北大别天堂寨花岗岩侵位机制及其动力学过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大别造山带是扬子板块与华北板块三叠纪陆陆碰撞的产物,它不仅是世界上出露规模最大、保存最好的高压-超高压变质区,而且也是陆-陆碰撞之后,在超高压和高压岩石剥露过程中岩浆活动最为强烈的地区之一。大别造山带自超高压变质矿物发现便开始受到国内外众多学者的关注。大别造山带东端的郯庐断裂带将其与苏鲁造山带左行错开约500kmm,商城-麻城断裂将大别造山带分为东西两段,西段以南阳盆地与秦岭造山带相隔。东大别南界为襄樊-广济断裂,北界的信阳-舒城断裂带将造山带与合肥盆地分隔。大别造山带经历了中三叠世陆陆碰撞,发生深俯冲及超高压岩石变质过程;晚三叠世至早侏罗世超高压岩石折返至中上地壳的折返阶段和早白垩世(140-120Ma)造山后伸展,巨量花岗岩形成阶段。
     北大别处于大别造山带北部,北为磨子潭-晓天断裂,南为五河-水吼剪切带,东为郯庐断裂带,西为商城-麻城断裂带,是大别造山带出露面积最大的构造单元,由于出露新元古代变质侵入岩、超高压变质矿物、镁铁质-超镁铁质岩块、白垩纪巨量中酸性花岗岩,花岗岩的侵位年龄主要发生在140-120Ma,少数为中侏罗世(160-140Ma),与东部苏鲁造山带发育晚三叠世、侏罗纪及白垩纪岩浆具有明显的差别。
     岩石学、地球化学、地球物理研究表明大别造山带在侏罗纪仍然存在造山根,在早白垩世发生造山根拆沉垮塌,这与大别造山带由挤压构造体制转为伸展构造体制密不可分。大别山构造体制转换的具体时间、机制及其岩石圈减薄的过程是探讨大别造山带碰撞后造山过程与动力学的重要窗口。
     本论文将研究重点集中在北大别出露面积最大的、包含侵位次序最多的天堂寨复式岩体。通过野外宏观构造变形分析、接触带特征分析、岩体与剪切带变形关系分析、岩体的捕掳体的上升定位空间分析、显微构造与岩石磁组构分析、锆石LA-ICP-MS和SHRIMPU-Pb定年、全岩主量微量和稀土分析、Sr-Nd同位素分析、锆石Hf同位素分析,并结合岩石矿物温压计和地球物理资料对北大别天堂寨复式岩体进行了侵位次序、岩浆源区物质成分与深度、源岩的年龄、岩浆上升与定位的方式、花岗岩侵位机制、构造体制转换的时间、壳幔相互作用、岩石圈伸展减薄的过程与不同期次花岗岩侵位的对应关系的研究,并在此基础上探讨了大别造山带白垩纪花岗岩事件的构造属性。
     以大陆动力学与板块构造为指导理论,本文对天堂寨复式岩体(石鼓尖片麻状石英二长闪长岩、鹅公包眼球状二长花岗岩、九资河条带状二长花岗岩、天堂寨斑状二长花岗岩、二湾片麻状石英二长花岗岩和薄刀锋细粒花岗岩)进行侵位机制研究,结合构造地质学、显微构造地质学、岩石组构学、构造年代学、地球化学和变质地质学等学科最后综合前人研究成果系统讨论了北大别白垩纪花岗岩的侵位特征与晚中生代中国东部岩石圈减薄机制下巨量花岗岩侵位的耦合性,并在此基础上提出了大别造山带白垩纪花岗岩侵位模式图,探讨了大别造山带及整个中国东部晚中生代岩石圈减薄的动力学机制。取得的主要进展与结论如下:
     1.野外宏观构造变形与接触带研究得出天堂寨复式岩体侵位次序由早至晚为:石鼓尖片麻状石英二长闪长岩→鹅公包眼球状花岗岩→九资河条带状二长花岗岩→天堂寨斑状二长花岗岩→二湾片麻状石英二长花岗岩→薄刀锋细粒二长花岗岩,Si02含量逐渐增加,变形逐渐减弱,岩体中斑晶结晶形态逐渐完好,指示大别造山带伸展垮塌、地壳减薄过程中部分熔融形成花岗岩的源岩深度逐渐变浅。可以划分为三期岩体侵位过程,①早白垩世早期石鼓尖岩体构造变形特征与NE向韧性剪切带一致,属同构造变形产物,剪切带作为岩浆上升侵位的通道,对岩体形态、侵位特点、应力状态进行控制,并改造石鼓尖岩体;②鹅公包、九资河、天堂寨及二湾岩体内变形较弱,仅在NE、NW向剪切带发育局部发育韧性变形;③而薄刀锋内部变形弱,岩体中不发育剪切带。第一期和第二期岩体呈“网脉状”侵入于大别杂岩中和先期侵入的岩体,而并非典型的“气球膨胀型”岩浆上升侵位方式;而第三期薄刀锋细粒二长花岗岩中无大别杂岩,二者呈突变接触,是以“气球膨胀型”或岩墙形式侵入的。
     2.显微构造与岩石磁组构表明石鼓尖岩体为同构造侵入体,是在挤压构造背景下侵位的,锆石U-Pb年龄为141±2.3Ma,全岩主微量特征显示岩体侵位时具有加厚的地壳结构,角闪石Ti温压计指示源区深度是36km的下地壳的部分熔融,因此,北大别由挤压构造体制转为伸展构造体制和岩石圈减薄启动的时间在141Ma之后。
     3.锆石U-Pb定年显示天堂寨复式岩体三期侵位的年龄分别为141Ma,139-132Ma和132-127Ma,分别代表着构造体制转换的上限年龄、岩石圈减薄巨量花岗岩侵位的启动年龄和岩石圈减薄结束的时间。锆石中具有古元古代、中元古代、新元古代、早古生代及三叠纪的继承核,其中古、中元古代锆石年龄代表源岩的变质事件;新元古代年龄(830-695Ma)与扬子板块北缘新元古代构造岩浆事件年代相似,指示花岗岩的源岩来自俯冲的扬子板块北缘;早古生代年龄目前确切的地质意义还尚不明确;三叠纪年龄(243~203Ma)与大别造山带陆陆碰撞过程、深俯冲及折返过程年代相似,记录着碰撞造山过程。大别造山带晚中生代构造过程为:141Ma构造体制转换为伸展背景→135Ma伸展垮塌程度达到最大,绝大部分白垩纪花岗岩在此时期形成→125Ma伸展垮塌结束,大别造山带回归正常地壳厚度,形成未变形的细粒花岗岩和酸性、基性岩脉,大别造山带岩石圈减薄垮塌仅在几个Ma之内就完成,是一个快速的垮塌过程。
     4.岩石地球化学特征表明,天堂寨复式岩体的物源均来源于陆壳的部分熔融,由早至晚表现为地壳贡献增强的趋势,岩浆房和侵位深度逐渐变浅。石鼓尖岩体形成于加厚地壳,代表构造体制由挤压向伸展背景的转换的开始:鹅公包、九资河、天堂寨和二湾岩体代表构造体制转换过程中部分熔融的产物;薄刀锋岩体形成于转换后正常地壳厚度的熔融。
     5.锆石Hf结果显示,eHf(t)值均小于0,暗示花岗岩的源岩均来源于地壳的部分熔融,而无新生地幔的参与。北大别天堂寨复式岩体侵位时代由早至晚,eHf(t)值逐渐变小,向负值减小的方向变化,指示源区基性物质组分的减少,酸性物质组分增加。锆石Hf的两阶段模式年龄指示北大别三期花岗岩的源区分别来自2.9-3.1Ga加厚的下地壳基性岩、2.6-3.0Ga加厚的中酸性下地壳上部和2.2Ga减薄后正常厚度地壳的中酸性岩。
     6.岩体构造变形特征、岩石地球化学特征、锆石Hf同位素示综及角闪石温压计表明,石鼓尖岩浆源区深度为36km,上侵距离大于25kmm;天堂寨峰期岩体源区深度为45.5km,上侵距离为38.5km;薄刀锋岩体源区深度为15~17km,上侵距离约2.5km。反映了石鼓尖岩体侵位时大别造山带仍然为加厚的地壳,存在造山带山根,岩浆起源于下地壳约36km深度基性物质,以主动膨胀和岩浆侵吞作用为主上升获得定位空间;天堂寨峰期岩体(九资河、天堂寨、二湾岩体)形成时造山带山根开始垮塌,来源于造山带垮塌拆沉掉入岩石圈地幔的下地壳中酸性物质,以岩浆侵吞和构造扩展方式上升定位;而晚期薄刀锋细粒花岗岩则来源于垮塌结束后约12~17km深度的正常地壳的中酸性物质,以岩墙扩展方式侵位的。
     7.天堂寨复式岩体侵位机制是在挤压构造体制转为伸展构造体制后,加厚的岩石圈减薄、垮塌、拆沉,不同深度、不同源区的下地壳受到软流圈地幔上涌提供的热量发生部分熔融的结果。大别造山带岩石圈伸展减薄与晚中生代中国东部岩石圈减薄处于同一动力学背景,即特提斯构造域转为太平洋构造域之后,中国东部整体处于伸展背景,太平洋板块向下俯冲于欧亚板块之下的俯冲角度、方向的改变导致地幔加速对流,软流圈底侵于下地壳底部,造成下地壳不同层次、不同物质成分的部分熔融。
The Dabie orogenic belt in eastern China is formed as a result of a Triassic collision between the North China and Yangtze cratons. Since the discovery of coesite and micro-diamond inclusions in eclogites from the Dabie orogen in Central East China, this region is one of the most important targets for studying UHP metamorphism that documents continental subduction to mantle depths. After continental collision, it appears the strongest magmatism. Cretaceous post-collisional intrusive and volcanic rocks comprise47%of the surface exposure of the Dabie orogen. Dabie orogenic belt is bounded by the Xinyang-Shucheng fault to the north, Xiangfan-Guangji fault to the south, Shangcheng-Macheng fault to the west, and Tancheng-Lujiang fault to the east. Tancheng-Lujiang fault is a left-lateral syn-orogenic transform fault formed in236Ma and its major strike-slip offset in the Cretaceous period. It caused the Dabi-Sulu orogenic belt sinistral offset more than500km. The Dabie orogen belt experienced Triassic continental collision, deep subduction, Ultra-high pressure(UHP) metamorphism, exhumation of the UHP rocks and crustal extension and large-scale magmatism during the Early Cretaceous period (140-120Ma).
     North Dabie Complex(NDC) is the biggest tectonic units in the northern of the Dabie orogenic belt. It is bounded by the Xiaotian-Mozitan fault to the north, Wuhe-Shuihou fault to the south, Shangcheng-Macheng fault to the west, and Tancheng-Lujiang fault to the east. NDC was intruded by metamorphic intrusive rocks in Neoproterozoic, voluminous granites and mafic-ultramafic rocks in the early Cretaceous period. Geologists have made great efforts on dating emplacement age of granite. Most zircon U-Pb ages for the granites in the North Dabie fall between140Ma and120Ma, and a few ages is middle-Jurassic(160-140Ma). It is greater difference between the Sulu orogenic belt for it has Late Triassic, Jurassic and Cretaceous igneous intrusion.
     Many petrology, geochemistry, geophysics and geochronology studies were used to reveal the structure of the Dabie orogenic belt. The Dabie orogenic belt has crustal root during the Jurassic period and experienced extension-collapse tectonics, lithospheric thinning and lower crust delamination in the Early Cretaceous. Thest geological process are interwovenness connect with the tectonic regime transforms from compression to extension. The time and mechanism of transformation and the process of the lithospheric thinning are the key to discuss the orogenetic process and dynamics after collision.
     This thesis was based on the Tiantangzhai complex granites which is the biggest intrusion and contains maximum emplacement sequence in the north Dabie mountain. The purposes of this paper are:(1) to present emplacement sequences,(2) to present the composition and the depth of granitic magma,(3) to constraint the age of magma,(4) to present the ascent and emplacement mechanism,(5) to present the transformation time from compression to extension,(6) Crust-mantle interactions,(7) to present the process of lithospheric thinning. Therefore, this study through integrated approach (eg. macroscopic structure deformation, contact zone, shear zone deformation, microstructure, anisotropy of magnetic susceptibility(AMS), LA-ICP-MS and SHRIMP zircon U-Pb dating, whole rock major, trace and rare earth element, Sr-Nd isotope, Zircon Hf isotope and geo-thermobarometers) to achieve the research. We then discuss the emplacement characteristic of Cretaceous granite in North Dabie and the coupling of enormous granite invasion under the mechanism of lithospheric thinning in eastern China during the late Mesozoic, on which basis, we proposed a mode chart of the granite invasion in North Dabie orogenic belt. We got following major conclusions.
     1. macroscopic structure on tectonic deformation and the contact zones in the field, we found that the emplacement sequence of the complex massif, from early to late, ranges from Shigujian gneissoid quartz monzodiorite to E'gongbao augen granite to Jiuzihe banding monzonitic granite to Tiantangzhai phyric monzonitic granite to Erwan gneissic granite to Bodaofeng fine-grained monzonitic granite. In this sequence, the content of SiO2is gradually increasing, the deformation is gradually weakening, while the crystal habit of the phenocrysts in the massif is gradually automorphic; which indicates that the deep source rock which partial melted to form granite gradually became thinner and thinner during the process of the extension and collapsing of Dabie orogenic belt and the reduction of crust.
     And the massif emplacement can be divided into three phases, i.e.,(1)in the early stage of early Cretaceous, the tectonic deformation features of Shigujian pluton are consistent with that of the NE ductile shear zone, both of them are the deformation products of syntectonic. The ductile shear zone, as the passage for the ascent of magma emplacement, controlled pluton shape, emplacement characteristic and stress state, as well as reformed Shigujian pluton;(2)the deformation in E'gongbao pluton, Jiuzihe pluton, Tiantangzhai pluton and Erwan pluton, comparatively weak, only took place in NE and/or NW ductile shear zone with partly ductile deformation;(3) the deformation in the interrior of Baodaofeng is weak and no ductile shear zone can be found there. The first-phase and second-phase pluton that intruded Dabie complex like a network and the pluton pre-intruded did not typically appear to be pumiceous inflation of magma; the third-phase pluton, Bodaofeng fine-grained adamellite, with no Dabie complex inside, being abrupt contact with each other, intruded in the way of dyke or balloon distending.
     2.Evidences from microstructure and anisotropy of magnetic susceptibility fabric indicate that Shigujian pluton, paratectonic, emplaced under the compressional background. And the zircon U-Pb dating result is141±2.3Ma. The characteristics of major and trace elements of whole rocks present the pluton emplacement possessed a thinken crustal structure. Amphibole-Ti temperature and pressure gauge indicates that the source area, about36km deep, partially melted in the lower crust. Hence, the tectonic transformation of north Dabie, from squeezing to extenting, happened after141Ma.
     3. Zircon U-Pb dating results have shown that the three phases of composite pluton in Tiantangzhai emplaced in141Ma,139-132Ma,132-127Ma separately, representing the upper limit age of the tectonic transformation, starting point of enomorously granitic emplacement while lithosphere thinning and the completion of lithosphere thinning, respectively. In a zircon, inherited cores in late proterozoic, middle proterozoic, neoproterozoic, early paleozoic and triassic can have been discovered. Among which, zircon age in late and middle proterozoic represents metamorphic event of the source area; zircon age in neoproterozoic, from830Ma to695Ma, similar to the age of neoproterozoic tectonomagmatic event in the northern boundary of Yangtze plate, indicates that the source of granite is from the Yangtze plate; the geological significance of zircon age in early paleozoic remains unknown; and zircon age in triassic, from243Ma to203Ma, closing to the age of the continent-continent collision, deep thrusting and turning-back process of Dabie orogen, records the process of collisional orogeny. Dabie orogen experienced a rapidly collapsing tectonic process in late mesozoic. At141Ma, the tectonic regime transformed into extensional background; at135Ma, the extension reached to its fullest, and most north Dabie Cretaceous granite formed during this period, at125Ma, the extension and collapsion ended and Dabie orogen returned to normal crust in thickness, resulting in undeformed granitello and both acidic and basic veins. The thinning and collapsion of lithosphere in Dabie orogen completed just in a few million years.
     4. Results from lithogeochemistry state that all magma source of the Tiantangzhai complex pluton came from partial melting of the continental crust, and during the process, the crust increasingly contributed while the depth of magma chamber and emplacement became lower and lower. Shiguqian pluton, formed in the thickened crust, represented the beginning of tectonic regime transformation from compression to extension; pluton from E'gongbao, Jiuzihe, Tiantangzhai and Erwan represents the partialy melted product from the tectonic regime transformation; and Bodaofeng pluton formed from the melting of crust in normal depth after the transforamtion.
     5. Zircon Hf isotope reveal that all the values of εHf(t) are under zero, suggesting that all the source rock of granite came from partial melting of the continental crust rather than the juvenile mantle. The values of εHf(t) gradually decreases with the development of Tiantangzhai complex pluton in North Dabie and changes in the direction of discreasing negative values. This indicates that the decreasing of basic components and increasing of acidic ones in the source area. The two-stage model age of Hf in zircon indicates the source area of three phases granites respectively came from (1)2.9-3.1Ga basic rock in the thickened lower crust,(3)2.6-3.0Ga intermediate acidity upper part of the thickened lower crust, and (2)2.2Ga intermediate acidity rock in the thinned crust with normal thickness.
     6. All the evidences above together have showed that the source area of Shigujian magma is36km deep, and its intrusion distance is greater than25km; the source area of Tiantangzhai granites is45.5km deep, and its intrusion distance is38.5km; the source area of Bodaofeng pluton is15-17km, and its intrusion distance is about2.5km. These factes indicate that Dabie orogen remained thickened crust during the emplacement of Shigujian pluton, orogenic root existed, and the magma origined from basic material about36km deep in lower crust and obtained room for placement by active expanding and intrusion; orogenic root began to collapse when Tiantangzhai granites (like Jiuzihe pluton, Tiantangzhai pluton and Erwan pluton) formed, resulting in intermediate acidity materials in the lower crust falling into the mantle in the lithosphere and they ascended by magmatic intrusion and structural expanding; late Bodaofeng granitello originated from intermediate acidity materials in normal crust about12-17km deep after the collapsion and emplaced in a way of dike expanding.
     7.After the tectonic regime transformed from compression to extension, the thickened lithosphere thinning, collapsed and delaminated. Due to the heat provided by the upwelling of asthenosphere in the mantle, the lower crust in different depth and different source area partly melted. And the Tiantangzhai complex pluton resulted from this process. The lithosphere of Dabie orogen extended and thinned under the same dynamic background with the late-Mesozoic thinning of lithosphere in the eastern China, that is, after the Tethys tectonic region transformed into the Pacific tectonic region, whole eastern China was under extensional setting, the convection of mantle speeded up as the angle and the direction of the Pacific plate subducting into Eurasian plate changed. The asthenosphere underplated into the bottom of the lower crust, causing partial melting of the lower crust at different levels and of different components.
引文
[1]Ma C Q, Li Z C, Ehlers C, et al. A postcollisional magmatic plumbing system:Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh pressure metamorphic zone, east-central China. Lithos, 1998,45:431-456.
    [2]许志琴.扬子板块北缘的大型深层滑脱构造及动力学分析.中国区域地质,1987(04):289-300.
    [3]李曙光,侯振辉,杨永成,等.南秦岭勉略构造带三岔子古岩浆弧的地球化学特征及形成时代.中国科学:D辑,2004,33(12):1163-1173.
    [4]张本仁,张宏飞,高山.地壳各结构层岩石组成的地球化学约束-以大别造山带研究为例.中国矿物岩石地球化学学会第九届学术年会论文摘要集,2003.
    [5]索书田,钟增球,周汉文,等.大别-苏鲁超高压和高压变质带构造演化.地学前缘,2004,11(003):71-82.
    [6]Hacker B R., Ratschbacher L, Webb L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters,1998,161(1-4): 215-230.
    [7]Hacker B R., Ratschbacher L, Webb L, et al. Exhumation of ultrahigh-pressure continental crust in east central China:Late Triassic-Early Jurassic tectonic unroofing. J. Geophys. Res.,2000,105(B6): 13339-13364.
    [8]Hacker B R., Ratschbacher L, Liu J G. Subduction, collision and exhumation in the ultrahigh-pressure Qinling-Dabie orogen. Geological Society, Special publication,2004:157-175.
    [9]李三忠,刘鑫,索艳慧,等.华北克拉通东部地块和大别-苏鲁造山带印支期褶皱-逆冲构造与动力学背景.岩石学报,2009,25(9):2031-2049.
    [10]李三忠,张国伟,董树文等.大别山高压·超高压岩石折返与扬子北缘构造变形的关系.岩石学报,2010,26(12):3549-3562.
    [11]Cheng W Q Yang K G, Kusky T M, et al. Kinematic and thermochronological constraints on the Xincheng-Huangpi fault and Mesozoic two-phase extrusion of the Tongbai-Dabie Orogen Belt. Journal of Asian Earth Sciences,2012
    [12]Chen B, Jahn Bor-ming, Wei C J. Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China:trace element and Nd-Sr isotope evidence. Lithos,2002,60(1-2):67-88.
    [13]Wang Q, Wyman Derek A., Xu J F, et al. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China:Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta,2007,71(10):2609-2636.
    [14]Xu H J, Ma C Q, Ye K. Early cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China:SHRIMP zircon U-Pb dating and geochemistry. Chemical Geology,2007,240(3-4): 238-259.
    [15]Xu H J, Ma C Q, Zhang J F. Generation of Early Cretaceous high-Mg adakitic host and enclaves by magma mixing, Dabie orogen, Eastern China. Lithos,2012,142-143(0):182-200.
    [16]Xu H J, Ma C Q, Zhang J F, et al. Early Cretaceous low-Mg adakitic granites from the Dabie orogen, eastern China:Petrogenesis and implications for destruction of the over-thickened lower continental crust. Gondwana Research,2012.
    [17]Zhao Z F, Zheng Y F, Wei C S, et al. Zircon U-Pb, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chemical Geology,2008,253:222-242.
    [18]Zhao Z F, Zheng Y F, Wei C S, et al. Origin of postcollisional magmatic rocks in the Dabie orogen: Implications for crust-mantle interaction and crustal architecture. Lithos,2011,126(1-2):99-114.
    [19]Andersen Torgeir B. Extensional tectonics in the Caledonides of southern Norway, an overview. Tectonophysics,1998,285(3):333-351.
    [20]肖庆辉,李晓波.当代造山带研究中值得重视的若干前沿问题.地学前缘,1995,2(001):43-50.
    [21]Evans N G, Gleizes G, Leblanc D, et al. Syntectonic emplacement of the Maladeta granite (Pyrenees) deduced from relationships between Hercynian deformation and contact metamorphism. Journal of the Geological Society,1998,155(1):209-216.
    [22]Paterson S R, Schmidt K L. Is there a close spatial relationship between faults and plutons? Journal of Structural Geology,1999,21(8):1131-1142.
    [23]Yenes M, Alvarez F, Gutierrez-Alonso G. Granite emplacement in orogenic compressional conditions:the La Alberca-Bejar granitic area (Spanish Central System, Variscan Iberian Belt). Journal of structural geology,1999,21(10):1419-1440.
    [24]Allen C M, Williams I S, Stephens C J, et al. Granite genesis and basin formation in an extensional setting: The magmatic history of the Northernmost New England Orogen. Australian Journal of Earth Sciences, 1998,45(6):875-888.
    [25]Schofield David I, D'Lemos Richard S. Relationships between syn-tectonic granite fabrics and regional PTtd paths: an example from the Gander-Avalon boundary of NE Newfoundland. Journal of Structural Geology, 1998,20(4):459-471.
    [26]Hartmann Leo A., Leite Jayme AD, McNaughton Neal J., et al. Deepest exposed crust of Brazil-SHRIMP establishes three events. Geology,1999,27(10):947-950.
    [27]Clarke D B, McCuish K L, Vemon R H, et al. The Port Mouton Shear Zone:intersection of a regional fault with a crystallizing granitoid pluton. Lithos,2002,61(3):141-159.
    [28]Tullis J, Yund R A. Transition from cataclastic flow to dislocation creep of feldspar:mechanisms and microstructures. Geology,1987,15(7):606-609.
    [29]Hippertt J F. Breakdown of feldspar, volume gain and lateral mass transfer during mylonitization of granitoid in a low metamorphic grade shear zone. Journal of Structural Geology,1998,20(2):175-193.
    [30]Vernon R H, Johnson S E, Melis E A. Emplacement-related microstructures in the margin of a deformed pluton:the San Jose tonalite, Baja California, Mexico. Journal of Structural Geology,2004,26(10): 1867-1884.
    [31]Blenkinsop T G. Relationships between faults, extension fractures and veins, and stress. Journal of Structural Geology,2008,30(5):622-632.
    [32]Romeo I, Capote R, Tejero R, et al. Magma emplacement in transpression: The Santa Olalla Igneous Complex (Ossa-Morena Zone, SW Iberia). Journal of Structural Geology,2006,28(10):1821-1834.
    [33]马昌前,李志昌.大别山中生代钾质岩浆作用与超高压变质地体的剥露机理.岩石学报,1999,15(3):379-395.
    [34]Stevenson Carl. The relationship between forceful and passive emplacement: The interplay between tectonic strain and magma supply in the Rosses Granitic Complex, NW Ireland. Journal of Structural Geology,2009, 31(3):270-287.
    [35]Unzog W, Kurz W. Progressive development of lattice preferred orientations (LPOs) of naturally deformed quartz within a transpressional collision zone (Panafrican Orogen in the Eastern Desert of Egypt). Journal of Structural Geology,2000,22(11):1827-1835.
    [36]Shigematsu N, Tanaka H. Dislocation creep of fine-grained recrystallized plagioclase under low-temperature conditions. Journal of Structural Geology,2000,22(1):65-79.
    [37]钟增球,郭宝罗.构造岩与显微构造[M]:中国地质大学出版社,1991.
    [38]Yoshinobu A S., Girty G H. Measuring host rock volume changes during magma emplacement. Journal of Structural Geology,1999,21(1):111-116.
    [39]Tobisch O T., Williams Q. Use of microgranitoid enclaves as solid state strain markers in deformed granitic rock:an evaluation. Journal of Structural Geology,1998,20(6):727-743.
    [40]王勇生,向必伟,朱光,等.晓天-磨子潭断裂后造山伸展活动的40Ar-39Ar年代学记录.地球化学,2009,v.38(05):458-471.
    [41]朱光,王道轩,刘国生,等.郯庐断裂带的伸展活动及其动力学背景.地质科学,2001(03):269-278.
    [42]朱光,朴学峰,张力,等.合肥盆地伸展方向的演变及其动力学机制.地质论评,2011,57(2):153-166.
    [43]赵越,杨振宇,马醒华.东亚大地构造发展的重要转折.地质科学,1994,29(2):105-119.
    [44]Ellwood BB, Whitney J A. Magnetic fabric of the Elberton granite, Northeast Georgia. Journal of Geophysical Research,1980,85(B3):1481-1486.
    [45]Hrouda Frantisek. Magnetic anisotropy of rocks and its application in geology and geophysics. Surveys in Geophysics,1982,5(1):37-82.
    [46]Guillet P. Bouchez J L, Wagner J J. Anisotropy of magnetic susceptibility and magmatic structures in the Guerande granite massif (France). Tectonics,1983,2(5):419-429.
    [47]Rathore J S, Kafafy A M. A magnetic fabric study of the Shap region in the English Lake District Journal of Structural Geology,1986,8(1):69-77.
    [48]张志强.衡山岩体西缘韧性剪切带磁性组构研究.湖南地质,1989,8(002):23-27.
    [49]杨坤光,刘强,刘育燕,等.大别山双河同构造花岗岩体显微构造与磁组构研究米.中国科学:D辑,2003.
    [50]梁文天,张国伟,鲁如魁,等.秦祁接合带造山缝合带磁组构特征及其构造意义.地球物理学报,2009,52(1):140-149.
    [51]Ma C Q, Ehlers C, Xu C H, et al. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane: constraints from geochemistry and Nd-Sr isotope systematics. Precambrian Research,2000,102(3-4): 279-301.
    [52]葛宁洁,李惠玉,侯振辉,等.大别造山带白马尖花岗岩体的钕、锶同位素地球化学研究.地质论评, 2001,47(02):184-187.
    [53]周新华,中国东部中新生代岩石圈转型与减薄研究若干问题.地学前缘,2006,13(2):50-64.
    [54]Jahn Bor-Ming. Sm-Nd isotope tracer study of UHP metamorphic rocks:implications for continental subduction and collisional tectonics. International Geology Review,1999,41(10):859-885.
    [55]Zhang H F, Gao S, Zhong Z Q, et al. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids:constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology,2002,186(3-4):281-299.
    [56]洪大卫,王涛,童英,等.华北地台和秦岭-大别-苏鲁造山带的中生代花岗岩与深部地球动力学过程.地学前缘,2003,10(3):231-256.
    [57]Fan W M, Guo F, Wang Y J, et al. Post-orogenic bimodal volcanism along the Sulu orogenic belt in eastern China. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy,2001,26(9):733-746.
    [58]杨祝良,沈渭洲.大别山北缘中生代火山-侵入岩锶-钕同位素组成特征及其物质来源.岩石矿物学杂志,2002,21(3):223-230.
    [59]毛景文,张作衡,余金杰,等.华北及邻区中生代大规模成矿的地球动力学-背景:从金属矿床年龄精测得到启示.中国科学:D辑,2003,33(4):289-299.
    [60]续海金,叶凯,马昌前.北大别早白至纪花岗岩类的Sm-Nd和锆石Lu-H洞位素及其构造意义.岩石学报,2008,24(1):87-103.
    [61]郑亚东,常志忠.岩石有限应变测量及韧性剪切带[M]:地质出版社,1985.
    [62]Gower Robert J W, Simpson C. Phase boundary mobility in naturally deformed, high-grade quartzofeldspathic rocks:evidence for diffusional creep. Journal of Structural Geology,1992,14(3): 301-313.
    [63]Kaushik A, Singh P, Kaushik J. The mechanical properties and chemical resistance of short glass-fiber-reinforced epoxy composites. International Journal of Polymeric Materials,2006,55(6): 425-440.
    [64]Li S G, Xiao Y L, Liou D L, et al. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites:Timing and processes. Chemical Geology,1993,109(1-4):89-111.
    [65]Li S G., Li Q L., Hou Z H., et al. Cooling history and exhumation mechanism of the ultrahigh-pressure metamorphic rocks in the Dabie Mountains, central China. Acta Petrologica Sinica,2005,21(4):1117.
    [66]Liu Y C, Gu X F, Li S G., et al. Multistage metamorphic events in granulitized eclogites from the North Dabie complex zone, central China:Evidence from zircon U-Pb age, trace element and mineral inclusion. Lithos,2011,122(1):107-121.
    [67]邓晋福,赵国春.中国东部燕山期火成岩构造组合与造山-深部过程.地质论评,2000,46(1):41-48.
    [68]徐春华,李学田.合肥盆地沉积构造样式与大别造山带的演化历史.沉积与特提斯地质,2002,22(2):91-98.
    [69]Zhao Z F, Chen B, Zheng Y F, et al. Mineral oxygen isotope and hydroxyl content changes in ultrahigh-pressure eclogite-gneiss contacts fromChinese Continental Scientific Drilling Project cores. Journal of Metamorphic Geology,2007,25:165-186.
    [70]Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters,2007,262(3):533-542.
    [71]Huang F, Li S G, Dong F, et al. High-Mg adakitic rocks in the Dabie orogen, central China:Implications for foundering mechanism of lower continental crust. Chemical Geology,2008,255(1):1-13.
    [72]Jahn B-m, Wu F Y, Lo C H., et al. Crustal-mantle interaction induced by deep subduction of the continental crust:geochemical and Sr-Nd isotopic evidence from post-collisionaJ mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology,1999,157:119-146.
    [73]Xie Z, Zheng Y F, Jahn B-m, et al. Sm-Nd and Rb-Sr dating of pyroxene-gametite from North Dabie in east-central China:problem of isotope disequilibrium due to retrograde metamorphism. Chemical Geology, 2004,206(1-2):137-158.
    [74]Xie Z, Chen J F, Cui Y R. Episodic growth of zircon in UHP orthogneisses from the North Dabie Terrane of east-central China:implications for crustal architecture of a collisional orogen. Journal of Metamorphic Geology,2010,28:979-995.
    [75]Wang Y J, Fan W M, Peng T P. Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie Orogen, Central China:Evidence from 40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotopic compositions of early Cretaceous mafic igneous rocks. Chemical Geology,2005,220(3):165-189.
    [76]Zhu G, Wang Y S, Liu G S, et al.40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China. Journal of structural geology,2005,27:1379-1398.
    [77]Zhu G, Liu G S, Niu M L, et al. Syn-collisional transform faulting of the Tan-Lu fault zone, East China. International Journal of Earth Sciences,2009,98(1):135-155.
    [78]朱光,牛漫兰,刘国生,等.郯庐断裂带肥东段走滑运动的40Ar/39Ar法定年.地质学报,2005,79(3):303-316.
    [79]Cong B L, Zhai M G, Carswell D A. Petrogenesis of ultrahigh-pressure rocks and their country rocks at Shuane in the Dabieshan, Central China. Eur. J. Mineral,1995,7:119-138.
    [80]王清晨,林伟.大别山碰撞造山带的地球动力学.地学前缘,2002,9(4):257-265.
    [81]江来利,刘贻灿,吴维平,等.大别山超高压变质岩的变形历史及折返过程.地质科学,1999,34(4):432-441.
    [82]Faure M, Lin W, Scharer U, et al. Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabieshan (East China). Lithos,2003,70(3-4):213-241.
    [83]Ratschbacher L, Hacker B R, Webb L E, et al. Exhumation of the ultrahigh-pressure continental crust in east central China:Cretaceous and Cenozoic unroofing and the Tan-Lu fault. Journal of Geophysical Research, 2000,105(B6):13303-13338.
    [84]Zhao Z F, Zheng Y F, Wei C S, et al. Post-collisional granitoids from the Dabie orogen in China:Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos,2007, 93(3-4):248-272.
    [85]Zheng Y F, Wu Y B, Gong B, et al. Tectonic driving of Neoproterozoic glaciations:Evidence from extreme oxygen isotope signature of meteoric water in granite. Earth and Planetary Science Letters,2007,256(1-2): 196-210.
    [86]许长海,马昌前.大别造山带140-85Ma热窿伸展作用-年代学约束.中国科学:D辑,2001,31(11):925-937.
    [87]周祖翼.大别山造山带白垩纪热窿伸展作用-钻石(U-Th)/He年代学证据.自然科学进展,2002,12(7): 763-766.
    [88]王清晨,马力.大别山造山带与合肥盆地的构造耦合.科学通报,1997,42(6):575-580.
    [89]徐树桐,刘贻灿,吴维平.大别山北部榴辉岩岩相学特征及其大地构造意义.中国地质学会,2002,80:92-104.
    [90]徐树桐,江来利,刘贻灿,等.大别山区(安徽部分)的构造格局和演化过程.地质学报,1992,66(1):1-14.
    [91]索书田.大别地块超高压变质省的构造变形研究.地学前缘,1999,6(4):255-262.
    [92]向必伟,王勇生,朱光,等.北大别造山后穹隆构造的形成过程与变形模拟.地学前缘,2009,16(3):87-101.
    [93]周建波,郑永飞,李龙,等.大别-苏鲁超高压变质带内部的浅变质岩.岩石学报,2001,17(1):39-48.
    [94]周建波,程日辉,刘鹏举,等.浅变质岩在示踪大别-苏鲁造山带大陆板块俯冲与折返过程中的意义.地球科学进展,2004,19(5):1-7.
    [95]李忠,孙枢,李任伟,等.合肥盆地中生代充填序列及其对大别山造山作用的指示.中国科学:D辑,2000,30(3):256-263.
    [96]刘贻灿,江来利,储东如,等.大别山北部卢镇关杂岩的Pb同位素特征及大地构造属性.矿物岩石,2004,24(04):53-58.
    [97]江来利,吴维平,储东如.大别造山带东段扬子陆块和华北陆块间缝合带的位置.地球科学,2005,30(03):264-274.
    [98]Chen F K, Guo J H, Jiang L L, et al. Provenance of the Beihuaiyang lower-grade metamorphic zone of the Dabie ultrahigh-pressure collisional orogen, China:evidence from zircon ages. Journal of Asian Earth Sciences,2003,22(4):343-352.
    [99]王世锋,黄少瑛,徐备.北淮阳区地层研究进展.地质科技情报,2003,22(01):29-33.
    [100]李曙光,黄方,李晖.大别-苏鲁造山带碰撞后的岩石圈拆离.科学通报,2001,46(17):1487-1491.
    [101]吴元保,郑永飞,龚冰,等.北淮阳新开岭地区花岗岩锆石U-Pb年龄和氧同位素组成.地球科学,2005,30(06):659-672.
    [102]周建波,郑永飞,李龙,等.扬子板块俯冲的构造加积楔.地质学报,2001,75(03):338-352.
    [103]Liu F L, Xue H M. Review and prospect of SHRIMP U-Pb dating on zircons from Sulu-Dabie UHP metamorphic rocks. Acta Petrologica Sinica,2007,23(11):2737-2756.
    [104]Zhao Z F, Zheng Y F, Wei C S, et al. Zircon U-Pb age, element and C-O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos,2005,83(1-2): 1-28.
    [105]Li S G, Jagoutz E, Lo C H, et al. Sm-Nd, Rb-Sr and 40Ar-39Ar isotopic systematics of the ultrahigh pressure metamorphic rocks in the Dabie-Sulu belt, central China:A retrospective view. International Geology Review,1999,41(12):1114-1124.
    [106]Tsai C H, Lo C H, Liou J G, et al. Evidence against subduction-related magmatism for the Jiaoziyan Gabbro, northern Dabie Shan, China. Geology,2000,28(10):943-946.
    [107]Xu S T, Liu Y C, Chen G B, et al. Microdiamonds, their classification and tectonic implications for the host eclogites from the Dabie and Su-Lu regions in central eastern China. Mineralogical Magazine,2005,69(4): 509-520.
    [108]谢智,陈江峰,张巽,等.大别造山带北部石竹河片麻岩的锆石U-Pb年龄及其地质意义.岩石学报,2001,17(01):139-144.
    [109]谢智,高天山,陈江峰.北大别片麻岩的多阶段演化:锆石U-Pb年代学证据.科学通报,2004,49(16):1653-1659.
    [110]Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:implications for geodynamics and fluid regime. Earth Science Reviews, 2003,62(1-2):105-161.
    [111]Liu Y C, Li S G, Xu S T. Zircon SHRIMP U-Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China:Implications for decoupling within subducted continental crust. Lithos, 2007,96(1-2):170-185.
    [112]Xu S T, Liu Y C, Su W, et al. Discovery of the eclogite and its petrography in the Northern Dabie Mountain. Chinese Science Bulletin,2000,45(3):273-278.
    [113-]王国灿,杨巍然.大别山核部罗田穹隆形成的构造及年代学证据.地球科学,1996,21(05):70-74.
    [114]杨坤光,马昌前,许长海,等.北淮阳构造带与大别造山带的差异性隆升.中国科学:D辑,1999,29(02):97-103.
    [115]李曙光,聂永红,Hart S R等.俯冲陆壳与上地慢的相互作用-Ⅱ.大别山同碰撞镁铁-超镁铁岩的Sr-Nd同位素地球化学.中国科学:D辑,1998,28(01):18-22.
    [116]刘贻灿,徐树桐,李曙光,等.大别山北部榴辉岩的大地构造属性及冷却史.地球科学,2003,28(01):11-16.
    [117]刘贻灿,李曙光.大别山下地壳岩石及其深俯冲.岩石学报,2005,21(04):1059-1066.
    [1181赵子福,郑永飞,魏春生,等.大别山中生代中酸性岩浆岩锆石U-Pb定年,元素和氧同位素地球化学研究.岩石学报,2004,20(5):1151-1174.
    [119]徐树桐,苏文,刘贻灿,等.安徽大别山含金刚石高压变质岩及其矿物共生组合和变质条件.安徽地质,1991,1(01):3-18.
    [120]徐树桐,苏文,刘贻灿,等.大别山东段高压变质岩中的金刚石.科学通报,1991,36(17):1318-1321.
    [121]Okay A I, Xu S T, Sengor A M C. Coesite from the Dabie Shan eclogites, central China. European Journal of Radiology,1989,1(4):595-598.
    [122]Xu S T, Okay A I, Ji S Y, et al. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science,1992,256(5053):80-82.
    [123]Zhang R Y, Liou J G, Cong B L. Talc-magnesite-and Ti-clinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex in the Dabie Mountains, China. Journal of Petrology,1995,36(4):1011-1037.
    [124]Okay A I, Sengor A M C, Satir M. Tectonics of an ultrahigh-pressure metamorphic terrane: The Dabie Shan/Tongbai Shan Orogen, China. Tectonics,1993,12(6):1320-1334.
    [125]Wang X M, Liou J G, Mao H K. Coesite-bearing eclogite from Dabie Mountains in Central China. Geology, 1989,17(12):1085-1088.
    [126]金振民,金淑燕,高山,等.大别山超高压岩石形成深度局限于100-150km吗7·针状含钛铬磁铁矿的发现及动力学意义的思考.科学通报,1998,43(07):767-771.
    [127]Ames L, Tilton G R, Zhou G Z. Timing of collision of the Sino-Korean and Yangtse cratons:U-Pb zircon dating of coesite-bearing eclogites. Geology,1993,21(4):339-342.
    [128]Rowley D B, Xue F, Tucker R D, et al. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan:U/Pb zircon geochronology. Earth and Planetary Science Letters,1997,151(3-4):191-203.
    [129]Li S G, Jagoutz E, Chen Y Z, et al. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta,2000,64(6):1077-1093.
    [130]Ayers J C, Dunkle S, Gao S, et al. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan Ultrahigh-Pressure Metamorphic Belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology,2002,186(3-4):315-331.
    [131]李曙光,李秋立,侯振辉,等.大别山超高压变质岩的冷却史及折返机制.岩石学报,2005,21(04):11 17-1124.
    [132]刘贻灿,古晓锋,邓亮鹏.北大别的高温超高压变质作用与多阶段折返.岩石学报,2011,27(2):589-600.
    [133]徐树桐.大别山的构造格局和演变[M]:科学出版社,1994.
    [134]江来利,吴维平,刘贻灿,等.大别山南部宿松杂岩的U-Pb锆石和Ar-Ar角闪石年龄及其地质意义.岩石学报,2003,19(03):497-505.
    [135]Xu S T, Liu Y C, Jiang L L, et al. Tectonic regime and evolution of Dabie Mountains. Beijing:Science Press,1994,1:175.
    [136]汤加富,侯明金,李怀坤,等.扬子地块东北缘多期叠加变形及形成演化.大地构造与成矿学,2003,27(04):313-326.
    [137]桑隆康,王人镜,张泽明,等.九资河-天堂寨地区燕山晚期花岗岩与大别造山带核部隆升.地质学报,2000,74(3):234-246.
    [138]Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia. Precambrian Research,2003,122(1-4):85-109.
    [139]董树文,吴宣志.大别造山带地壳速度结构与动力学.地球物理学报,1998,41(3):349-361.
    [140]游振东.东秦岭大别高压超高压变质带[M]:中国地质大学出版社,1998.
    [141]Cong B L, Wang Q C. Review of Researches on Ultrahigh-Pressure Metamorphic Rocks in China. Chinese Science Bulletin-English edition,1994,24(39):2068.
    [142]Cong B L. Ultrahigh-pressure metamorphic rocks in the Dabieshan-Sulu region of China. Science Press, Beijing,1996:P224.
    [143]Hacker B R, Wallis S R, Ratschbacher L, et al. High-temperature geochronology constraints on the tectonic history and architecture of the ultra-high-pressure Dabie-Sulu Orogen. Tectonics,2006,25(5): C5006-C5010.
    [144]Li S G, Jagoutz E, Zhang Z, et al. Structure of high-pressure metamorphic belt in Dabie Mountains and its tectonic implications. Chinese Science Bulletin,1995,40:139-140.
    [145]Li S G, Jagoutz E, Xiao Y L, et al. Chronology of ultrahigh-pressure metamorphism in the Dabie Mountains and Su-Lu terrane:Ⅰ. Sm-Nd isotope system. Chinese Science Bulletin-English edition,1996,39: 597-609.
    [146]Li S G, Chen Y, Emil J, et al. Geochemical and geochronological constraints on the tectonic outline of the Dabie Mountains, Central China:a continent-microcontinent-continent collision model. Chinese Science Bulletin-English edition,1998.
    [147]刘贻灿,古晓锋,陈振宇.北大别罗田榴辉岩的减压出溶结构与超高压变质作用.地质科学,2009,1:202-212.
    [148]张泽明,游振东,韩郁菁,等.大别·苏鲁榴辉岩带的岩石学,变质作用过程及成因研究.地质学报,1995,69(4):306-325.
    [149]刘贻灿,江博明.大别山北部榴辉岩的Sm-Nd年龄测定及其对麻粒岩相退变质时间的制约.地球化学,2001,30(1):79-87.
    [150]石永红,康涛,李秋立,等.北大别北东地区榴辉岩温度条件分析.岩石学报,2011,27(1 0):3021-3040.
    [151]Huang F, Li S G, Dong F, et al. Recycling of deeply subducted continental crust in the Dabie Mountains, central China. Lithos,2007,96(1-2):151-169.
    [132]Ratschbacher L, Hacker B R, Calvert A, et al. Tectonics of the Qinling(Central China):tectonostratigraphy, geochronology, and deformation history. Tectonophysics,2003,366(1-2):1-53.
    [153]索书田,钟增球.大别-苏鲁区残余超高压构造及其动力学意义.地球科学:中国地质大学学报,2000,25(6):557-563.
    [154]王国灿,杨巍然.大别造山带中新生代隆升作用的时空格局-构造年代学证据.地球科学,1998,23(05):27-33.
    [155]索书田,钟增球.大别-苏鲁超高压-高压变质带伸展构造格架及其动力学意义.地质学报,2001,75(1):14-24.
    [156]侯泉林,刘庆,李俊,等.大别山晚中生代剪切带特征及年代学制约.地质科学,2007,42(1):114-123.
    [1571王勇生,魏鑫,向必伟,等.晓天-磨子潭剪切带的早白垩世活动及其对北大别穹窿演化的制约.地质学报,2010,v.84(05):618-630.
    [158]董树文,孙先如,张勇.大别山碰撞造山带基本结构.科学通报,1993,38(6):542-545.
    [159]王勇生,朱光,宋传中,等.大别山东端郯庐断裂带由走滑向伸展运动转换的40Ar/39Ar年代学记录.地质科学,2006,41(02):242-255.
    [160]王小凤.郯庐断裂带[M]:地质出版社,2000.
    [161]朱光,宋传中,王道轩,等.郯庐断裂带走滑时代的40Ar/39Ar年代学研究及其构造意义.中国科学:D辑,2001,31(03):250-256.
    [162]朱光,王道轩,刘国生,等.郯庐断裂带的演化及其对西太平洋板块运动的响应.地质科学,2004,39(01):36-49.
    [163]周导之.大别山区古板块构造的研究.中国科学技术大学学报,1981,02:94-105.
    [164]Okay A I, Sengor A M C. Evidence for intracontinental thrust-related exhumation of the ultra-high-pressure rocks in China. Geology,1992,20(5):411-414.
    [165]Yin A, Nie S Y. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics,1993,12(4):801-813.
    [166]Li Z X. Collision between the North and South China blocks:a crustal-detachment model for suturing in the region east of the Tanlu fault. Geology,1994,22(8):739-742.
    [167]Chang E Z. Collisional orogene between north and south China and its eastern extension in the Korean Peninsula. Journal of Southeast Asian Earth Sciences,1996,13(3):267-277.
    [168]邓乃恭.中生代华夏类型构造和郯庐断裂体系的特征与形成机制.构造地质论丛,1984,3:33-38.
    [169]徐树桐.中国东部徐-淮地区地质构造格局及其形成背景[M]:地质出版社,1993.
    [170]万天丰,朱鸿.郯庐断裂带的最大左行走滑断距及其形成时期.高校地质学报,1996,2(1):14-27.
    [171]徐嘉炜,马国锋.郯庐断裂带研究的十年回顾.地质论评,1992,38(4):316-324.
    [172]朱光,张力,谢成龙,等.郯庐断裂带构造演化的同位素年代学制约.地质科学,2009,4:1327-1342.
    [173]邓晋福.中国大陆根-柱构造:大陆动力学的钥匙[M]:地质出版社,1996.
    [174]徐启东,张本仁,单元祥,等.大别造山带中生代花岗岩类成分的时空分布与造山带演化的关系.地球科学:中国地质大学学报,1997,22(6):595-598.
    [175]陈玲,马昌前,张金阳,等.首编大别造山带侵入岩地质图(1:50万)及其说明.地质通报,2012,31(1):13-20.
    [176]李应运,邢凤鸣.安徽花岗岩类的成因类型及其成矿作用.岩石学报,1987,3(4):44-44.
    [177]张德全,孙桂英.对混合花岗岩的质疑-论中国大别山地区天堂寨片麻状花岗碧的成因.地球学报,1991,22:147-158.
    [178]陈廷愚,牛宝贵,刘志刚,等.大别山腹地燕山期岩浆作用和变质作用的同位素年代学研究及其地质意义.地质学报,1991,65(4):329-336.
    [179]简平,马昌前,杨坤光.大别造山带东部燕山晚期区域变质-岩浆活动与区域构造抬升的同位素地质年代学证据.地球科学:中国地质大学学报,1996,21(5):519-523.
    [180]王人镜,杨巍然.大别造山带核部花岗岩岩体的热演化及其隆升历史.地学前缘,1999,6(04):201-202
    [181]管运财,高天山,吴海权.大别山地区(安徽)中生代花岗岩类岩体特征与形成机制.安徽地质,1995,5(3):10-16.
    [182]Kruhl J H. Prism-and basal-plane parallel subgrain boundaries in quartz:A microstructural geothermobarometer. Journal of metamorphic Geology,2003,14(5):581-589.
    [183]Jelinek V, Kropacek V. Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia geophysica et geodaetica,1978,22 (1):50-62.
    [184]Chadima M, Hrouda F, Melichar R. Magnetic fabric study of the SE Rhenohercynian Zone(Bohemian Massif):Implications for dynamics of the Paleozoic accretionary wedge. Tectonophysics,2006,418(1): 93-109.
    [185]张旗,王焰,钱青,等.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报,2001,17(2):236-244.
    [186]Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newsl,1995,19(1):1-23.
    [187]Ludwig K R. Users Manual for Isoplot/Ex (rev.2.49). A Geochronological Toolkit for Microsoft Excel: Berkeley Geochronology Center. Center Special Publication,2001, la:la-55a.
    [188]Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying at internal standard. Chemical Geology,2008,257(1):34-43.
    [189]李石.湖北大别山天堂寨花岗岩成因类型讨论.岩石学报,1990,3:65-71.
    [190]陈江峰,谢智,刘顺生,等.大别造山带冷却年龄的40Ar-39Ar和裂变径迹年龄测定.中国科学:B辑,1995,25(10):1086-1092.
    [191]Bryant D L, Ayers J C., Gao Sn, et al. Geochemical, age, and isotopic constraints on the location of the Sino-Korean/Yangtze Suture and evolution of the Northern Dabie Complex, east central China Geological Society of America Bulletin,2004,116(5-6):698-717.
    [192]Wu Y B, Zheng Y F, Tang J, et al. Zircon U-Pb dating of water-rock interaction during Neoproterozoic rift magmatism in South China. Chemical Geology,2007,246(1-2):65-86.
    [193]王人镜,王强,何勇.大别山造山带核部九资河-天堂寨花岗岩的成因和时代.矿物岩石地球化学通报,1998,17(4):224-228.
    [194]Xie Z, Zheng Y F, Zhao Z F, et al. Mineral isotope evidence for the contemporaneous process of Mesozoic granite emplacement and gneiss metamorphism in the Dabie orogen. Chemical Geology,2006,231(3): 214-235.
    [195]Zhao Z F, Zheng Y F, Wei C S, et al. Zircon isotope evidence for recycling of subducted continental crust in post-collisional granitoids from the Dabie terrane in China. Geophysical research letters,2004,31(22): L22602,10-1029.
    [196]魏春景,张立飞.安徽省大别山东段中生代高钾花岗质岩石及其地质意义.中国科学:D辑,2000,30(4):355-363.
    [197]童劲松.造山带岩浆作用与区域构造演化.中国地质大学(北京)博士学位论文,2008.
    [198]Xue F, Rowley D B, Tucker R D, et al. U-Pb zircon ages of granitoid rocks in the north Dabie Complex, eastern Dabie Shan, China Journal of Geology,1997,105(6):744-753.
    [199]续海金.大别造山带核部晚中生代岩浆侵位序列与构造体制转换.中国地质大学(武汉)博士学位论文,2005.
    [200]Chappell B W, White A J R. Two contrasting granite types. Pacific geology,1974,8(2):173-174.
    [201]Le M R W, Bateman P, Dudek A, et al. A classification of igneous rocks and glossary of terms. Recommendations of the IUGS Subcommission on the Systematics of Igneous rocks. London:Black Well Scientific Publication,1989.
    [202]Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos,1989,22(4):247-263.
    [203]Taylor S R, McLennan S M. The continental crust:its composition and evolution[M]:Blackwell Scientific Pub.,Palo Alto, CA,1985.
    [204]Atherton M P., Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust, nature, 1993,362:144-146.
    [205]Defant M J, Drummond M S. Derivation of some modem arc magmas by melting of young subducted lithosphere. Nature,1990,347(6294):662-665.
    [206]续海金,马昌前.实验岩石学对埃达克岩成因的限定-兼论中国东部富钾高Sr/Y比值花岗岩类.地学前缘,2003,10(4):417-427.
    [207]肖庆辉.花岗岩研究思维与方法[M]:地质出版社,2002.
    [208]Liew T C, Hofmann A W. Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe:indications from a Nd and Sr isotopic study. Contributions to Mineralogy and Petrology,1988,98(2):129-138.
    [209]Wasserburg G J, DePaolo D J. Models of earth structure inferred from neodymium and strontium isotopic abundances. Proceedings of the National Academy of Sciences,1979,76(8):3594-3598.
    [210]DePaolo D J. Neodymium isotope geochemistry:an introduction[M]:Springer-Verlag NewYork,1988.
    [211]赵子福,郑永飞.俯冲大陆岩石圈重熔:大别-苏鲁造山带中生代岩浆岩成因.中国科学:D辑,2009,39(7):888-909.
    [212]Jahn B-m, Chen B. Dabieshan UHP metamorphic terrane:Sr-Nd-Pb isotopic constraint to pre-metamorphic subduction polarity. International Geology Review,2007,49(1):14-29.
    [213]Chen L, Ma C Q., Zhang J Y., et al. Mafic dykes derived from Early Cretaceous depleted mantle beneath the Dabie orogenic belt:implications for changing lithosphere mantle beneath Eastern China. Geological Journal,2011,46(4):333-343.
    [214]李曙光,洪吉安,李惠民,等.大别山辉石岩·辉长岩体的锆石U-Pb年龄及其地质意义.高校地质学报,1999,5(3):351-355.
    [215]续海金,马昌前,佘振兵.大别造山带中生代构造体制转换的时间:侵入岩锆SHRIMP定年.中国矿物岩石地球化学学会第十届学术年会论文集,2005.
    [216]侯振辉,李曙光,陈能松,等.大别造山带惠兰山镁铁质麻粒岩Sm-Nd和锆石SHRIMP U-Pb年代学及锆石微量元素地球化学.中国科学:D辑,2006,35(12):1103-1111.
    [217]陈江峰,周泰禧,李学明,等.安徽南部燕山期中酸性侵入岩的源区锶、钕同位素制约.地球化学,1993,03:261-268.
    [218]沈渭洲,凌洪飞,李武显,等.中国东南部花岗岩类的Nd模式年龄与地壳演化.中国科学:D辑,2000,30(5):471-478.
    [219]王德滋,沈渭洲.中国东南部花岗岩成因与地壳演化.地学前缘,2003,10(03):209-220.
    [220]王强,王人镜,邱家骧,等.大别山核部九资河花岗岩体成因.地球化学,2000,29(02):120-131.
    [221]Chen Y, Ye, Liu J B, et al. Multistage metamorphism of the Huangtuling granulite, Northern Dabie Orogen, eastern China:implications for the tectonometamorphic evolution of subducted lower continental crust. Journal of metamorphic Geology,2006,24(7):633-654.
    [222]Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta,1999,63(3):533-556.
    [223]Patchett P J, Tatsumoto M. Lu-Hf total-rock isochron for the eucrite meteorites. Nature,1980,288(5791): 571-574.
    [224]吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用.岩石学报,2007,23(2):185-220.
    [225]张超,马昌前.大别山晚中生代巨量岩浆活动的启动:花岗岩锆石U-Pb年龄和Hf同位素制约.矿物岩石,2008,28(4):71-79.
    [226]Zheng Y F, Wu Y B, Zhao Z F, et al. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth and Planetary Science Letters,2005, 240(2):378-400.
    [227]Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneissin the Dabie orogen. Chemical Geology,2006,231(1):135-158.
    [228]Zhang C, Ma C Q, Holtz F. Origin of high-Mg adakitic magmatic enclaves from the Meichuan pluton, southern Dabie orogen(central China):Implications for delamination of the lower continental crust and melt-mantle interaction. Lithos,2010,119(3):467-484.
    [229]Zhang J, Zhao Z F, Zheng Y F, et al. Postcollisional magmatism:Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China. Lithos,2010,119(3):512-536.
    [230]郭敬辉,陈福坤,张晓曼,等.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学.岩石学报,2005,21(04):1281-1301.
    [231]Zheng Y F, Zhou J B, Wu Y B, et al. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt:a passive-margin accretionary wedge deformed during continent subduction. International Geology Review, 2005,47(8):851-871.
    [232]Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology,2008,247(1):100-118.
    [233]Blichert-Toft J, Albarede F. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters,1997,148(1):243-258.
    [234]Scherer E, Munker C, Mezger K. Calibration of the lutetium-hafhium clock. Science,2001,293(5530): 683-687.
    [235]Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle:LA-MC-ICP MS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta,2000,64(1):133-147.
    [236]Miller R B, Paterson S R. The transition from magmatic to high-temperature solid-state deformation: implications from the Mount Stuart batholith, Washington. Journal of Structural Geology,1994,16(6): 853-865.
    [237]Paterson S R, Fowler J T K, Schmidt K L, et al. Interpreting magmatic fabric patterns in plutons. Lithos, 1998,44(1):53-82.
    [238]Pe-Piper G, Koukouvelas I, Piper D J W. Synkinematic granite emplacement in a shear zone: the Pleasant Hills pluton, Canadian Appalachians. Geological Society of America Bulletin,1998,110(4):523-536.
    [239]张进江.大型走滑带内同构造花岗岩的判别标志.地质科技情报,1999,18(04):23-26.
    [240]王涛,王晓霞,郑亚东,等.花岗岩构造研究及花岗岩构造动力学刍议.地质科学,2007,42(01):91-113.
    [241]马昌前,杨坤光,明厚利,等.大别山中生代地壳从挤压转向伸展的时间:花岗岩的证据.中国科学:D辑,2003,33(9):817-827.
    [242]Wang Y S, Xiang B W, Zhu G, et al. Structural and geochronological evidence for Early Cretaceous orogen-parallel extension of the ductile lithosphere in the northern Dabie orogenic belt, East China. Journal of Structural Geology,2011,33(3):362-380.
    [243]Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos,1999,46(3):605-626.
    [244]张旗,金惟俊,李承东,等.花岗岩与地壳厚度关系探讨.大地构造与成矿学,2011,35(2):259-269.
    [245]袁学诚,任纪舜,徐明才,等.东秦岭邓县-南漳反射地震剖面及其构造意义.中国地质,2002,29(1):14-19.
    [246]Dong S W, Gao R, Cong B L, et al. Crustal structure of the southern Dabie ultrahigh-pressure orogen and Yangtze foreland from deep seismic reflection profiling. Terra Nova,2004,16(6):319-324.
    [247]何永胜.大别造山带碰撞后花岗质岩浆作用地球化学:对去山根过程及山根结构的制约.中国科学技术大学博士学位论文,2011.
    [248]Johnson M C, Rutherford M J. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology,1989,17(9):837-841.
    [249]王强,邱家骤,王人镜.大别造山带核部典型燕山期花岗岩岩浆演化的P-T轨迹.矿物岩石,1999,19(04):15-20.
    [250]吴堑虹.大别造山带后造山隆升过程研究.中国科学院广州地化所博士学位论文,2003.
    [251]Paterson SR., Vernon R H. Bursting the bubble of ballooning plutons:A return to nested diapirs emplaced by multiple processes. Geological Society of America Bulletin,1995,107(11):1356-1380.
    [252]Fowler T K, Paterson S R. Timing and nature of magmatic fabrics from structural relations around stoped blocks. Journal of Structural Geology,1997,19(2):209-224.
    [253]Tao F L, Feng Z W. Terrestrial ecosystem sensitivity to acid deposition in South China. Water, Air, & Soil Pollution,2000,118(3):231-244.
    [254]王涛,张国伟,王晓霞,等.花岗岩体生长方式及构造运动学、动力学意义-以东秦岭造山带核部花岗岩体为例.地质科学,1999,34(3):326-335.
    [255]王涛.花岗岩研究与大陆动力学.地学前缘,2000,7(增刊):137-146.
    [256]冯佐海,王春增,梁金城,等.南岭西段姑婆山-花山花岗岩基侵位机制与生长方式.中国科学:地球科学,2011,41(6):816-831.
    [257]Hutton D H W. Granite emplacement mechanisms and tectonic controls:inferences from deformation studies. Transactions of the Royal Society of Edinburgh:Earth Sciences,1988,79(2-3):245-255.
    [258]向必伟.北大别造山后伸展过程构造热年代学与变形模拟研究.合肥工业大学博士学位论文,2009.
    [259]郑建平.中国东部地幔置换作用与中新生代岩石圈减薄[M]:中国地质大学出版社,1999.
    [260]杨文采.东大别超高压变质带的深部构造.中国科学:D辑,2003,33(2):183-192.
    [261]高山.大别山英山和熊店榴辉岩单颗粒锆石SHRIMP U-Pb年代学研究.地球科学:中国地质大学学报,2002,27(5):558-564.
    [262]Zheng Y F, Wu R X, Wu Y B, et al. Rift melting of juvenile arc-derived crust:Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research, 2008,163(3-4):351-383.
    [263]马昌前,佘振兵,张金阳,等.地壳根,造山热与岩浆作用.地学前缘,2006,13(2):130-139.