动能攻坚战斗部对混凝土靶侵爆效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动能攻坚战斗部侵爆毁伤效应的研究是常规武器研制以及防护工程设计中的热点研究领域。高速深侵彻攻坚战斗部、纤维增强复合攻坚战斗部的侵彻性能以及侵爆破坏效应的研究,对新型攻坚武器研制及防护工程设计有着重要的意义和价值。
     本文采用理论分析、数值模拟及实验研究的方法,对所提出的新型攻坚战斗部在高速及中低速下侵彻混凝土靶的破坏效应、装药空爆威力及混凝土靶中的静爆破坏效应、纤维增强攻坚战斗部对混凝土结构侵爆破坏效应进行了综合分析,获得了攻坚战斗部侵彻混凝土弹靶破坏特性、战斗部壳体对爆炸毁伤效应的影响以及侵爆联合作用下混凝土结构破坏效应的规律,具体包括以下几个方面:
     (1)根据目前攻坚战斗部存在的问题以及当前军事需求,提出了高速深侵彻攻坚战斗部和纤维增强高装填比攻坚战斗部两种新型战斗部的研究思路。在对现有混凝土动态本构模型进行综合分析的基础上,建立了适合于侵彻与爆炸的本构模型。应用非线性动力学分析程序对纤维增强攻坚战斗部、高速深侵彻攻坚战斗部侵彻混凝土靶进行了数值模拟,分析了弹靶的破坏效应,从数值上验证了两种新型攻坚战斗部的侵彻能力。
     (2)基于理论分析和数值模拟,分别设计了带沟槽锥形攻坚战斗部和以纤维增强复合材料作为战斗部壳体的两种新型攻坚战斗部试验样弹。样弹设计突破了传统的圆柱型整体战斗部以及全金属壳体的模式。开展了中低速纤维增强攻坚战斗部、高速深侵彻攻击战斗部侵彻混凝土靶的试验方法和火炮次口径发射实验技术研究;分别取得了侵彻速度为300m/s~500m/s以及近1200m/s速度段的侵彻的试验结果。结合数值模拟对弹靶的变形破坏进行了分析。
     (3)通过应力波理论以及能量原理,考虑带壳装药爆炸物理力学过程,推导了带壳装药空爆威力理论公式,以及带壳装药在混凝土中爆炸破坏区域、能量分布的理论计算式。通过与本文设计的静爆试验以及数值模拟结果对比分析,表明理论公式的适用范围更广,并与实际情况更加吻合。
     (4)基于理论分析,分别对碳纤维壳体、钢壳体及裸装药三种试验件在空气中的爆炸威力、对靶体的驱动能力以及混凝土的爆炸毁伤效应进行了对比试验研究,获得了对战斗部爆炸超压分布及爆炸破片对周围目标破坏效应、装填比及装药壳体材料对混凝土靶毁伤效应的影响以及混凝土靶的爆炸成坑效应的认识。
     (5)在理论分析和实验研究的基础上,采用用AUTODYN程序对碳纤维壳体装药、钢质壳体装药以及裸装药在空气及混凝土靶体中爆炸破坏效应进行数值模拟。数值模拟与理论分析、试验结果相一致。
     (6)考虑非理想爆轰以及侵彻损伤的影响,提出了无量纲爆破压碎因子,获得了一个能更准确预估爆炸压碎区尺寸的公式。纤维增强攻坚战斗部对混凝土结构侵爆全过程的数值模拟结果与该公式预估一致。
     最后,对全文进行了总结,给出了主要结论,并对侵爆毁伤效应的进一步研究方向进行了展望。
     本文的研究成果具有普适性,为纤维增强高装填比攻坚战斗部和高速深侵彻攻坚战斗部进一步工程化研究及侵爆毁伤效应评估奠定了基础。特别是纤维增强攻坚战斗部及高速深侵彻钻地战斗部侵彻性能研究、战斗部壳体对爆炸毁伤效应的主要影响因素和规律的提出,具有重要实用价值。
The penetration and blasting damage for anti-hard-target warhead have become a hot topic in development of conventional weapon and design of defense engineering. It is of significant importance for development of new-concept warhead and design of defense engineering, including the studies of penetration efficiency and blasting-damage evaluation for high-speed deep-penetration anti-hard-target warhead and fiber reinforced composite one.
     The phenomena that may occur during the high-speed or mid-speed penetration of new-concept warhead penetrating concrete is synthetically analyzed, including the damage of the target, the efficiency of the loaded explosives, the quasi-static failure of concrete target and the efficiency of the fiber-reinforced composite warhead penetrating the concrete structure by theoretical analysis, numerical simulation and experimental research. The results obtained are damage characteristics of concrete target, the influence of the warhead shell for efficiency of blasting damage and the failure rules of concrete target by combination of penetration and blasting damage. And the details are listed below.
     (1) The concepts are advanced for high-speed deep-penetration anti-hard-target warhead and fiber reinforced high-backfill ratio one based on the present anti-hard-target warhead problems and the military need. A new constitutive model for concrete under penetration and explosion is established on foundation of synthetically analysis of present dynamic constitutive models of concrete. The numerical simulations, the high-speed deep-penetration warhead and the fiber reinforced one penetrating concrete target, are run by nonlinear dynamic program and the damage effects of warhead/target are analyzed. The penetration abilities of two new-concept warheads are verified by numerical simulation.
     (2) Two new-type sample projectiles, taper groove anti-hard-target warhead and fiber reinforced one, are designed based on theoretical analysis and numerical simulation. The sample projectile design breaks through conventional modes of warhead, i.e., cylinder shape and whole metal shell. It is studied experimentally on high-speed anti-hard-target warhead and fiber reinforced one penetrating concrete target at high speed or mid speed. The projectile is fired by artillery or sub-caliber propelling technique and the impact velocities obtained from tests are in the range of 300-500 m/s or nearly up to 1200 m/s. The deformation and failure characteristics of target are analyzed in combination of the numerical simulation results. Which confirms the feasibility of the concept of two new-type warhead and their penetration performances.
     (3) Deduce theoretical formulae, including the formula for the explosion of charge with shell in air and the one for damage area and energy distribution of charge with shell blasting in concrete target, in combination of the stress wave theory, energy principle and the blasting physical and mechanical behavior of charge with shell. Analysis indicates that the application domain for the theory formulae is more wide and the predictions of these theoretical formulae agree well with the results of tests and numerical simulations.
     (4) The comparison of three types of charges, i.e., the naked charge, the charge with composite material shell and the one with steel shell, are conducted based on theoretical analysis focusing on their explosion efficiencies in air, their drive abilities of the targets and the damage effects of concrete targets. Acquire the common sense such as the peak overpressure distribution and the damage effect of the blast fragments which may destroy the surrounding targets, the influence of the backfill ratio and the shell material of charge to the damage of concrete target and its blast tunish cavity.
     (5) Based on theoretical analysis and experimental results, the finite difference software AUTODYN is used for numerical simulation of the blast effect of three types of charges, i.e., the naked charge, the charge with composite material shell and the one with steel shell, exploding in concrete targets. And the simulation results are agreed with the theoretical analyses and the experimental results.
     (6) The dimensionless factor, i.e., the crush function,is deduced considering the influence of the non-ideal explosion and penetration damage, which gives more accurate prediction of the size of the crush area in target by explosion. The prediction of the theoretical formula is agreed with the numerical simulation result during the whole process of the fiber reinforced anti-hard-target warhead penetrating into concrete target.
     Finally, summarize this paper, listing some important conclusions deduced from this paper and several suggestions for future research in the penetration and blasting effect of target/warhead.
     It is universal for the achievements of this paper, which establishes the foundation of the further engineering application and evaluation of the penetration-blast damage effect for the fiber reinforced high-backfill ratio anti-hard-target warhead and high-speed deep-penetration one. Furthermore, it is of great importance for finding out the main factors and rules of the penetration efficiency verification, the influence of warhead shell for blast damage effect. That is to say that this paper is helpful in application.
引文
[1]何唐浦,杨翠欣.让地下堡垒面临威胁[J].万象奥秘.2005.
    [2]李晓军,张殿臣,李献清等.常规武器破坏效应与工程防护技术[M],总参工程兵三所.2001.
    [3]Goldsmith W.A Review:Non-ideal projectile impact on targets[J].International Journal of Impact Engineering,1999,22:95-395.
    [4]汤荣芳.攻击机场跑道的动能侵彻弹的关键技术[R]中国航天科技集团公司信息研究所,1999.51.
    [5]AFWL-TR74-10美国空军防护结构设计与分析手册.空军后勤工程设计局.2000.5
    [6]Drake J.L.,Twisdale L.A.,et al.Protective construction design manual[M].ESL-TR-87-57,Air Force Engineering Services Laboratory,Tyndall Air Force Base,Florida,November 1989.
    [7]Twisdale L.A.,Sues R.H.,Lavelle EM.,Reliablity-based analysis and design methods for reinforced concrete protective structures.Air Force Civil Engineering Support Agency.Tyndall Air Force Base,Florida,ESL-92-40,AD-A275499,1993.
    [8]Twisdale L.A.,Sues R.H.,Lavelle F.M.,Reliablity-based analysis and design methods for reinforced concrete protective structures.Air Force Civil Engineering Support Agency.Tyndall Air Force Base,Florida,ESL-92-40,AD-A275499,1993.
    [9]《常规武器防护设计原理》(TM5-855-1),方秦等译,中国人民解放军工程兵学院,1997.12.
    [10]《抗偶然爆炸结构设计手册》(TM5-1300),中国人民解放军总参工程兵科研三所,1998.10.
    [11]卢永刚.高强度纤维增强高装填比攻坚战斗部分析.第一次研讨会论文集.四川江油,2005.6
    [12]A New Generation of Munitions,S&TR.LLNL.July/August.2003,9.
    [13]Corbett G G,Reid SR,Johnson W.Impact loading of plates and shells by free-flying projectiles:A review[J].International Journal of Impact Engineering,1996(18):141-230.
    [14]M.J.Forrestal,D.J.Frew,J.P.Hickerson,T.A.Rohwer.Penetration of concrete targets with deceleration time measurements[J]International Journal of Impact Engineering,2003,28:479-497
    [15]Frew DJ,Forrestal MJ,Hanchak SJ.Penetration experiments with limestone targets andogive-nose steel projectiles.ASME J Appl Meeh 2000(5);67:84.
    [16]朱万成,赵启林,唐春安,等.混凝土断裂过程的力学模型与数值模拟[J].力学进展,2002,32:579-598.
    [17]D.J.Frewa,M.J.Forrestala,J.D.Cargile.The effect of concrete target diameter on projectile deceleration and penetration depth[J]International Journal of Impact Engineering.2006(32)1584-1594.
    [18]AUTODYN Users manual[M].California:Century Dynamics Corporation,2005.
    [19]LS-DYNA Theory Manual[M].California:Livermore Software Technology Corporation,1998.
    [20]Malvar L J,Crawford J.E,Wesevich J.W,et.al.Aplastieity concrete material model for DYNA3D[J].International Journal of Impact Engineering,1997,19(9):847-873.
    [21]宋顺成,才鸿年.弹丸侵彻混凝土的SPH算法[J].爆炸与冲击,2003,23(1):56-60.
    [22]宋顺成,才鸿年.模拟战斗部对混凝士侵彻与爆炸耦合作用的计算[J].弹道学报.2004.(16)4:23-28.
    [23]宋顺成;李国斌;才鸿年;王富耻.战斗部对混凝士先侵彻后爆轰的数值模拟[J].兵工学报2006.(27)2:230-234.
    [24]Campbell J,Vignjevic R,Libersky L D.A Contact Algorithm for Smoothed Particle Hydrodynamics[J].Comput Meth Appl Mech Eneng,2000,18:49.
    [25]Parshikov A N,Medin S A,Loukashenko I I,Milekhin V A.Improvements in SPH Method by Means of Interparticle Contact Algorithm and Analysis of Perforation Tests at Moderate Projectile Velocities[J].Int J Impact Eneng,2000,24:79.
    [26]隋树元,王树山.终点效应学[M],北京;国防工业出版社.2000.7
    [27]Henrcy J.The Dynamics of Explosive and its Use[M].Oxford;Elsevier Scientific Publishing Company.1999.7:1143-1152.
    [28]孙承伟,卫玉章,周之奎.应用爆轰物理[M],北京:国防工业出版社,2000.
    [29]胡金生,王安定,张想柏等.弹壳对化爆局部破坏作用影响的研究[C].中国土木工程学会防护工程分会第十次学术年会论文集.乌鲁木齐.2006.
    [30]曾亮,王伟力.钻地武器爆炸破坏作用中弹壳的影响[J].解放军理工大学学报2007,8(5):501-505
    [31]北京工业学院,爆炸及其作用(下)[M],北京:国防工业出版社,1979:266-267
    [32]张玉明等.带壳弹药触地爆炸效应分析[J]弹箭与制导学报,2001.21(4):56-59.
    [33]孙庆云.凝聚态爆炸危险源外壳对爆炸冲击波影响的研究[J]中国安全科学学报.2006.16(7):98-102
    [34]Josef Leppanen.Experiments and numerical analyses of blast and fragment impacts on concrete[J].International Journal of Impact Engineering.2005(31):843-860.
    [35]J.Leppanen,Fragment impact into concrete.Structure Under Shock and Impact.WIT Press.Southampton, Boston,2004:63-71.
    [36]JOOSEF LEPP(A|¨)NEN Dynamic Behaviors of Concrete Structures subjected to Blast and Fragment Impacts[D],G(o|¨)teborg,Sweden 2002.Licentiate Thesis.
    [37]Yong Lu,Kai Xu.Modeling of dynamic behaviour of concrete materials under blast loading.International Journal of Solids and Structures.2004(41) 131-143.
    [38]Morgan Johansson:Structural Behaviour in Concrete Frame Corners of Civil Defence Shelters[D].Publication.G(o|¨)teborg,March 2000.220-238.
    [39]Morgan Johansson:New Reinforcement Detailing in Concrete Frame Corners of Civil Shelters.Non-linear Finite Element Analyses and Experiments.Publication 96:1.G(o|¨)teborg,November 1996.(No.1106).Licentiate Thesis.
    [40]N.Gebbekn,M.ruppert,A New material model for concrete in high dynamic hydrocode simulations.Archive of applied mechanics 2000.7,463-478.
    [41]宗国庆,混凝土爆破效应研究[D],北京理工大学博士论文,1994.
    [42]卢文波.岩石爆破中应力波的传播及其效应研究[D].武汉水利电力大学.1994
    [43]戴俊.爆破动力学与爆破理论.北京:冶金工业出版社.2002.
    [44]李翼祺,马素贞.爆炸力学.北京:科学出版社,1992.417-422.
    [45]杨军,金乾坤,黄风雷.岩石爆破理论模型及数值计算[M].科学出版社,1999.
    [46]王占江.岩土中填实与空腔解耦爆炸的化爆模拟实验研究[D].国防科技大学博士论文,2004.
    [47]张宝玶等,爆轰物理学[M].兵器工业出版社.2004.7
    [48]李维新,数值模拟在常规武器中的应用[C],第一届全国计算爆炸力学会议,江西.南昌.2000:1-4.
    [49]Bischoff P.H.and Perry S.H.:Compressive behavior of concrete at high strain rates[J].Materials and Structures,1991(24):425-450.
    [50]MalvernLE.TangT.JenkinsDA.Dynamic compressive strength of cement material[A].Mindess.S.cement Based Society.1986.64:119-138.
    [51]Malvar L J,Crawford J.E,Wesevich J.W,et.al.Plasticity concrete material model for DYNA3D[J].International Journal of Impact Engineering,1997,19(9):847-873.
    [52]胡时胜,王道荣.冲击载荷下混凝土材料的动态本构关系[J].爆炸与冲击.2000.22(3):242-246.
    [53]郑全平,徐加先,胡金华等.混凝土材料本构模型综述.防护工程,2002.(3):1-9.
    [54]M.Y.H.Bangash.Impact and explosion:Structural analysis and design.Florida.1993:426-495.
    [55]Rossi P.and Toutlemonde F.Effect of loading rate on the tensile behaviors of concrete:Description of the physical mechanisms.Materials and Structures Constructions,1996.186(29):116-118.
    [56]CEB.Concrete structure under impact and impulsive loading.Synt hesis Report[R],Bulletin information,No.187,Committee Euro-International Du Beton,1988.
    [57]Kotsovos M D.Effect of testing techniques on the post ultimate behavior of concrete in compression [J].Materials Structure,1983,16(91):3-12.
    [58]Bischo P.H,Perry S.H.Impact behavior of plain concrete loaded in uniaxial compression[J].Journal of Engineering Mechanics,1995,121(6):685-693.
    [59]Tang T,Malvern L.E,Jenkins D.A.Rate effects in uniaxial dynamic compression of concrete[J].Journal of Engineering Mechanics,1992,118(1):108-124.
    [60]Rossi P.Strain rate effects in concrete structures:The LCPC experience[J].Materials Structure,1997,30:54-62.
    [61]Albertini C,Solomos G,Labibes K,et.al.Bixaial Hopkinson bar tensile testing of an ucleansteel[A]. Proceedings of International Conference on Fundamental Issuesand Applications of Shock wave and High Strain Rate Phenomena(EXPLOMET2000)[C].New York:Essevier,2001.
    [62]Park S W,XIAQ,ZHOUM.Dynamic behavior of concrete at high strain rates and pressuresⅡ:numerical simulation[J].International Journal of Impact Engineering,2001,25:887-910.
    [63]Malvern L E.TangT.JenkinsDA.Dynamic compressive strength of cement material[A].Mindess.S.cement Based Society.1986:119-138.
    [64]Holmquist T.J,Johnson G.R.A computational constitutive model for concrete subjected to largestrains,high strain rates,and high pressures[A].Michael J.M,Joseph E.B.14~(th) International Symposiumon Ballistics [C].Quebec,Canada:1993:591-600.
    [65]Rossi P.and Toutlemonde F.:Effect of loading rate on the tensile behaviour of concrete:Description of the physical mechanisms.Materials and Structures/Materiaux et Constructions,(29) Mars 1996:116-118.
    [66]Ross C.A.,Jerome D.M.,Tedesco J.W.and Hughes M.L:Moisture and strain rate effects on concrete strength.Aci Materials Journal,1996.93(3):293-300.
    [67]Georgin J F,Reynouard J.M.Modeling of structures subjected to impact:concrete behavior under high strain rate[J].Cement&Concrete Composites,2003,25:131-143.
    [68]Bazant Z.P.,Bishop F.C.and Chang T.P.(1986):Confined Compression Tests of Cement Paste and Concrete up to 300-ksi.Journal of the American Concrete Institute,1986.83(4):553-560.
    [69]Chert E P.Continuum Damage Mechanics Studies on the Dynamic Fracture of Concrete.Cement-Based Composites:Strain Rate Effects on Fracture[C].Materials Research Society Symposia Proceedings V64.Pennsylvania:Pittsburgh,1986.63-77
    [70]Tang T,Malvern L E,Jenkins D A.Rate effects in uniaxial dynamic compression of concrete[J].Engineering Mechanics,1992,118(1):108-124
    [71]Takeda J.,Tachikawa H.and Fujimoto K.:Mechanical behavior of concrete under higher rate loading than in static test.Proc.Mechanical Behaviour of Materials,1974:479-486.
    [72]Zielinski A.J.(1985):Concrete under biaxial loading:Static compression-impact tension.Stevin Report 5-85-1,Delft University of Technology
    [73]Al-Azawi,Z.M.The Response of Reinforced Concrete Slabs to Hard Missile Impact:[D].The City University,1990
    [74]胡时胜,王道荣,刘剑飞.混凝土材料动态力学性能的实验研究[J].工程力学,2001,18(5):115-118.
    [75]Meyer L W.Dynamic material behavior under biaxial loading[A].Staudhammer K P,Murr L E,Meyers M A,ed.Proceedings of International Conference on Fundamental Issues and Applications of Shockwave and high strain-rate Phenomena(EXPLOMET2000)[C].New York:Elsevier,2001.
    [76]闫东明,林皋.三向应力状态下混凝土动态强度和变形特性研究[J]工程力学.2007.24(3):58-64.
    [77]Malvar L J,Crawford J E,Wesevich J W,et al.plasticity concrete material model for DYNA3D[J].International Journal of Impact Engineering,1997,19(9):847-873.
    [78]Fujikake K,Mori K.Dynamic properties of concrete materials with high rates of tri-axial compressive loads[J].Structures and Materials,Structures under Shock and Impact Ⅵ,2000,8:511-522.
    [79]Candappa D C,Sanjayan J G,Setunge S.Complete triaxial stress-strain curves of high-strength concrete [J],Journal of Materials in Civil Engineering,2001,130):209-215.
    [80]Nielsen C V.Triaxial behavior of high-strength concrete and mortar[J].ACI Materials Journal,1998,95(2):144-151.
    [81]Taylor L M,Chen E P,Kuszmaul J S.Micro crack-Induced Damage Accumulation in Brittle Rock under Dynamic Loading[J].Journal of Computer Methods in Applied Mechanics and Engineering,1986,(55):301-320.
    [82]Chen E P.Continuum Damage Mechanics Studies on the Dynamic Fracture of Concrete.Cement Based Composites:Strain Rate Effects on Fracture[C].Materials Research Society Symposia Proceedings V64.Pennsylvania:Pittsburgh,1986:63-77.
    [83]Chen E P,Taylor L M.Fracture of Brittle Rock under Dynamic Loading Conditions[M].Fracture Mechanics of Ceramics,V78.New York:Plenum press,1986.175-186.
    [84]Chen E P.Simulation of Concrete Perforation Based on a Continuum Damage Model[R].1994
    [85]Ottosen N S.A failure criterion for concrete.[J]J of the Engineering Mechanics Division,1979,105:127-141.
    [86]陈书宇.一种混凝土损伤模型和数值方法.爆炸与冲击,1998.(18):349-357.
    [87]邓宏见.一种基于Ottosen四参数的混凝土本构模型[J].爆炸与冲击,1999.(22):541-547.
    [88]过镇海,王传志.多轴应力下混凝土的强度和破坏准则研究[J].土木工程学报,1991,24(3):1-14.
    [89]孙宇新.混凝土抗贯穿问题研究[D].合肥:中国科学技术大学,2002.
    [90]蒋昭镰,陈江瑛,黄德进,王礼立.混凝土结构动态安全分析的重要基础—混凝土动态力学性能[J].爆炸与冲击.2003.
    [91]Grady D E.Shock equation of state properties of concrete[A].Jones N,Brebbia C A,Watson A J,ed.Structures under Shock and Impact IV[M].Southampton Boston:Computational Mechanics Publications,1996:405-414.
    [92]王政,倪玉山,曹菊珍,张文.冲击载荷下混凝土动态力学性能研究进展[J]2005.25(6):519-527.
    [93]宁建国,刘海峰,商霖.强冲击荷载作用下混凝土材料动态力学特性及本构模型[J]中国科学.2008.38(6):759-772.
    [94]Grady D E.Impact compression properties of concrete[A].Merkle D H,ed.6~(th) International Symposium on Interaction of the Effects Munitions with Structures[C].Panama City,Florida:University of Florida,1993:173-175.
    [95]Grady D E,Kipp M E.Continuum Modeling of Explosive Fracture in Oil Shale[J].International Journal of Rock Mechanics and Mining Science,1980(17):147-157.
    [96]Taylor L M,Chen E P,Kuszmaul J S.Microcraek-Induced Damage Accumulation in Brittle Rock under Dynamic Loading[J].Journal of Computer Methods in Applied Mechanics and Engineering,1986,(55):301-320.
    [97]Chen E P.Simulation of Concrete Perforation Based on a Continuum Damage Model[R].1994.
    [98]Chen E P,Taylor L M.Fracture of Brittle Rock under Dynamic Loading Conditions[M].Fracture Mechanics of Ceramics,V78.New York:Plenum press,1986.175-186.
    [99]Heider N,Hiermaier S.Numerical Simulation of Tandem Warheads[A]//Iris Rose Crewther.19~(th) Int Symp on Ballistics[C].Interlaken,Switzerland:IBS2001 Symposium Office,2001:1493-1499.
    [100]Forrestal M J,Luk V K,Watts H A.Penetration of Reinforced Concrete with Ogive-Nose Penetrators [J].Int J Solids Structures,1988,24(1):77-87.
    [1]Backman M E,Goldsmith W.The mechanics of penetration of projectiles into targets[J].International Journal of Engineering Science,1978,16:1-99.
    [2]Brown S J.Energy release protection for pressurized systems-Part Ⅱ:Review of studies into impact terminal ballist[J].Applied Mechanics Reviews,1986,39:177-201.
    [3]Anderson C E Jr,Bodner S R.Ballistic impact:The status of analytical and numerical modeling [J].International Journal of Impact Engineering,1988,7:9-35.
    [4]Corbett G G,Reid SR,Johnson W.Impact loading of plates and shells by free-flying projectiles:A review [J].International Journal of Impact Engineering,1996(18):141-230.
    [5]Goldsmith W.A Review:Non-ideal projectile impact on targets[J].Int.J of I Engineering,1999,22:95-395.
    [6]钱伟长.穿甲力学[M].北京:国防工业出版社,1984.
    [7]Beth RA.Terminal ballistics on concrete.In:Effects of impact and explosions,1.National Defense Research Council Summary Technical Report Div.2(DDC File AD-221-586),1946:191-228.
    [8]Montgomery RS.Friction and wear at high sliding speeds.Wear 1976;36:275.
    [9]Klepaczko JR.Surface layer thermodynamics of steel penetrators at high and very high sliding velocities,Report AFRL-MN-TR-2002-7076.Air Force Research Laboratory,MunitionsDirectorate;2002.
    [10]Klepaczko JR.Thermodynamicsand kineticsof wear in KE penetrators.Internal Report,Graduate Engineering & Research Center,University of Florida,Shalimar,AFRL-MN Report,Eglin AFB,2003,
    [11]Forrestal M J,Frew D J,Hanchak S J,Brar N S.Penetration of grout and concrete targets with ogive-nose steel projectiles,Int J Impact Eng 1996;18:465.
    [13]Jones SE,Toness O.Normal penetration of semi-infinite targets by ogive-nose projectiles,including the effectsof blunting and erosion.In:Proceedings of the ASME PVP-421.New York:ASME;2001.53.
    [14]Jones SE,Toness OA.An estimate for mass loss from high velocity steel penetrators.In:Moody F J,editor.Proceedings of the ASME PVP-435.New York:ASME;2002.27-37.
    [15]Zukas JA,Nicholas T,Swift HF,Greszczuk LB,Curran DR.Impact dynamics.New York:Wiley;1982.
    [16]陈小伟等:细长尖头刚性弹对金属靶板的斜侵彻/穿甲分析[J].爆炸与冲击.2005.25(5):393-399.
    [17]J.R.Klepaczko,M.L.Hughes.Scaling of wear in kinetic energy penetrators[J].IJIE.2005.31.435-459
    [18]LS-DYNA Theory Manual[M].California:Livermore Software Technology Corporation,1998.
    [19]AUTODYN,Theory Manual,R6.1,Century Dynamics Inc.,2005.
    [20]AUTODYN Users manual[M].Califomia:Century Dynamics Corporation,2005.
    [21]Taylor L M,Chen E P,Kuszmaul J S.Microerack induced damage accumulation in brittle rock under dynamic loading[J].J of Computer Methods in Applied Mechanics and Engineering,1986,55(3):301-320.
    [22]Holmquist T J,Johnson Dr G R,Cook W H.A computational constitutive for concrete subjected to large strains,high strain rates and high pressure[C]Proc,of the 14~(th) Int.Symp on Ballistics.USA:1993,2:591-600.
    [23]Riedel W,Thoma K,Hiermaier S.Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]Pro.of the 9~(th) Int.Sym.on Interaction of the Effects of Munitions with Structures.Berlin:Norwegian Defense Construction Service,1999:315-322.
    [24]张震宇.弹丸对混凝土靶侵彻贯穿的连续损伤模型[J].爆炸与冲击,2003,23(增):67-68.
    [25]金乾坤.混凝土动态损伤与失效模型[J].兵工学报,2006,27(1):10-14.
    [26]曹菊珍,周淑荣,李恩征.材料的本构关系在数值计算中的作用[J].兵工学报,1998,19(1):69-72.
    [27]张凤国,李恩征.混凝土撞击损伤模型参数的确定方法[J].弹道学报,2001,13(4):12-16.
    [28]何光渝,高永利.常用数值算法集[M].北京:科学出版社,2002.
    [29]初哲.弹体非正侵彻混凝土研究[D].北京:北京理工大学,2006.
    [30]马爱娥,黄风雷;李金柱,武海军,钢筋混凝土抗贯穿数值模拟[J].爆炸与冲击,2007,27(2):103-107.
    [31]陈小伟,高海鹰,梁斌.高侵彻能力的先进钻地弹的结构分析[J].防护工程,2007,29(3):6-9.
    [32]J.R.Klepaczko,M.L.Hughes.Scaling of wear in kinetic energy penetrators[J].IJIE.2005,31.435-459
    [33]Rice,J.R.On the ductile enlargement of voids in triaxial stress fields.J.Mech.Phys.Solids 1969,210-217.
    [34]田宏伟,郭伟国.纤维增强复合材料动态拉伸实验研究[C].第五届全国爆炸力学实验技术会议论文集.西安.2008.10:46-53.
    [35]汤忠斌,郭伟国,李玉龙,徐绯,赵燕.碳纤维层合板动态拉伸与抗冲击性能研究[C].第五届全国爆炸力学实验技术会议论文集.西安.2008.10:282-287.
    [36]蒋帮海,张若棋.一种碳纤维织物增强复合材料的层间冲击拉伸力学性能实验研究[J].复合材料学报,2005,22(5):107-112.
    [37]王正浩.碳/环氧树脂复合材料应变率效应的实验研究[J].复合材料学报,2007,24(2):113-119.
    [38]彭刚,胡时胜.纤维增强复合材料高应变率拉伸实验技术研究[J],实验力学,2004,19(2):136-143.
    [39]邓杰,刘建超.用于RTM的高性能树脂基体极其碳纤维复合材料性能.[C]航天四院材料与工艺学术年会.2006.3:70-72.
    [40]D.J.Frewa,M.J.Forrestala,J.D.Cargileb.The effect of concrete target diameter on projectile deceleration and penetration depth[J]International Journal of Impact Engineering.2006(32):1584-1594.
    [1]王儒策.弹药工程[M].北京理工大学出版社.2002.12
    [2]Werner Goldsmith.Review Non-ideal projectile impact on targets[J].International Journal of Impact Engineering.1999(22):95-395.
    [3]随树元,王树山,终点效应学[M],北京:国防工业出版社.2000.7
    [4]A New Generation of Munitions,S&TR.LLNL.July/August.2003,9.
    [5]梁斌.弹丸对有界混凝土靶的侵彻研究[D].中国工程物理研究院研究生部.2004.
    [6]陈小伟.动能侵彻弹结构的力学分析Ⅰ:侵彻/穿甲理论和弹体壁厚分析.爆炸与冲击[J]2005.25(6).
    [7]陈小伟,金建明,动能侵彻弹结构的力学分析Ⅱ:弹靶相关力学分析和实例.爆炸与冲击[J]2006;26(1):71-78.
    [8]陈小伟,张方举,杨世全.动能深侵彻弹的力学设计 Ⅲ:缩比实验分析,爆炸与冲击[J]2006.26(2):105-114.
    [9]陈小伟,张方举,徐艾民,屈明.细长薄壁弹体的屈曲和靶体等效分析,爆炸与冲击,2007.27(4).
    [10]陈小伟,梁斌,高海鹰.高侵彻能力的高速深侵彻钻地弹的结构分析,防护工程,2007;29(3):6-9.中国土木工程学会防护工程分会第十次学术年会文集,2006.08,乌鲁木齐.
    [11]Chen XW and Li QM.Deep penetration of a non-deformable projectile with different geometrical characteristics.International Journal of Impact Engineering,2002;27(6):619-637.
    [12]Li QM and Chen XW.Dimensionless formulae for penetration depth of concrete target impacted by a Non-Deformable Projectile.Int.Journal of Impact Engineering.2003.28(1):93-116.
    [13]J.R.Klepaczko,M.L.Hughes.Scaling of wear in kinetic energy penetrators[J].International Journal of Impact Engineering.2005,31.435-459.
    [14]Erengil ME,Cargile D.J.Advanced Projectile Concept for High Speed Penetration of Concrete Targets.20~(th) International Symposium on Ballistics,Orlando,Florida,2002.9
    [1]卢永刚.高强度纤维增强高装填比攻坚战斗部研究分析.第一次研讨会论文集.江油,2005.6
    [2]高金石,张奇,爆破理论与爆破优化:西安地图出版社,1993,27-32
    [3]孙承伟,卫玉章,周之奎.应用爆轰物理[M],北京:国防工业出版社,2000:105-201
    [4]Edgar A.Cohen,Jr.New formulas for predicting the size distribution of warhead fragments[J],Mathematical Modeling,1998.2(1):19-32
    [5]王礼立,应力波基础[M],国防工业出版社,2005.
    [6]李夕兵,论岩体软弱结构面对应力波传播的影响[J].爆炸与冲击,1993,13(4):341-342.
    [7]王文龙,钻眼爆破,煤炭工业出版社[M],1984.
    [8]董海山,炸药及其相关物性[M],科学出版社,2005.
    [9]张奇,白春华,刘庆明等,不耦合装药爆炸作用下燃料近区分散[J].弹道学报,2000(2)
    [10]Henrcy J.The Dynamics of Explosive and its Use[M].Oxford:Elsevier Scientific Publishing Company.1999.7:1143-1152.
    [11]隋树元,王树山.终点效应学[M].国防工业出版社,2000.
    [12]Bischoff P.H.and Perry S.H.:Compressive behavior of concrete at high strain rates[J].Materials and Structures,1991(24):425-450.
    [13]Rossi P.and Toutlemonde F.Effect of loading rate on the tensile behaviors of concrete:Description of the physical mechanisms.Materials and Structures Constructions,1996.29(6):116-118.
    [1]李晓军,张殿臣,李献清等.常规武器破坏效应与工程防护技术[M],总参工程兵三所.2001.
    [2]孙承伟,卫玉章,周之奎.应用爆轰物理[M],北京:国防工业出版社,2000.
    [3]Henrcy J.The Dynamics of Explosive and its Use[M].Oxford:Elsevier Scientific Publishing Company.1999.7:1143-1152.
    [4]梁斌,陈忠富,卢永刚,杨世全.不同材料壳体装药对爆破威力影响分析.解放军理工大学学报(自然科学版).2007.30(5)
    [1]Josef Leppanen.Experiments and numerical analyses of blast and fragment impacts on concrete[J].International Journal of Impact Engineering.2005(31):843-860.
    [2]J.Leppanen,Fragment impact into concrete.Structure Under Shock and Impact.WIT Press.Southampton,Boston,2004:63-71.
    [3]JOOSEF LEPP(A|¨)NEN Dynamic Behaviors of Concrete Structures subjected to Blast and Fragment Impacts[D],G(o|¨)teborg,Sweden 2002.Licentiate Thesis.
    [4]Yong Lu,Kai Xu.Modeling of dynamic behaviour of concrete materials under blast loading.International Journal of Solids and Structures.2004(41)131-143.
    [5]Morgan Johansson:Structural Behaviour in Concrete Frame Corners of Civil Defence Shelters[D].Publication.G(o|¨)teborg,March 2000.220-238.
    [6]Morgan Johansson:New Reinforcement Detailing in Concrete Frame Corners of Civil Shelters.Non-linear Finite Element Analyses and Experiments.Publication 96:1.November 1996.Licentiate Thesis.
    [7]N.Gebbekn,M.ruppert,A New material model for concrete in high dynamic hydrocode simulations.Archive of applied mechanics 2000.7,463-478.
    [8]宗国庆,混凝土爆破效应研究[D],北京理工大学博士论文,1994.
    [9]卢文波.岩石爆破中应力波的传播及其效应研究[D].武汉水利电力大学.1994.
    [10]A New Generation of Munitions,S&TR Lawrence Livermore National Laboratory 2003,20-22
    [11]李晓军等编.常规武器设计原理与防护工程结构设计原理[M].总参工程兵三所,2001.
    [12]杨军,金乾坤,黄风雷.岩石爆破理论模型及数值计算[M].科学出版社,1999.
    [13]王占江.岩土中填实与空腔解耦爆炸的化爆模拟实验研究[D].国防科技大学博士论文,2004.
    [14]CEB.Concrete structure under impact and impulsive loading.Synthesis Report[R],Bulletin information,No.187,Committee Euro-International Du Beton,1988.
    [15]李维新,数值模拟在常规武器中的应用[C],第一届全国计算爆炸力学会议,江西.南昌.2000:1-4
    [16]M.Y.H.Bangash.Impact and explosion:Structural analysis and design.Florida.1993:426-495.
    [17]AUTODYN Manuals:AUTODYN Manuals,Version6.2,Century Dynamics,Inc.2006,USA.
    [18]董海山.炸药及相关物性[M].绵阳:《中国工程物理研究院科技丛书》编辑部出版.2005.2.
    [19]桂毓林.带尾翼的翻转型爆炸成形弹丸的三维数值模拟[J].爆炸与冲击.2005.4 313-318.
    [20]Holmquist T.J.A computational constitutive model for concrete subjected to largestrains,high strain rates,and high pressures[A].Michael J.M,Joseph E.B.14~(th) Int.Symp.Ballistics[C].Canada:1993:591-600.
    [21]Taylor L M,Chen E P,Kuszmaul J S.Microcrack-Induced Damage Accumulation in Brittle Rock under Dynamic Loading[J].J of Computer Methods in Applied Mechanics and Engineering,1986,(55):301-320.
    [22]孙承伟,卫玉章,周之奎.应用爆轰物理[M],北京:国防工业出版社,2000.
    [23]Li Ning.The numerical modeling of blast loading[C].In:Proc.Int.Symp.ACMIRME.Xian.1993:547-552
    [1]Kanchibotla S.Modelling fines in blast fragmentation and its impact on crushing and grinding.A Conference on Rock Breaking.Kalgoorlie,Australia,1999.37-44.
    [2]S.Esena,I.Onederraa,H.A.Bilginb,Modelling the size of the crushed zone around a blasthole.International Journal of Rock Mechanics & Mining Sciences 40(2003) 485-495
    [3]Bilgin HA,Patarge Project,Internal Report,Barutsan A.S.,Elmadag,Ankara,Turkey,1999.
    [4]Olsson M,Bergqvist I.Crack lengths from explosives in multiple hole blasting.Proceedings of the 5~(th) Int.Symposium on Rock Fragmentation by Blasting,Fragblast,MontreaI,Quebec,Canada,1996.87-91.
    [5]Whittaker B N,Singh R N,Sun G.Rock fracture mechanics principles,design and applications,Amsterdam:Elsevier,1992.44-45.
    [6]Il'yushin A.The mechanics of a continuous medium.Izd-vo MGU.vol.Ⅱ.Rotterdam:Balkema,1999.964-1009.
    [7]Szuladzinski G.Response of rock medium to explosive borehole pressure.Proceedings of the Fourth International Symposium on Rock Fragmentation by Blasting-Fragblast-4,Vienna.Austria.1993.17-23.
    [8]Djordjevic N.Two-component of blast fragmentation.Proceedings of the Sixth International Symposium on Rock Fragmentation by Blasting-Frag blast,Johannesburg,South Africa.1999.21-39.
    [9]J.亨利奇著,熊建国,江近仁,陆顺永,曹志远译,爆炸动力学及其应用[M],北京:科学出版社,1987
    [10]S.Esena,I.Onederraa,H.A.Biiginb,Modelling the size of the crushed zone around a blasthole.International Journal of Rock Mechanics & Mining Sciences 40(2003) 485-495
    [11]Mohanty B,Prasad U.Degree of rock fragmentation under high swain rates.Proceedings of the 27~(th)Annual Conference on Explosives and Blasting Technique,vol.2.Orlando,FL,USA:ISEE,2001.89-95.
    [12]孙承伟,卫玉章,周之奎.应用爆轰物理[M],北京:国防工业出版社,2000.