面向产品族的模块化产品设计理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产品族设计是大批量定制设计的核心和关键,其目标是以尽可能快的速度和尽可能低的成本为客户设计出满足其个性化需求的产品。为了实现该目标,本文在国家科技攻关计划项目(2001BA201A56)、安徽省十五科技攻关计划项目(40120513)、国防科技工业委托项目(2005BA201A83-01)以及合肥市重点科研项目(2007(1007))的资助下,对产品族开发过程中的复杂产品模块规划、柔性模块族的开发、模块化产品的演化、基于产品族的模块化产品快速定制以及面向协同开发的产品设计元本体模型的构建等问题进行了深入的研究。产品的模块识别是模块化产品族构造的关键环节。论文面向复杂产品,首先提出了面向复杂产品模块划分的预处理三原则,有效地缩减了构成组件的数量,提高了规划的效率。其次从功能角度,利用RI算法,对复杂产品的功能模块进行了识别。然后从结构角度出发,提出了“问题消去法”,并对所提算法的流程和实施关键技术等进行了研究。最后,采用D-S证据理论对模块划分结果进行了评价与决策,有效地考虑到了评价过程中的不确定性和不完全性等问题。
     柔性模块化以及柔性模块族的开发较传统模块化具有更宽的适用面。论文首先对柔性模块化的概念和其设计开发的特点进行了描述。其次利用事物特性表的基本原理,给出了柔性模块事物特性表的构建步骤和方法,对其进行了功能结构建模。接着采用建立面向设计主参数的回归模型,实现了其参数序列的市场纵向覆盖;采用公理化设计理论,从宏观层面,实现了其模块结构的横向拓展。再次提出了LSRM法,对关键柔性模块进行了轻量化设计,降低了企业的开发和运输成本。最后,将模块间的装配约束关系进行形式化封装,形成模块间装配语义,并提出了模块间自动装配的实现方法,有效地提高了新产品的开发效率。
     模块化产品的演化和产品族的形成具有紧密的联系。论文从宏观层面,提出了一套面向产品族生成的模块化产品演化方法AMPE。该方法包含两个子过程:对于第一个子过程,提出了组合决策法AG,对客户需求的变化进行了定量锁定;对于第二个子过程,首先提出了模块化产品体系结构的五大演化活动,然后基于改进的解释结构模型,对模块化产品体系结构进行了层次化建模,最后基于层次化模型,构造了组件间的波及度计算公式,为组件的重构提供了指导。
     模块化产品的快速定制研究对企业起着重要的作用。论文基于产品族,提出了一套模块化产品渐进式定制流程PCP。该流程能更好地面向企业产品的大批量定制,提高客户的参与度。首先基于公理化设计理论,实施了模块化产品的定性配置。其次采用了两步策略:FRBR RSBC,对模块化产品族的定量粗选择进行了研究,很好地调动了客户的积极性。再次通过引入可适应性设计方法学,对模块化产品的细选择进行了研究,并提出了可适应性重用、可适应性重构和可适应性验证与优化策略。在实施可适应性重用时,面向客户需求语言和设计师设计语言之间的语义鸿沟,提出了语义适配器;对于相似性检索时的特征权重的确定,提出了组合权重法AR。在实施可适应性重构时,提出了面向设计历史和过程的结构重构实现方法,并提出了基于规则映射的柔性模块尺寸重构的流程以及构建了模块设计主参数和模块组件结构参数之间的映射公式。最后对通用零部件基于知识驱动的设计进行了研究,并首次将实例推理技术应用到其快速设计过程中,实现了以往设计知识的重用。产品的设计开发过程是复杂的,没有很强的规律可循。论文首先基于语义网技术,总结并构建了面向协同开发的模块化产品设计元本体模型。然后以液压机产品为例,基于构建的设计元本体模型,构建了液压机领域本体模型。采用SWRL对液压机的一些常用设计知识进行了规则化表达和存储,并通过JESS推理引擎,对构建的液压机领域本体进行了推理和基于SWRLQueryBuiltIns的查询分析,有效地解决了知识获取和知识异构等问题,提高了设计知识的重用率。
     为工程实际化,本文开发了模块化产品设计与管理集成系统——MPDMIS,验证了文中提出的产品族开发相关关键技术与方法在实际工程应用中的适用性。
Product family design is the core of the mass customization and its goal is to design the products that meet the customers’various needs as quickly as possible and spend the lowest cost. In order to achieve the goal, several facets such as modules planning of complex product, development of flexible module family, evolution of modular product, rapid customization of modular product based on modular product family and construction of design meta ontology are researched in this paper under the finanical support of the National Science and Technology Foundation (Grant No. 2001BA201A56), Anhui Science and Technology Foundation (Grant No. 40120513), National Defense Science and Technology Industry Foundation (Grant No. 2005BA201A83-01) and Hefei Science and Technology Foundation (Grant No. 2007 (1007)).
     Module identification is a key factor for the construction of the modular product family. For complex products, chapter two proposes the pretreated three principles for modules division at first, effectively reducing the quantity of the component and improving the efficiency of the planning. Secondly, from a function view, the modules are identified by virtue of the RI algorithm. Subsequently, the“Problems Elimination”is put forward from the viewpoint of structure, and the crucial processes and technologies are studied. Finally, the results of the modules planning are evaluated and decided based on the D-S evidence theory, effectively taking into account the uncertainty and incomplete of the evaluation process.
     Flexible modular and flexible module family have a wider application then traditional modular. Chapter three describes the concept and design features of flexible module firstly. Furthermore based on the principles of table characteristics of things, the building steps and methods of table characteristics of things for flexible module are presented, which models its functions and structures. And then, the regression model of main design parameters is established for flexible module, achieving the vertical expansion of its parameters series. Also, the horizontal expansion is achieved for modular structure from a macro level based axiomatic design theory. Once again, the method LSRM designing the key flexible module to reduce the corporate development and transportation costs is put forward. Finally, the inter-module assembly semantic is built by formally package the assembly constraints between modules and the methods of automatic assembly is put forward, improving the efficiency of the development of new products drastically.
     The evolution of modular product keeps in close contact with family formation. Chapter four puts forward an evolution method AMPE of modular product for product family generation from the macro level. The method consists of two sub-processes. For the first, a portfolio decision-making method AG is put forward, which can lock the changes in customer demand quantitatively. For the second, five evolution activities of modular product architecture are put forward, then hierarchical model is built for modular product architecture based improved interpretative structural modeling, the ripple effect between components is measured based hierarchical model at last, guiding the reconstructions of the components.
     The rapid customization of modular product plays an important role in companies. Chapter five brings forward a progressive custom process PCP for modular products based product family. The process can be better business-oriented mass customization of products and improve customer participation. First of all, the qualitative configuration of modular product is implemented based axiomatic design theory. The quantitative rough choice of modular product family is researched by using of a two-step strategy, mobilizing the enthusiasm of the customers. Once again, the fine choice of modular product is researched through the introduction of adaptive design methology. And the adaptive reuse strategy, adaptative reconstruction strategy, adaptive authentication and optimization strategy are raised. In implementing adaptive reuse, the semantic adapter is put forward facing the semantic gap between customer demand language and designer language. Also, the combination weight is proposed facing similarity search. In implementing adaptive reconstruction, the structure reconstruction methods facing design history and process are brought up, the reconstruction process of flexible module is put forward based rule mapping and the mapping formula between modular main design parameters and components structural parameters are built. Finally, the knowledge-driven design of general parts is realized by checking the design knowledge into the feature-based modeling process. And, for the first time, the case-based reasoning technology is applied to the rapid design process, achieving the reuse of past design knowledge.
     Product design process is complex, and there is no strong pattern. First of all, chapter six constructs the design meta ontology for collaborative design based on the semantic web. And then, taking the hydraulic machine for example, the hydraulic machine’s domain ontology is built based the design meta ontology. The hydraulic machine’s common knowledge is converted into rule for expression and storage by use of SWRL. Also, the hydraulic machine’s domain ontology is reasoned through JESS and queried based SWRLQueryBuiltIns, which solves the acquisition and heterogeneity of knowledge and improves the reuse rate of design knowledge.
     Chapter seven develops a modular product design and management system——MPDMIS,verifying the applicability of key technologies and methods related to product family development.
引文
[1]Wallace D. R. Information-based Design for Environmental Problem Solving[J]. Annals of the CIRP, 1993, 42(1): 175-180
    [2]刘光复,刘志峰,李刚.绿色设计与绿色制造[M].北京:机械工业出版社,1999
    [3]刘光复,刘学平,刘志峰.绿色设计的体系结构及实施策略[J].中国机械工程,2000,11(9):965-967
    [4]倪俊芳,蔡建国.中国冰箱冰柜产品的回收策略[J].工业工程与管理,1999,1:36-39
    [5]王淑旺,刘志峰,刘光复,潘晓勇.机电产品回收关键技术研究[J].机械工程学报,2002,38:76-80
    [6]Mehdi Hashemian. Design for adaptability[D]. Canda, University of Saskatchewan, 2005
    [7]Davis S M. Future Perfect[M]. Reading: Addison-Wesley Publishing, 1987
    [8]Pine J. Making customization: The new frontier in business competition[J]. Boston: Harvard Business School Press, 1993
    [9]Kay M. Making Mass Customization Happen: Lessons for Implementation[J]. Planning Review, 1993, (4):14-18
    [10]邵晓峰,黄培清,季建华.大规模定制生产模式的研究[J].工业工程与管理,2001,(2):13-17
    [11]陈国权.批量客户化生产方式的基本概念与实施方法[J].系统工程理论与实践,2000,5:36-42
    [12]Pine J, Victor B., Boynton, A C. Making mass customization work[J]. Harvard Business Review, 1993, 71(5): 108-111
    [13]Hart C. Mass customization: Conceptual underpinnings, opportunities and limits[J]. International Journal of Service Industry Management, 1995, (2):36-45
    [14]Kotha S. Mass customization: Implementing the emerging paradigm for competitive advantage[J]. Strategic Management Journal, 1995, 16: 21-42
    [15]Joneja Ajay, Lee Neville K–S. Automated configuration of parametric feeding tools for mass customization[J]. Computers and Industrial Engineering, 1998, 35(3-4): 463-469
    [16]Pine J, Victor B., Boynton, A C. New competitive strategies: challenges to organizations and information technology[J]. IBM Systems Journal,1993, 32(1): 40-64
    [17]祈国宁,顾新建,谭建荣.大批量定制技术及其应用[M].北京:机械工业出版社,2003
    [18]Jiao Jianxin, Tseng M M., Duffy V G., Lin Fuhua, Product family modeling for mass customization[J]. Computer and Industrial Engineering, 1998, 35(3-4): 495-498
    [19]Ulrich Karl. The role of product architecture in the manufacturing firm[J]. Research Policy, 1995, 24(3): 419-440
    [20]JOSE A, TOLLENAERE M. Modular and platform methods for product family design: literature analysis[J]. Journal of Intelligent Manufacturing, 2005, 16(3): 371-390
    [21]Simon Herbert A. The architecture of complexity[J]. Proceedings of the American Philosophical Society, 1962, 106(6): 467-482
    [22]侯亮,唐任仲,徐燕申.产品模块化设计理论、技术与应用研究进展[J].机械工程学报, 2004,40(1):56-61
    [23]Suh N P. The principle of design[M]. Oxford: Oxford University Press, 1990
    [24]Stone Robert B., Wood Kristin L., Crawford Richard H. A heuristic method for identifying modules for product architectures[J]. Design Studies, 2000, 21: 5-31
    [25]Dahmus Jeffrey B., Gonzalez-Zugasti Javier P., Otto Kevin N. Modular product architecture[J]. Design Studies, 2001, 22(5): 409-424
    [26]Gu P, Sosale S. Product modularization for life engineering[J]. Robotics and Computer Integrated Manufacturing, 1999, 15(5): 387-401
    [27]Hsiao Shih-Wen, Liu Elim. A structural component-based approach for designing product family[J]. Computers in Industry, 2005, 56: 13-28
    [28]Salhieh Sa’ed M., Kamrani Ali K. Macro level product development using design for modularity[J]. Robotics and Computer integrated manufacturing, 1999, 15: 319-329
    [29]Kusiak Andrew, Huang Chun-Che. Development of Modular Products[J]. IEEE TRANSACTIONS ON COMPONENT, PACKAGING, AND MANUFACTURING TECHNOLOGY-PART A, 1996, 19(4): 523-538
    [30]孟祥慧.面向大批量定制的产品族规划和设计方法研究[D].上海交通大学博士论文,2006
    [31]王海军.面向大批量定制的产品模块化若干设计方法研究[D].大连理工大学博士论文,2005
    [32]汪文旦,秦现生,阎秀天,白晶.一种可视化设计结构矩阵的产品设计模块化识别方法[J].计算机集成制造系统, 2007, 13(12): 2345-2350
    [33]魏結,谭建荣,冯毅雄等.基于相似性的产品模块构建方法及其应用[J].计算机辅助设计与图形学学报,2006,18(12):1930-1934
    [34]祈卓娅,王建正,韩新民.模块柔性划分方法[J].机械工程学报,2007,43(1):87-94
    [35]刘建刚,马安,王宁生.基于设计结构矩阵的产品结构模块聚类方法[J].华南理工大学学报,2006,34(11):45-48
    [36]唐涛,刘志峰,刘光复,刘蕾.绿色模块化设计方法研究[J].机械工程学报,2003,39(11):149-154
    [37]贡智兵,李东波,史翔.面向产品配置的模块形成及划分方法[J].机械工程学报,2007,43(11):160-167
    [38]徐燕申,侯亮,张连洪,李森.液压机广义模块化设计原理及应用[J].机械设计,2001,7:1-5
    [39]郑辉,徐燕申,侯亮等.基于KBE和CAE结合的液压机结构柔性模块创建[J].天津大学学报,2003,36(2):178-182
    [40]钟伟弘,徐燕申,卢志永,李森.基于广义模块化快速设计的液压机产品模块划分与规划[J].机械设计,2003,20(12):8-21
    [41]徐丽萍,徐燕申,卢志永,李森.基于柔性元结构的广义模块化产品族建模及其应用[J].中国机械工程,2004,15(18):1654-1656
    [42]赵韩,钱德猛.基于ANSYS的汽车结构轻量化设计[J].农业机械学报,2005,36(6):12-15
    [43]韩旭,朱平,余海东,郭永进等.基于刚度和模态性能的轿车车身轻量化研究[J].汽车工程,2007,29(7):545-549
    [44]谭继锦,张代胜,熊良平,徐志汉.某型大客车车身骨架轻量化设计[J].汽车工程,2006,28(4):394-397
    [45]刘悦,汪劲松,王立平.重型混联机床XNZH2430的静刚度优化[J].清华大学学报,2006,46(8):1418-1421
    [46]戴磊,关振群,单菊林,牛聪民等.机床结构三维参数化形状优化设计[J].机械工程学报,2008,44(5):152-157
    [47]宋雨芳,吴友坤,荣兆杰.基于有限元基础的单柱液压机机身的优化设计[J].装备,2005. 29-30
    [48]侯晓望,童水光.基于有限元分析的液压机结构优化[J].重型机械,2005,4:46-48
    [49]刘振宇,谭建荣,张树有.基于语义识别的虚拟装配运动引导研究[J].软件学报,2002,13(3):382-388
    [50]Kyoung-Yun Kim, Wang Yan, Muogboh Obinna S., Nnaji Bartholomew O. Design formalism for collaborative assembly design[J]. Computer-Aided Design, 2004, 36: 849-871
    [51]吕琳,孟祥旭,徐延宁.复杂产品的层次语义模型研究[J].中国机械工程,2004,15(15):1357-1361
    [52]Wang Hui, Xiang Dong, Duan Guanghong, Zhang Linxuan. Assembly planning based on semantic modeling approach[J]. Computers in Industry, 2007, 58: 227-239
    [53]冯毅雄,谭建荣,郑兵.基于联结语义的概念结构建模方法研究[J].浙江大学学报,2006,40(2):221-225
    [54] http://baike.baidu.com/view/712348.htm
    [55]王映辉.软件功能需求变化传播机理分析[J].计算机学报,2007,30(11):2025-2031
    [56]王映辉,张世琨,刘瑜,王立福.基于可达矩阵的软件体系结构演化波及效应分析[J].软件学报,2004,15(8):1107-1114
    [57]王映辉,刘瑜,王立福.基于不动点转移的SA动态演化模型[J].计算机学报,2004,27(11):1451-1456
    [58]陈卫东.复杂适应经济系统演化理论与方法研究[D].天津大学博士论文,2002
    [59]朱斌,江平宇,苏建宁.一种基于感性设计的产品平台参数的辨识方法研究[J].机械工程学报,2004,(2):87-91
    [60]杨明顺,李言,林志航,李鹏阳等.质量屋中顾客需求向技术特征映射的一种方法[J].工程图学学报,2006(2):39-42
    [61]王霜,殷国富,罗中先.基于用户需求灰预测的产品原型演化方法研究[J].计算机集成制造系统,2007,13(7):1451-1455
    [62]AGARD B., KUSIAK A. Data-mining-based methodology for the design of product families[J]. International journal of production research, 2004, 42(15): 2955-2969
    [63]王红军,陈新,郑德涛.基于超图理论的产品族规划方法[J].中国机械工程,2005,16(13):1133-1137
    [64]贡智兵,李东波.基于扩展DSM的实例修改路径优化[J].计算机辅助设计与图形学学报,2006,18(11):1765-1769
    [65]Martin M V. Design for variety: a methology for developing product platform architectures[D]. Califonia: Stanford University, 1999
    [66]Martin M V., Ishil Kosuke. Design for variety: developing standardized and modularized product platform architectures[J], Research in Engineering Design, 2002, 13: 213-235
    [67]楼健人,伊国栋,张树有,谭建荣.基于知识的产品可拓配置与进化设计技术研究[J]. 2006,40(6):466-470
    [68]魏修亭.面向设计历史与过程的图形置换与迭代理论、方法及其应用研究[D].浙江大学博士论文,1999
    [69]冯毅雄,谭建荣,伊国栋.零件结构的联动式进化设计方法[J].机械工程学报,2006,42(1):40-46
    [70]田波,梁锡昌,潘继生.基于可重构的轮辋自动加工机床[J].机械工程学报,2007,43(6):216-219
    [71]吴伟伟,唐任仲,侯亮,王正肖.基于参数化的机械产品尺寸变型设计研究与实现[J].中国机械工程,2005,16(3):218-222
    [72]方水良,沈振华.复杂变型产品参数传递结构研究[J].计算机集成制造系统,2006,12(12):1934-1937
    [73]顾巧祥,苏少辉,余军合,鲁玉军等.基于事物特性表的产品变型设计研究[J].中国机械工程,2004,15(19):1713-1716
    [74]Sehyun Myung, Soonhung Han. Knowledge-based parametric design of mechanical products based on configuration design method[J]. Expert Systems with Application, 2001, 21: 99-107
    [75]Chan W. M., Yan L., Xiang W., Cheok B.T. A 3D CAD knowledge-based assisted injection mould design system[J]. Int J Adv Manuf Technol, 2003, 22: 387-395
    [76]LEAKE DAVID B., WILSON DAVID C. A case-based framework for interactive capture and reuse of design knowledge[J]. Applied Intelligence, 2001, 14: 77-94
    [77]Sun Shu Huang, Chen Jahau Lewis. A modular fixture design system based on case-based reasoning[J]. Int J Adv Manuf Technol, 1995, 10: 389-395
    [78]Lee K. S., Luo C. Application of case-based reasoning in die-casting die design[J]. Int J Adv Manuf Technol, 2002, 20: 284-295
    [79]Rezayat M. Knowledge-based product development using XML and KCs[J]. Computer-Aided Design, 2000, 32: 299-309
    [80]Chen Lifan, Du Yu, Wang Hongyan, Zhang Yi, Zhou Jing. Case-based reasoning expert system for concept design of economical car[J]. IEEE, 99. 360-364
    [81]Mok C. K., Chin K. S., Lan Hongbo. An internet-based intelligent design system for injection moulds[J]. Robotics and Computer-Integrated Manufacturing, 2008, 24: 1-15
    [82]Huang George Q., Li L., Chen X. A Tandem Evolutionary Algorithm for Platform Product Customization[J]. Journal of Computing and Information Science in Engineering, 2007, 7: 151-159
    [83]曹育红,王宝雨,胡正寰.基于KBE的槭横轧模具设计关键技术研究[J]. 2006,17:254-256
    [84]肖新华,史明华,杨小凤,李斌.基于模块化产品实例的变型设计技术研究[J].中国机械工程,2007,18(7):803-806
    [85]吴义忠,蒋武,陈立平.嵌入式典型零部件快速设计系统[J].计算机辅助设计与图形学学报,2004,16(12):1724-1729
    [86]李玲玲,刘锋国,郭素娜,高朝晖.基于证据理论的产品选型决策方法[J].工程设计学报,2006,13(5):281-285
    [87]冯小侠,刘胜,刘飞,周康渠.一种动态参数式产品定制实现机制及应用[J].中国机械工程,2004,15(6):508-511
    [88]贡智兵,李东波,潘洋宇.粗集理论在快速设计中的应用研究[J].计算机集成制造系统,2006,12(8):1198-1202
    [89]杨育,张晓东,刘胜,刘飞.网络化协同产品定制及其系统集成研究[J].中国机械工程,2003,14(15):1290-1294
    [90]徐锡青,黄越,王来瑞,张申生.基于数字化模型的三维在线客户化产品订购系统[J].计算机辅助设计与图形学学报,2002,14(2):111-114
    [91]王丹妮,熊光楞,吴淑宁.客户定制辅助专家系统关键技术研究[J].计算机工程,2004,30(17):140-142
    [92]Lee Kyu-Yeul, Lee Won-Joon, Roh Myung-I1. Development of a semantic product modeling system for initial hull structure in shipbuilding[J]. Robotics and Computer-Integrated Manufacturing, 2004, 20: 211-223
    [93]Skarka Wojciech. Application of MOKA methodology in generative model creation using CATIA[J]. Engineering Application of Artificial Intelligence, 2006. 1-14
    [94]Yang Dong, Miao Rui, Wu Hongwei, Zhou Yiting. Product configuration knowledge modeling using ontology web language[J]. Expert Systems with Application, 2008. 1-13
    [95]Yang Q. Z., Zhang Y. Semantic interoperability in building design: Methods and tools[J]. Computer-Aided Design, 2006, 38: 1099-1112
    [96]Kim Kyoung-Yun, Manley David G., Yang Hyungjeong. Ontology-based assembly design and information sharing for collaborative product development[J]. Computer-Aided Design, 2006, 38: 1233-1250
    [97]Chang Xiaomeng, Sahin Asli, Terpenny Janis. An ontology-based support for product conceptual design[J]. Robotics and Computer-Integrated Manufacturing, 2008, 24: 755-762
    [98]张国钢,王建华,陈德桂,耿英三.支持异地协同产品设计的知识服务模型[J].计算机辅助设计与图形学学报,2003,15(11):1404-1414
    [99]胡建,廖文和,徐勇,金晓海.基于本体的概念设计知识管理系统框架研究[J].中国机械工程,2006,17(2):172-176
    [100]张立,陈刚,王玉柱,董金祥.基于本体的功能建模框架及协同设计环境研究[J].计算机集成制造系统,2007,13(3):456-464
    [101]付相君,李善平,郭鸣.产品数据模型的本体知识表达[J].计算机辅助设计与图形学学报,2005,17(3):570-577
    [102]梁培志,李畅,李建军.基于XML的模具协同设计知识的表达及应用[J].中国机械工程,2007,18(14):1694-1696
    [103]Value Analysis Incorporated(VAI). 1993. Value analysis, value engineering,and value management. Clifton Park16,NY:VAI
    [104]Lefever, D., Wood, K. Design for assembly techniques in reverse engineering and redesign[J]. Proceedings of the 1996 ASME Design Theory and Methodology Conference
    [105]Wang lei, Pan jin, Jiao Lieheng. The Immune Algorithm[J]. Aeta Electronica Sinica, 2000, 28(7):74-78
    [106]Zhao Fuqing, Hong Yi, Yu Dongmei,et al. A novel genetic algorithm for partner selection problem in virtual enterprise[A]. In: Proc. of the 2004 Inter. Conf. on Intelligent Mechatromics and Automation[C]. IEEE Press, 2004, 477-482
    [107]韩学东,洪炳榕,孟伟.基于疫苗自动获取与更新的免疫遗传算法[J].计算机研究与发展,2005,42(5):740-745
    [108]苏兆品,蒋建国,夏娜,张国富.基于知识库和改进型免疫算法求解多任务联盟生成问题[J].计算机研究与发展,2006,43(A):190-194
    [109]苏兆品,蒋建国,夏娜,张国富.基于维数划分策略和免疫的多任务联盟并行生成算法[J].系统工程理论与实践,2008,(1):118-123
    [110]李茂军,朱陶业,童调生.单亲遗传算法与传统遗传算法的比较研究[J].系统工程,2001,19(1):61-65
    [111]杨善林.智能决策方法与智能决策支持系统[M].北京:科学出版社,2005
    [112]钟伟弘.面向产品族的液压机广义模块化快速设计技术[D].天津大学,2004
    [113]中华人民共和国国家标准.事物特性表定义和原理. GB/T 10091.1-1995
    [114]阮桂海,蔡建平,刘爱玉等.数据统计与分析[M].北京:北京大学出版社,2005
    [115]何晓群,刘文卿.应用回归分析[M].北京:中国人民出版社,2001
    [116]王征,李华.基于网络分析法的产品设计决策[J].工业工程与管理,2005,2:92-96
    [117]蓝亮文,董明,李晓龙.基于ANP的磁浮师资评价方法的研究[J].工业工程与管理,2007,6:105-107
    [118]贺竹磬,孙林岩,宫俊涛. ANP理论及其在物流联盟盟员选择中的应用[J].中国机械工程,2006,17(18):1913-1915
    [119]钱颂迪,薛华成等.运筹学[M].北京:清华大学出版社,2004
    [120]Holtta Otto Katja. Modular product platform design[D]. Helsinki University of Technology, 2005
    [121]Fu-Mao (Eric)Chou. A M ethodology for component integration in product design[D]. State University of New York at Buffalo, 2002
    [122]Warfield John N. Structuring complex systems[M]. Battelle Memorial Institute, Columbus, 1974
    [123]Warfield John N. Binary matrices in system modeling[J]. IEEE Trans. On Systems Man & Cybernetics, 1973, 3(5): 441-449
    [124]www.Superdecision.com
    [125]www.lindo.com
    [126]Kim, S. J., Suh, N. P., Kim, S.–K. Design of software systems based on axiomatic design[J]. Robotics and Computer Intetrated Manufacturing, 1992, 3: 149-162
    [127]PAWLAK Z, GRAZYMALA B J, SLOWINSKI R, et al. Rough sets[J]. Communications of ACM, 1995, 38(11): 89-95
    [128]Gu P, HASHERMIAN M, NEE A YC. Adaptable design[J]. CIRP Annals Manufacturing Technology, 2004, 53(2): 539-557
    [129]Barletta R.基于实例的推理导论[J].田伟涛译.计算机科学,1993,20(1):10-14
    [130]王广月,刘健.基于组合权重的灰色关联度方案决策模型及其应用[J].工业建筑,2004,34(4):61-65
    [131]徐泽水,达庆利.多属性决策的组合赋权方法研究[J].中国管理科学,2002,10(2):84-86
    [132]魏修亭.面向设计历史与过程的图形置换与迭代理论、方法及其应用研究[D].浙江大学博士学位论文,1999
    [133]董玉德,赵韩,谭建荣.基于图形单元的结构变异参数化设计方法[J].农业机械学报,2002,33(3):98-101
    [134]齐春萍,宫晓东,张帆等.产品设计[M].北京:电子工业出版社,2006
    [135]http://www.w3.org/Submission/SWRL/#2.1
    [136]http://protege.cim3.net/cgi-bin/wiki.pl?SWRLQueryBuiltIns