塔中隆起82区块沉积微相研究及储层预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非均质性是碳酸盐岩储层的主要特点和挑战。非均质性主要来源于裂缝、溶蚀、岩性分布及发育的多样性和不确定性。岩性的分布受沉积物的来源、沉积环境和后期成因作用多种因素的控制。裂缝发育受到岩性、埋藏深度、局部构造和区域水平地应力的综合影响。岩性、古地形、古气候和海平面的升降变化则控制了溶蚀和喀斯特的发育区域。
     在沉积微相识别的基础上,应用高分布率层序地层学是预测岩性变化的方法之一。它以岩心、测井、露头和高分辨率地震反射剖面为基础,通过精细层序划分和对比技术,建立各种级别的成因地层格架,对各种沉积体进行评价和预测。然而,高分辨率层序地层学的分析结果受到地震资料、常规测井低分辨率和有限钻井取心资料的制约。
     在本文中提出了一套新的基于微电阻率成像测井的进行高分辨率层序地层学研究及有利储层预测的分析方法。首先应用钻井取心资料对比分析微电阻率成像典型沉积构造特征,并在此基础上应用有监督神经网络的方法进行多井沉积微相的识别。然后,综合考虑地震和微电阻率成像资料,划分不同级别的基准面旋回;并根据沉积纹层厚度和纵向上沉积相的变化分析地层的叠置关系。在层序地层学分析的基础上,恢复碳酸盐岩古地貌,进而总结出溶蚀和喀斯特在层序框架内的发育特点。最后根据地质构造来研究裂缝的发育特点,并预测有利的储层区域。
     在塔中82区块实施和应用了上述分析方法:根据3口井的取心资料识别出7种不同的沉积微相,应用有监督神经网络方法建立单井沉积微相,并推广到其他4口无钻井取心井。结合地震资料和微电阻率成像划分出3种不同级别的基准面旋回,在分析确定地层叠加模式的前提下,建立本区块的层序地层框架。应用顶部长期基准面旋回的厚度进行残留古地貌恢复,结合单井次生孔隙计算结果,分析溶蚀作用的发育规律。通过单井裂缝参数和灰岩顶部构造曲率的计算,研究裂缝发育的控制因素。在分析溶蚀和裂缝发育规律的基础上,预测有利储层的分布范围。最近新钻井试油资料验证了相关分析结果,证明了该分析流程的可靠性和可行性,为陆棚边缘厚层碳酸盐有利储层预测提供了解决方案,具有一定的参考价值和应用前景。
The complexity in carbonate reservoirs is formation heterogeneity due to fractures,vugs, and mixed facies. The lithology distribution is controlled by multiple effects, such assediment source, depositional environment, and diagenesis. Fracture development isinfluenced by lithology, burial depth, local structure and far-field stress. Lithology, ancienttopography, ancient weather, and sea level change control the vugs and Karst development.
     High-resolution sequence stratigraphy is one of the advanced methods to resolve thelithology challenge with facies identification. The method combines core analysis,conventional logs, outcrop studies, and seismic data to build multiple-ranks sequence andthen predict the sedimentary distribution. However, the analysis results are frequentlyconstrained by the low resolution of the seismic and conventional log data and by limitedcore data.
     In this paper, we propose a new workflow for high-resolution sequence-stratigraphyanalysis by integrating borehole resistivity images. First, the borehole resistivity images arecalibrated with core data; then the depositional facies are identified from calibratedresistivity-image data combined with multiple-domain data through supervised neuralnetwork method. Second, multiple-ranks base levels are identified from seismic andborehole resistivity image data; and the thickness change of cross bedding and depostionalfacies column are used to classify the strata stacking patterns. Third, the ancient topographymap was built from sequence-stratigaphy analysis and then the vugs and Karst distributionwas summarized within a sequence stratigraphy framework. Finally, the sweet spot waspredicted combining with fracture evaluation from seismic structure.
     We present a case study where this new approach was implemented in the Block A ofthe Tazhong uplift in the Tarim basin. Seven different depositional facies were identifiedfrom three wells-core data to build the continue facies column for every well after appliedto additional4wells and non-cored intervals.3different base-levels were classified fromborehole resistivity image and seismic data. Sequence framework was built after stratastacking patterns identified. The thickness of top long term base level was used to analyzethe vugs distribution by integrating with single well secondary porosity results fromborehole micro-resistivity image. The local structural curvature controlled the fracture distribution based on single well fracture parameters and curvature computation. The sweetarea was predicted from vugs and fracture potential distribution. A recently drilled wellconfirmed these results and approved the workflow can be applied to similar thickcarbonate reservoirs in shoal-reef margin of a carbonate platform.
引文
Akbar M, Chakravorty S, Duffy Russell S, et al. Unconventional approach to resolvingprimary and secondary porosity in gulf carbonates from conventional logs and boreholeimages.2000, SPE paper87297-MS.
    Amer A and Yepes O. Structural delineation and formation evaluation using boreholeelectrical images. SPWLA2008Annual Angola Formation Evaluation Forum.
    Bahrami H, Siavoshi J, Esmaili S, et al. Estimating fracture permeability and shapefactor by use of image log data in welltest analysis.2008, SPE paper114594-MS.
    Benoit Mathis, Herve Ganem, Eric Standen, et al. Orientation and calibration of coreand borehole image data. SPWLA36thAnnual Logging Symposium,1995.
    Botton-Dumay R, Manivit T, Massonnat G, et al. Karstic high permeability layers:Characterization and preservation while modeling carbonate reservoirs. Society ofPetroleum Engineers,2002, SPE78534.
    Bourdon L, Coca S, Alessio L. Karst identification and impact on development plan.Society of Petroleum Engineers,2004, SPE88520.
    Brian P Cofey and Fred J Read. High-resolution sequence stratigraphy in TertiaryCarbonate--rich sections by thin-sectioned well cuttings. AAPG Bulletin,2002,86(8):1407-1415.
    Carrillat A, Hunt D, Randen T, et al. Automated mapping of carbonate build-ups andpalaeokarst from the Norwegian Barents Sea using3D seismic texture attributes.Geological Society. London: Petroleum Geology Conference series,2005, v(6):1595-1611.
    A G and Vining B A. Petroleum Geology: North-West Europe and GlobalPerspectives–Proceedings of the6thPetroleum Geology Conference. London: TheGeological Society,2003,1:1595-1611.
    Chai Hua, Li Ning, Xiao Chengwen, et al. Automatic discrimination of sedimentaryfacies and lithologies in reef-bank reservoirs using borehole image logs. APPLIEDGEOPHYSICS, March2009,6(1):17–29.
    Chitale D V. Borehole imaging in reservoir characterization: implementation of astandard interpretation workflow for the clastic and carbonate reservoirs.46th AnnualSPWLA Logging Symposium, New Orleans, Louisiana, March2009.
    Faivre O and Catala G. Dip estimation from azimuthal Laterolog tools. SPWLA36thAnnual Logging Symposium,1995.
    Cross T A. Stratigraphic controls on reservoir attributes in continental strata[J]. EarthScience Frontiers,2000,7(2):321-350.
    Cross T A. Controls on coal distribution in transgressive-regressive cycles, Uppercretaceous, Western Interior, U.S.A. In: Wilgaus CK, ed. Sea-level changes: An integratedapproach. SEPM Special Publication,1988,42:371~380.
    Da-Li Wang, Hans de Koningh and Gordon Coy. Facies Identification and PredictionBased on Rock Textures from Microresistivity Images in Highly Heterogeneous Carbonates:A Case Study from Oman, SPWLA49thAnnual Logging Symposium,2008.
    D Rose, P M Hansen, A P Damgaard, et al. A Novel Approach to Real Time Detectionof Facies Changes in Horizontal Carbonate Wells Using LWD NMR. SPWLA44th AnnualLogging Symposium, June22-25,2003.
    Fritz R D, Wilson J L, and Yurewicz D A. Paleokarst related hydrocarbon reservoirs:SEPM Core Workshop No.18, Society of Economic Paleontologists and Mineralogists,Tulsa,1993.
    Holland S M and Patzkowsky M E. Sequence stratigraphy and relative sea-levelhistory of the Middle and Upper Ordovician of the Nashville Dome, Tennessee. Journal ofSedimentary Research,1998,68(4):684-699.
    Hongliu Zeng and Tucker F Hentz. High-frequency sequence stratigraphy fromseismic sedimentology: Applied to Miocene vermilion Block50, Tiger School Area,offshore, Louisiana. AAPG Bulletin,2004,88(2):153-174.
    Kevin J Cunningham. Application of ground-penetrating radar, digital optical boreholeimages, and cores for characterization of porosity hydraulic conductivity and paleokarst inthe Biscayne aquifer, southeastern Florida, USA. Journal of Applied Geophysics,2004,55:61–76.
    Eduard Kosa, David W Hunt. Heterogeneity in fill and properties of karst-modifiedsyndepositional faults and fractures: Upper Permian Capitan platform, New Mexico, U.S.A.Journal of Sedimentary Research,2006,76:131-151.
    Leduc J P, Delhaye-Prat V, Zaugg P, et al. FMI based sedimentary facies modeling,Surmont Lease (Athabasca, Canada). Presented at the75th CSPG Convention,2002.
    Loucks, R G. Paleocave carbonate reservoirs: origins, burial-depth modifications,spatial complexity, and reservoir implications. Journal of Sedimentary Research,1999,83:1795-1834.
    Loucks R G. Origin of Lower Orodovician Ellenburger Group brecciated and fracturedreservoirs in West Texas: Paleocave, thermobaric, tectonic, or all of the above? AAPGAnnual Meeting, Salt Lake City, Utah, May11-14,2003.
    Lovell M A, Harvey P K, Brewer T S, Williams C, et al. Application of FMS images inthe Ocean Drilling Program: an overview (in geological evolution of ocean basins: resultsfrom the Ocean Drilling Program). Geological Society Special Publications,1997,131:287-303.
    Lucia, F J. Carbonate reservoir characterization. Berlin, Springer,1999. p.226.
    Luping Guan, Shixing Wang and Hailong Zhu. Prediction of a fracture-cavern systemin a carbonate reservoir: A case study from the Tahe oil field, China. The Leading Edge,Society of Exploration Geophysicists, November2006, p.1396-1400.
    Martiez de Olmo W and Esteban M. Paleokarst development. In: Scholle, P A,Bebout, D G, and Moore, C H, eds. Carbonate Depositional Environments. AAPG Memoir33. Tusla: American Association of Petroleum Geologists,1983, p.93-96.
    McHargue T R. Stratigraphic development of proto-South Atlantic rifting in Cabinda,Angola—A petroliferous lake basin. In: Katz BJ, ed. Lacustrine basin exploration casestudies and modern analogs. American Association of Petroleum Geologists Memoir50,1990, p.307–326.
    Moore C H. Carbonate reservoirs: Porosity evolution and diagenesis in a sequencestratigraphic framework. Developments in Sedimentology55, Elsevier, Amsterdam,2001.p.444.
    Mylroie J E, and Carew J L. Karst development in carbonate islands. In: Budd D A,Saller A H and Harris P M, eds. Unconformities and Porosity in Carbonate Strata: AAPGmemoir63. Tulsa: American Association of Petroleum Geologists,1995. p.55-76.
    Nelson R A. Geological Analysis of Naturally Fractured Reservoirs(Second Edition).Boston: Gulf Professional Publishing,2001. p.332.
    N Gomaa, A Al-Alyak, D Ouzzane, et al. Case study of Permeability, VugQuantification and Rock Typing in a Complex Carbonate,2006, SPE102888-MS.
    Newberry B M, Grace L M and Stief D O. Analysis of carbonate dual porositysystems from borehole electrical images. In Proceedings: Permian Basin Oil and GasRecovery Conference,1996, Society of Petroleum Engineers, SPE35158-MS.
    Nurmi R, Charara M, Waterhouse M, et. al. Heterogeneities in carbonate reservoirs:detection and analysis using borehole electrical imagery. In Geological Applications ofWireline Logs. London: Geological Society, Special Publications,1990,48:95–111.
    O Catuneanu, V Abreau, J P Bhattarya. Earth-Science Reviews: Towards thestandardization of sequence stratigraphy.2009, Earth Sci Rev,92(1-2):1-33.
    O Fonta, H Al-Aj I. The fracture characterization and fracture modeling of a tightcarbonate reservoir: The Najmah sargelu of west Kuwait.2005, SPE93557.
    Palaz I and Marfurt K J. Carbonate Seismology: Geophysical Developments Series,No.6. Tulsa: Society of Exploration Geophysicists,2005. p.443.
    Perrin C, Wani M R, Akbar M, et al. Integration of borehole image log enhancesconventional electrofacies analysis in dual porosity carbonate reservoirs.2007, IPTC11622-MS.
    Schoellkopf N B and Patterson B A. Petroleum systems of offshore Cabinda, Angola.In: Mello M R and Katz B J, eds. Petroleum systems of South Atlantic margins: AmericanAssociation of Petroleum Geologists Memoir73,2007. p.361–376.
    Prensky S E. Advances in borehole imaging technology and applications in BoreholeImaging: Applications and Case Histories. Geological Society Special Publications,1999,159:1–43.
    Prilliman J, Bean C, Hashem M, et al. A comparison of wireline and LWD resistivityimages in the Gulf of Mexico: Transactions of the SPWLA Annual Logging Symposium,1997,38, DDD1-DDD11.
    Ricky Adi Wibowo. Using borehole image data and seismic inversion foridentification of fractures and reservoir, characterization of gas carbonate reservoir atmerbau field, south palembang basin, sumatra, indonesia.23rd World Gas Conference,Amsterdam,2006.
    Rider M. Image logs, chapter13: in The Geologic Interpretation of Well Logs,2ndedition. Houston: Gulf Publishing Company,1996. p.199-225.
    Riding R. Structure and composition of organic reefs and carbonate mud mounds;concepts and categories. Earth-Science Reviews,2002,58(1-2):163-231.
    Russell S D, Akbar M, Vissapragada B, et al. Rock types and permeability predictionfrom dipmeter and image logs; Shuaiba Reservoir (Aptian), Abu Dhabi. AAPG Bulletin,2002,86(10):1709–1732.
    Schlager, Wolfgang. Carbonate sedimentology and sequence stratigraphy: SEPMConcepts in Sedimentology and Paleontology#8, SEPM (Society for SedimentaryGeology), Tulsa,2005, p.200.
    Serra O. Formation microscanner image interpretation. Schlumberger EducationalService, Houston,1989,1-5.
    Standen E, Nurmi R, El-Wazeer F, et al. Quantitative applications of wellbore imagesto reservoir analysis. Transactions of the SPWLA Annual Logging Symposium,1993,34,EEE1–EEE15.
    Szabo E and Cioppa M T. Red River carbonates (Saskatchewan): Major facies,lithological, and spatial controls on rock magnetism–preliminary observations, in Summaryof Investigations2003, Volume1: Saskatchewan Geological Survey, SaskatchewanIndustry Resources, Misc. Rep.2003-4.1, CD-ROM, Paper A-2, p.9.
    Theodoridis S and Koutroumbas K. Pattern recognition (third edition). AcademicPress,2006,187–235.
    Tinker S W, Ehrets J R, and Brondos M D. Multiple karst events related tostratigraphic cyclicity: San Andres Formation, Yates field, West Texas. In: Budd D A,Saller A H, and Harris P M, eds. Unconformities and Porosity in Carbonate Strata: AAPGMemoir63. Tulsa: American Association of Petroleum Geologists,1995.
    Tinker S W, Caldwell D H, Cox D M, et al. Intetgrated reservoir Characterization of acarbonate ramp reservoir, South Dagger Draw Field, New Mexico: Seismic data are onlypart of the story. In: Eberli G P, Masaferro J L, and Sarg J F, eds. Seismic imaging ofcarbonate reservoirs and systems: AAPG Memoir81. Tulsa: American Association ofPetroleum Geologists,2004, p.91-105.
    Trevor Williams and Carlos Pirmez. FMS Images from carbonates of the BahamaBank Slope, ODP Leg166: Lithological identification and cyclo-stratigraphy, GeologicalSociety, London, Special Publications.1999, Vol.159:227-238.
    Tucker M E and Wright V P. Carbonate sedimentology. Blackwell Science,1990,482:460-485.
    Wilson J L and Jordan Clif. Middle shelf. In: Scholle P A, Bebout D G, and Moore, CH, eds. Carbonate Depositional Environments: AAPG Memoir33. Tusla: AmericanAssociation of Petroleum Geologists,1993, p.297-343.
    陈景山,王振宇,代宗仰,等.塔中地区中上奥陶统台地镶边体系分析.古地理学报,1999,1(2):8-17.
    陈明,许效松,万方,等.塔里木盆地柯坪地区中下奥陶统碳酸盐岩露头层序地层学研究.沉积学报,2004,22(1):110-116.
    陈文礼.塔中隆起东南部油气成藏条件及勘探方向分析.河南石油,2003,17(4):1-4.
    代宗仰,周翼,陈景山,等.塔中中上奥陶统礁、滩相储层的特征及评价.西南石油学院院报,2001,23(4):1-5.
    邓宏文,王红亮,祝永军,等.高分辨率层序地层学—原理及应用[M].北京:地质出版社,2002.
    邓宏文.美国层序地层学研究中的新学派—高分辨率层序地层学.石油天然气地质.1995,16(2):90-97.
    邓宏文,王洪亮,宁宁.沉积物体积分配原理—高分辨率层序地层学的理论基础.地学前缘,2000,7(4):305-313.
    杜耀斌,田纳新,王璞珺,等.新疆塔里木盆地塔中地区奥陶系古潜山型油气藏成藏条件,2005,24(2):161-167.
    高志前,攀太亮,焦志峰,等.塔里木盆地寒武-奥陶系碳酸盐岩台地样式及其沉积相应特征,沉积学报,2006,24(1):19-27.
    贾承造,魏国齐,姚慧君,等.塔里木盆地构造演化与区域构造地质[M].北京:石油工业出版社,1994.71-81.
    贾承造.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997.1-425.
    顾家裕.塔里木盆地沉积相与油气[M].北京:石油工业出版社,1993.128-172.
    顾家裕.塔里木盆地沉积层序特征及其演化[M].北京:石油工业出版社,1996.95~297.
    贾振远,蔡忠贤.古风化壳是碳酸盐岩一个重要的储集层(体)类型[J].地球科学,1995,20(3):283-289.
    姜在兴.沉积学[M].北京:石油工业出版社,2003.
    李军.塔里木盆地塔中地区含油气系统分析及区带评价[J].中国海上油气(地质),1998,12(6):377-380.
    李宇平,李新生,周翼,等.塔中地区中、上奥陶统沉积特征及沉积演化史[J].新疆石油地质,2006,21(3):133-137.
    梁狄刚,张水昌,张宝民,等.从塔里木盆地看中国海相生油问题.地学前缘,2000,7(4):534~547.
    刘洛夫,王伟力,姜振学,等.塔中地区奥陶系储层特征及其与油气聚集关系.中国矿业大学学报,2010,39(3):395-407.
    刘洛夫,李燕,王萍,等.塔里木盆地塔中地区I号断裂带上奥陶统良里塔格组储层类型及有利区带预测[J].古地理学报,2008,10(3):221-230.
    刘克奇.塔里木盆地塔中4油田成藏过程分析[J].新疆石油学院学报,2003,15(4):1-4.
    刘文,李永宏,张涛,等.塔河油田奥陶系碳酸盐岩沉积相及地层学研究.石油实验地质,2002,24(2):104-109.
    吕修祥,胡轩.塔里木盆地塔中低凸起油气聚集与分布[J].石油与天然气地质,1997,18(4):288-293.
    孔金平,刘效曾.塔里木盆地塔中5井下奥陶统隐藻类生物礁.新疆油地质,1998,19(3):221~224.
    马明侠,陈新军,张学恒.塔里木盆地塔中地区寒武-奥陶系沉积特征及构造控制[J].石油实验地质,2006,28(6):549-553.
    马玉春,王璞珺,田纳新,等.塔里木盆地塔中地区奥陶系古潜山的地质地球物理特征和控制因素[J].世界地质,2004,23(2):138-143.
    马永生,碳酸盐岩储层沉积学[M].北京:地质出版社,1999.1-364.
    梅冥相,马永生,周康,等.碳酸盐沉积学导论[M].北京:地质出版社,1997.1-306.
    宋惠珍,贾承造,欧阳建,等.裂缝性储集层研究理论与方法—塔里木盆地碳酸盐岩储集层裂缝预测[M].北京:石油工业出版社,1999.
    孙龙德.塔里木含油气盆地沉积学研究进展.沉积学报,2004,22(3):408-41.
    汤良杰.塔里木显生宙盆地演化主要阶段.地学前缘,1997,4(3-4):3l8-324.
    田纳新,徐国强,胡志方,等.塔中地区早海西期风化壳古地貌特征,河南石油,2004,18(1):1-3.
    田纳新,徐国强,李学永,等.塔中地区早海西期风化壳古岩溶控制因素分析.江汉石油学报,2004,26(2):61-63.
    魏国齐,贾承造.塔里木盆地塔中地区奥陶系构造-沉积模式与碳酸盐岩裂缝储层预测[J].沉积学报,2000,18(3):408-412.
    肖传桃,蒋维东,潘云唐.塔里小盆地轮南地区奥陶纪生物礁.中国区域地质,1996,4:330-334.
    谢晓安,吴奇之,卢华复.塔里木盐地古生带构造格架与沉积特征.沉积学报,1997,15(1):152—15.
    解晨,王保才.塔里木盆地塔中低隆起构造演化对油气藏的控制[J].大庆石油地质与开发,2003,22(2):4-6.
    闫晓芳,陈景阳.塔中地区奥陶系裂缝性碳酸盐岩储集层描述[J].新疆石油天然气2005,1(3):20-23.
    杨海军,邬光辉,韩剑发,等.塔里木盆地中央隆起带奥陶系碳酸盐岩台缘带油气富集特征[J].石油学报,2007,28(4):26-30.
    杨海军,刘胜,李宇平,等.塔中地区中—上奥陶统碳酸盐岩储集层特征分析[J].海相油气地质,2000,5(1-2):73-83.
    翟光明,王建军.对塔中地区石油地质条件的认识[J].石油学报,1999,20(4):1-6.
    志毅.塔罩小盆地各纪地层[M].北京:科学出版社,2001,39-80.
    张抗.塔河油田性质和塔里木碳酸盐岩油气勘探方向[J].石油学报,2001,22(4):1-6.
    周小进,范明,邱蕴玉.塔里木盆地塔中地区油气特征及成藏模式探讨[J].石油实验地质,1997,19(2):148-152.
    周新源,王招明,杨海军,等.塔中奥陶系大型凝析气田的勘探和发现[J].海相油气地质,2006,11(1):45-51.