Transcription factor Nrf2 regulates inflammation by mediating the effect of 15-deoxy-Delta(12,14)-prostaglandin j(2)[J]. Mol Cell Biol,2004, 24(1):36-45.
    [76]Wakabayashi, N., Dinkova-Kostova, A. T., Holtzclaw, W. D. et al. Protection against electrophile and oxidant stress by induction of the phase 2 response:fate of cysteines of the Keapl sensor modified by inducers[J]. Proc Natl Acad Sci USA,2004,101(7):2040-2045.
    [77]Rossi, A., Kapahi, P., Natoli, G. et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase[J]. Nature,2000,403(6765):103-108.
    [78]McMahon, M., Itoh, K., Yamamoto, M. et al. Keapl-dependent Proteasomal Degradation of Transcription Factor Nrf2 Contributes to the Negative Regulation of Antioxidant Response Element-driven Gene Expression[J]. Journal of Biological Chemistry,2003,278(24): 21592-21600.
    [79]Listowsky, I., Abramovitz, M., Homma, H. et al. Intracellular binding and transport of hormones and xenobiotics by glutathione-S-transferases[J]. Drug Me tab Rev,1988,19(3-4): 305-318.
    [80]Ketley, J. N., Habig, W. H., Jakoby, W. B. Binding of nonsubstrate ligands to the glutathione S-transferases[J]. J Biol Chem,1975,250(22):8670-8673.
    [81]Litwack, G., Ketterer, B., Arias, I. M. Ligandin:a hepatic protein which binds steroids, bilirubin, carcinogens and a number of exogenous organic anions[J]. Nature,1971, 234(5330):466-467.
    [82]Tipping, E., Ketterer, B., Koskelo, P. The binding of porphyrins by ligandin[J]. Biochem J, 1978,169(3):509-516.
    [83]Ishigaki, S., Abramovitz, M., Listowsky, I. Glutathione-S-transferases are major cytosolic thyroid hormone binding proteins[J]. Arch Biochem Biophys,1989,273(2):265-272.
    [84]Banger, K. K., Lock, E. A., Reed, C. J. The characterization of glutathione S-transferases from rat olfactory epithelium[J]. Biochem J,1993,290 (Pt 1):199-204.
    [85]Aceto, A., Sacchetta, P., Dragani, B. et al. Glutathione transferase isoenzymes in olfactory and respiratory epithelium of cattle[J]. Biochem Pharmacol,1993,46(12):2127-2133.
    [86]Ben-Arie, N., Khen, M., Lancet, D. Glutathione S-transferases in rat olfactory epithelium: purification, molecular properties and odorant biotransformation[J]. Biochem J,1993,292 (Pt 2):379-384.
    [87]Rogers, M. E., Jani, M. K., Vogt, R. G. An olfactory-specific glutathione-S-transferase in the sphinx moth Manduca sexta[J]. JExp Biol,1999,202(Pt 12):1625-1637.
    [88]王桂荣,郭予元,吴孔明.一个棉铃虫触角特异表达基因cDNA片段的克隆[J].农业生物技术学报,2003,11(1):6.
    [89]Ono, H., Ozaki, K., Yoshikawa, H. Identification of cytochrome P450 and glutathione-S-transferase genes preferentially expressed in chemosensory organs of the swallowtail butterfly, Papilio xuthus L[J]. Insect Biochem Mol Biol,2005,35(8):837-846.
    [90]Raza, H. Dual Localization of Glutathione S-Transferase in the Cytosol and Mitochondria: Implications in Oxidative Stress, Toxicity and Disease[J]. FEBSJ,2011.
    [91]Piotr, Z., Sharda, S. Families of Glutathione Transferases[A]. Toxicology of Glutathione Transferases[C]. Informa Healthcare,2006.11-26.
    [92]Tew, K. D. Glutathione-associated enzymes in anticancer drug resistance[J]. Cancer Res, 1994,54(16):4313-4320.
    [93]Hayes, J. D., Strange, R. C. Glutathione S-transferase polymorphisms and their biological consequences[J]. Pharmacology,2000,61(3):154-166.
    [94]Townsend, D., Tew, K. Cancer drugs, genetic variation and the glutathione-S-transferase gene family[J]. Am JPharmacogenomics,2003,3(3):157-172.
    [95]Coles, B. F., Kadlubar, F. F. Detoxification of electrophilic compounds by glutathione S-transferase catalysis:determinants of individual response to chemical carcinogens and chemotherapeutic drugs?[J]. Biofactors,2003,17(1-4):115-130.
    [96]Benhamou, S., Lee, W. J., Alexandrie, A. K. et al. Meta-and pooled analyses of the effects of glutathione S-transferase M1 polymorphisms and smoking on lung cancer risk[J]. Carcinogenesis,2002,23(8):1343-1350.
    [97]Hashibe, M., Brennan, P., Strange, R. C. et al. Meta- and pooled analyses of GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes and risk of head and neck cancer[J]. Cancer Epidemiol Biomarkers Prev,2003,12(12):1509-1517.
    [98]Roodi, N., Dupont, W. D., Moore, J. H. et al. Association of homozygous wild-type glutathione S-transferase M1 genotype with increased breast cancer risk[J]. Cancer Res, 2004,64(4):1233-1236.
    [99]Stoehlmacher, J., Park, D. J., Zhang, W. et al. Association between glutathione S-transferase P1, T1, and M1 genetic polymorphism and survival of patients with metastatic colorectal cancer[J]. JNatl Cancer Inst,2002,94(12):936-942.
    [100]Whitbread, A. K., Tetlow, N., Eyre, H. J. et al. Characterization of the human Omega class glutathione transferase genes and associated polymorphisms[J]. Pharmacogenetics,2003, 13(3):131-144.
    [101]Engle, M. R., Singh, S. P., Czernik, P. J. et al. Physiological role of mGSTA4-4, a glutathione S-transferase metabolizing 4-hydroxynonenal:generation and analysis of mGsta4 null mouse[J]. Toxicol Appl Pharmacol,2004,194(3):296-308.
    [102]Henderson, C. J., Smith, A. G., Ure, J. et al. Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases[J]. Proc Natl Acad Sci USA,1998,95(9):5275-5280.
    [103]Lim, C. E., Matthaei, K. I., Blackburn, A. C. et al. Mice deficient in glutathione transferase zeta/maleylacetoacetate isomerase exhibit a range of pathological changes and elevated expression of alpha, mu, and pi class glutathione transferases[J]. Am J Pathol,2004,165(2): 679-693.
    [104]Urade, Y., Eguchi, N., Aritake, K. et al. [Functional analyses of lipocalin-type and hematopoietic prostaglandin D synthases][J]. Nihon Yakurigaku Zasshi,2004,123(1):5-13.
    [105]Fernandez-Canon, J. M., Baetscher, M. W., Finegold, M. et al. Maleylacetoacetate isomerase (MAAI/GSTZ)-deficient mice reveal a glutathione-dependent nonenzymatic bypass in tyrosine catabolism[J]. Mol Cell Biol,2002,22(13):4943-4951.
    [106]Edwards, R., Dixon, D. P., Walbot, V. Plant glutathione S-transferases:enzymes with multiple functions in sickness and in health[J]. Trends Plant Sci,2000,5(5):193-198.
    [107]Dixon, D. P., Cummins, L., Cole, D. J. et al. Glutathione-mediated detoxification systems in plants[J]. Curr Opin Plant Biol,1998,1(3):258-266.
    [108]Mueller, L. A., Goodman, C. D., Silady, R. A. et al. AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein[J]. Plant Physiol, 2000,123(4):1561-1570.
    [109]Roxas, V. P., Smith, R. K., Allen, E. R. et al. Overexpression of glutathione S-transferase/glutathioneperoxidase enhances the growth of transgenic tobacco seedlings during stress[J]. Nat Biotech,1997,15(10):988-991.
    [110]Cummins, I., Cole, D. J., Edwards, R. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass[J]. Plant J,1999, 18(3):285-292.
    [111]Kampranis, S. C., Damianova, R., Atallah, M. et al. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast[J]. J Biol Chem,2000,275(38): 29207-29216.
    [112]Loyall, L., Uchida, K., Braun, S. et al. Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures[J]. Plant Cell, 2000,12(10):1939-1950.
    [113]Dixon, D. P., Cole, D. J., Edwards, R. Characterisation of a zeta class glutathione transferase from Arabidopsis thaliana with a putative role in tyrosine catabolism[J]. Arch Biochem Biophys,2000,384(2):407-412.
    [114]Ranson, H., Hemingway, J. Mosquito glutathione transferases[J]. Methods Enzymol,2005, 401:226-241.
    [115]Tu, C. P., Akgul, B. Drosophila glutathione S-transferases[J]. Methods Enzymol,2005,401: 204-226.
    [116]Lumjuan, N., McCarroll, L., Prapanthadara, L. A. et al. Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti[J]. Insect Biochem Mol Biol,2005,35(8):861-871.
    [117]Vontas, J. G., Small, G. J., Hemingway, J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens[J]. Biochem J,2001,357(Pt 1): 65-72.
    [118]Kostaropoulos, I., Papadopoulos, A. I., Metaxakis, A. et al. Glutathione S-transferase in the defence against pyrethroids in insects[J]. Insect Biochem Mol Biol,2001,31 (4-5):313-319.
    [119]Oppenoorth, F. J., van der Pas, L. J. T., Houx, N. W. H. Glutathione S-transferase and hydrolytic activity in a tetrachlorvinphos-resistant strain of housefly and their influence on resistance[J]. Pesticide Biochemistry and Physiology,1979,11(1-3):176-188.
    [120]Chiang, F. M., Sun, C. N. Glutathione Transferase Isozymes of Diamondback Moth Larvae and Their Role in the Degradation of Some Organophosphorus Insecticides[J]. Pesticide Biochemistry and Physiology,1993,45(1):7-14.
    [121]Jirajaroenrat, K., Pongjaroenkit, S., Krittanai, C. et al. Heterologous expression and characterization of alternatively spliced glutathione S-transferases from a single Anopheles gene[J].Insect Biochem Mol Biol,2001,31(9):867-875.
    [122]Prapanthadara, L., Ranson, H., Somboon, P. et al. Cloning, expression and characterization of an insect class I glutathione S-transferase from Anopheles dirus species B[J]. Insect Biochem Mol Biol,1998,28(5-6):321-329.
    [123]Vontas, J. G., Small, G. J., Nikou, D. C. et al. Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens[J]. Biochem J,2002,362(Pt 2): 329-337.
    [124]Oakley, A. J., Harnnoi, T, Udomsinprasert, R. et al. The crystal structures of glutathione S-transferases isozymes 1-3 and 1-4 from Anopheles dirus species B[J]. Protein Sci,2001, 10(11):2176-2185.
    [125]Wongsantichon, J., Robinson, R. C., Ketterman, A. J. Structural contributions of delta class glutathione transferase active-site residues to catalysis[J]. Biochem J,2010,428(1):25-32.
    [126]Winayanuwattikun, P., Ketterman, A. J. Glutamate-64, a newly identified residue of the functionally conserved electron-sharing network contributes to catalysis and structural integrity of glutathione transferases[J]. Biochem J,2007,402(2):339-348.
    [127]Lerksuthirat, T., Ketterman, A. J. Characterization of putative hydrophobic substrate binding site residues of a Delta class glutathione transferase from Anopheles dirus[J]. Arch Biochem Biophys,2008,479(1):97-103.
    [128]Chen, L., Hall, P. R., Zhou, X. E. et al. Structure of an insect delta-class glutathione S-transferase from a DDT-resistant strain of the malaria vector Anopheles gambiae[J]/Acta Crystallogr D Biol Crystallogr,2003,59(Pt 12):2211-2217.
    [129]Udomsinprasert, R., Pongjaroenkit, S., Wongsantichon, J. et al. Identification, characterization and structure of a new Delta class glutathione transferase isoenzyme[J]. Biochem J,2005,388(Pt 3):763-771.
    [130]Chen, B. Y., Ma, X. X., Guo, P. C. et al. Structure-guided activity restoration of the silkworm glutathione transferase Omega GSTO3-3[J]. J Mol Biol,2011,412(2):204-211.
    [131]Kakuta, Y., Usuda, K., Nakashima, T. et al. Crystallographic survey of active sites of an unclassified glutathione transferase from Bombyx mori[J]. Biochim Biophys Acta,2011, 1810(12):1355-1360.
    [132]梁大刚.氟中毒对家蚕幼虫体内谷胱甘肽(GSH)代谢的影响.浙江大学,特种经济动物学,2004.
    [133]Yamamoto, K., Zhang, P., Miake, F. et al. Cloning, expression and characterization of theta-class glutathione S-transferase from the silkworm, Bombyx mori[S]. Comp Biochem Physiol B Biochem Mol Biol,2005,141 (3):340-346.
    [134]Yamamoto, K., Zhang, P. B., Banno, Y. et al. Identification of a sigma-class glutathione-S-transferase from the silkworm, Bombyx mori[J]. Journal of Applied Entomology,2006,130(9-10):515-522.
    [135]Yu, Q., Lu, C., Li, B. et al. Identification, genomic organization and expression pattern of glutathione S-transferase in the silkworm, Bombyx mori[J]. Insect Biochem Mol Biol,2008, 38(12):1158-1164.
    [136]侯成香.家蚕谷胱甘肽硫-转移酶的组织分布及发育期变化规律[J].蚕业科学,2007,33(3).
    [137]左伟东,余泉友,李斌等.家蚕谷胱甘肽转移酶基因的克隆、序列分析及其表达模式[J].农业生物技术学报,2007,15(4).
    [138]Hou, C. X., Fu, Z. Q., Jin, B. R. et al. Purification and biochemical characterization of a novel glutathione S-transferase of the silkworm, Bombyx mori[J]. African Journal of Biotechnology,2008,7(3):311-316.
    [139]Yamamoto, K., Shigeoka, Y., Aso, Y. et al. Molecular and biochemical characterization of a Zeta-class glutathione S-transferase of the silkmoth[J]. Pesticide Biochemistry and Physiology,2009,94(1):30-35.
    [140]Yamamoto, K., Nagaoka, S., Banno, Y. et al. Biochemical properties of an omega-class glutathione S-transferase of the silkmoth, Bombyx mori[J]. Comp Biochem Physiol C Toxicol Pharmacol,2009,149(4):461-467.
    [141]潘敏慧,许谖,余泉友等.家蚕谷光甘肽-S-转移酶GSTe3基因的鉴定及其真核表达[J]. 中国农业科学,2010,43(4):873-880.
    [142]余泉友,房守敏,左伟东,张泽,鲁成.家蚕谷胱甘肽-S-转移酶基因BmGSTz1的克隆、序列分析及组织表达特征[J].昆虫学报,2010,53(10):1061-1068.
    [143]张婷,卫正国,高瑞娜等.芸香苷对家蚕谷胱甘肽-S-转移酶部分基因的诱导表达[J].昆虫学报,2011,54(1):20-26.
    [144]Zou, F. M., Lou, D. S., Zhu, Y. H. et al. Expression profiles of glutathione S-transferase genes in larval midgut of Bombyx mori exposed to insect hormones[J]. Mol Biol Rep,2011, 38(1):639-647.
    [145]Yamamoto, K., Teshiba, S., Shigeoka, Y. et al. Characterization of an omega-class glutathione S-transferase in the stress response of the silkmoth[J]. Insect Mol Biol,2011, 20(3):379-386.
    [146]Yamamoto, K., Ichinose, H., Aso, Y. et al. Molecular characterization of an insecticide-induced novel glutathione transferase in silkworm[J]. Biochim Biophys Acta, 2011,1810(4):420-426.
    [147]Xia, Q., Guo, Y., Zhang, Z. et al. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx)[J]. Science,2009,326(5951): 433-436.
    [148]International Silkworm Genome, C. The genome of a lepidopteran model insect, the silkworm Bombyx mori[J]. Insect Biochem Mol Biol,2008,38(12):1036-1045.
    [149]Xia, Q., Cheng, D., Duan, J. et al. Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori[J]. Genome Biol,2007,8(8):R162.
    [150]Xia, Q., Zhou, Z., Lu, C. et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori)[J]. Science,2004,306(5703):1937-1940.
    [151]Habig, W. H., Pabst, M. J., Jakoby, W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation [J]. JBiol Chem,1974,249(22):7130-7139.
    [152]Zhou, J. J. Odorant-binding proteins in insects[J]. Vitam Horm,2010,83:241-272.
    [153]Lautenschlager, C, Leal, W. S., Clardy, J. Coil-to-helix transition and ligand release of Bombyx mori pheromone-binding protein[J]. Biochemical and biophysical research communications,2005,335(4):1044-1050.
    [154]Lee, D., Damberger, F. F., Peng, G. et al. NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH[J]. FEBS Letters,2002,531(2):314-318.
    [155]Damberger, F., Nikonova, L., Horst, R. et al. NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori[J]. Protein Science,2000,9(5):1038-1041.
    [156]Wojtasek, H., Leal, W. S. Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes[J]. The Journal of biological chemistry,1999,274(43):30950-30956.
    [157]Chayen, N. E., Saridakis, E. Protein crystallization:from purified protein to diffraction-quality crystal[J]. Nat Methods,2008,5(2):147-153.
    [158]Collaborative Computational Project, N. The CCP4 suite:programs for protein crystallography[J]. Acta Crystallogr D Biol Crystallogr,1994,50(Pt 5):760-763.
    [159]McCoy, A. J. Solving structures of protein complexes by molecular replacement with Phaser[J]. Acta Crystallogr D Biol Crystallogr,2007,63(Pt 1):32-41.
    [160]Murshudov, G. N., Vagin, A. A., Dodson, E. J. Refinement of Macromolecular Structures by the Maximum-Likelihood Method[J]. Acta Crystallographica Section D,1997,53(3): 240-255.
    [161]Emsley, P., Cowtan, K. Coot:model-building tools for molecular graphics[J]. Acta Crystallogr D Biol Crystallogr,2004,60(Pt 12 Pt 1):2126-2132.
    [162]Chen, V. B., Arendall, W. B.,3rd, Headd, J. J. et al. MolProbity:all-atom structure validation for macromolecular crystallography[J]. Acta Crystallogr D Biol Crystallogr, 2010,66(Pt 1):12-21.
    [163]Chen, V. B., Davis, I. W., Richardson, D. C. KING (Kinemage, Next Generation):a versatile interactive molecular and scientific visualization program[J]. Protein Sci,2009, 18(11):2403-2409.
    [164]Davis, I. W., Leaver-Fay, A., Chen, V. B. et al. MolProbity:all-atom contacts and structure validation for proteins and nucleic acids[J]. Nucleic Acids Res,2007,35(Web Server issue): W375-383.
    [165]Morris, G. M., Goodsell, D. S., Halliday, R. S. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function[J]. Journal of Computational Chemistry,1998,19(14):1639-1662.
    [166]Neuefeind, T., Huber, R., Dasenbrock, H. et al. Crystal structure of herbicide-detoxifying maize glutathione S-transferase-I in complex with lactoylglutathione:evidence for an induced-fit mechanism[J]. J Mol Biol,1997,274(4):446-453.