呼伦贝尔草原不同植物群落牧草青贮特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解呼伦贝尔草原牧草青贮特性,于2010~2011年先后在呼伦贝尔市的海拉尔、牙克石、根河、额尔古纳、满洲里、陈巴尔虎旗、新巴尔虎右旗、新巴尔虎左旗和鄂温克自治旗等9个地方,共采集了32个站点(群落)牧草材料,包含19科98种牧草。以不同植物群落牧草为材料,进行了青贮微生物、营养成分及发酵品质等方面的研究,主要结论如下:
     1、青贮原料及青贮体系中微生物的种类、数量均存在较大差异。青贮原料上附生的乳酸菌数量(10~2~10~7cfu/g FM)远远少于有害微生物数量。不同青贮原料间各类微生物数量变异程度大小顺序为乳酸菌>大肠杆菌>好氧细菌>酵母与霉菌。青贮饲料中乳酸菌数量为10~4~10~8cfu/gFM,大肠杆菌只存在于8个群落牧草青贮中。
     2、从青贮原料及青贮饲料中共分离出133株乳酸菌,分别属于8个属的植物乳杆菌、类植物乳杆菌、短乳杆菌、旧金山乳杆菌、L.saniviri、干酪乳杆菌、草乳杆菌、绿色魏斯氏菌、融合魏斯氏菌、赫伦魏斯氏菌、印度微小杆菌、广布肉杆菌、戊糖片球菌、乳酸片球菌、柠檬明串珠菌、肠膜明串珠菌肠膜亚种、乳酸乳球菌乳酸亚种、乳酸乳球菌、硫黄肠球菌、粪肠球菌、白蚁肠球菌、摩拉维亚肠球菌、鹑鸡肠球菌、淡黄肠球菌、蒙氏肠球菌、希氏肠球菌、耐久肠球菌和屎肠球菌等28个菌种,其中,植物乳杆菌、短乳杆菌、戊糖片球菌、乳酸片球菌和粪肠球菌的比例较大。另外,菌株DMB23和DME65属于乳杆菌属,DMA37属于乳球菌属,但此3株乳酸菌未能鉴定到种水平。
     3、筛选出8株产酸速率较快的乳酸菌;DMC80、DMG5、DMB25、DMB28、DMH20、DMA22、DMF14和DME14。其中,菌株DMC80、DMG5和DMH20的产酸速率和生长速度较快。
     4、牧草含水量为60~73%时,青贮营养品质较好。青贮后牧草干物质损失率为7.94~15.44%,可溶性碳水化合物分解率为41.65~64.20%。
     5、32份青贮饲料感官评定得分为41~78分,可划分出3个等级:优等(2份),一般(3份),良好(27份);有机酸含量评定得分为16~100分,将青贮质量划分为4个等级:很好(16份),好(8份),合格(7份),失败(1份)。青贮有机酸含量得分越高,其pH值表现越低;氨态氮含量评定得分为13~50分,可划分为4个等级:优(11份)、良好(13份)、一般(6份)、可(2份);pH值与乙酸、丁酸和氨态氮含量呈极显著正相关,乳酸含量与氨态氮含量呈极显著负相关,WSC含量与CP含量呈极显著负相关(P<0.01),乙酸与氨态氮含量呈显著正相关(P<0.05)。
     6、不同群落牧草青贮营养品质综合评价所得结论与有机酸含量评定结果基本一致,以羊草为主的群落(第22号)牧草青贮营养品质较好,而为以山野豌豆为主的群落(第3号)牧草青贮营养品质相对较差。以禾草为主的群落牧草青贮成功率为94%以上,以豆科牧草为主的群落牧草青贮成功率为90%。
To learn the silage features of hulunbuir prairie grass, a total of32forage materials were collected from9places (Hailaer, Yakeshi, Genhe, Eerguna, Manzhouli, Old Barag Banner, New Barag Right Banner,New Barag Left Banner and Ewenkezizhiqi), including19families and98species. The different plantcommunities grass in hulunbuir prairie were chosen to determine the characteristics of silagemicroorganisms and fermentation quality, and main conclusions are as follows:
     1. The number and species of microorganism on the raw materials and in silage varied intensely.Counts (10~2~10~7cfu/g FM) of adnascent lactic acid bacteria on silage materials were too much lessthan that of harmful microorganisms. The descending order of variation of microorganism countsamong different silage materials was lactic acid bacteria, coliform bacteria, aerobic bacteria, yeast andmold. The number of lactic acid bacteria was from10~4to10~8cfu/g FM, but coliform bacteria wasdetected only in eight silages..
     2. One hundred and thirty-three lactic acid bacteria strains were isolated from silage materials andsilage. These strains belonged to twenty-eight species of eight genuses, including L. plantarum, L.paraplantarum, L. brevis, L. sanfranciscensis, L. saniviri, L. casei, L. graminis, W. viridescens, W.confusa, W. hellenica, Exiguobacterium indicum, Carnobacterium divergens, P. pentosaceus, P.acidilactici, Le. citreum, Le. mesenteroides subsp. mesenteroides, L. lactis subsp. lactis, L. lactis, E.sulfurous, E. faecalis, E. termites, E. moraviensis, E. gallinarum, E. pallens, E. mundtii, Enterococcushirae, E. durans and E. faecium, and number of L. plantarum, L. brevis, P. pentosaceus, P. Acidilacticiand E. faecalis was significant. In addition, strains DMB23and DME65belonged to Lactobacillus, thestrain DMA37belonged to Lactococcus, but these three lactic acid bacteria were not identified tospecies level.
     3. Eight lactic acid bacteria strains DMC80、DMG5、DMB25、DMB28、DMH20、DMA22、DMF14and DME14were screened for their quicker acid-production rate, and L. plantarum DMC80, L.paraplantarum DMG5and L.saniviri DMH20had more quicker acid-production rate and growthspeed than other strains.
     4. The silage nutrient quality can be better when its moisture content was from65%to70%. Afterensilage, the dry matter loss rate was from7.94%to15.44%, and the decomposition rate of watersoluble carbohydrates was from41.65%to64.20%.
     5. The sensory evaluation score of silage was from41to78points, and can be divided into threelevels: excellent (including two materials), good (including twenty-seven materials) and moderate(including three materials). The score of organic acid content was from16to100points, and the silagequality was divided into four grades: high(including sixteen materials), good (including eight materials),qualified(including seven materials) and failed(including only one material). The higher score oforganic acid content in silage was, the lower pH value was. The evaluation score of ammonia nitrogencontent was from13to50points, and can be divided into four grades: high (including eleven materials),good (including thirteen materials), general (including six materials) and passably (including two materials). The pH value showed a highly significant positive correlation with acetic acid, butyric acid,and ammonia nitrogen content (P<0.01). There was a highly significant negative correlation betweenlactic acid content and ammonia nitrogen content, so was water soluble carbohydrates content and crudeprotein content (P<0.01). There was a significant positive correlation between acetic acid and ammonianitrogen content(P<0.05).
     6. The results of comprehensive evaluation about nutritional quality of silage from different grasscommunities were similar to the evaluation of organic acid content. The nutritional quality was better ingrass silage of L. chinensis dominated communities (No.22), with higher lactic acid content and lowerpH value, no butyric acid and higher WSC contents. But the nutritional quality was relatively poor ingrass silage of Vicia amoena dominated communities (No.3). More than94%of grass silage fromgramineae herbage dominated communities can be successful, and90%of grass silage from leguminousherbage dominated communities can succeed.
引文
1.奥德,王志铭,王庆基,田文军.豆科牧草沙打旺低水分青贮的调制[J].内蒙古畜牧科学,1997:307-309.
    2.北京农业大学.草地学[J].北京:中国农业出版社,1982:143-151.
    3.卜登攀,崔慰贤.苜蓿干草的田间调制[J].宁夏农学院学报,2001,22(3):65-70.
    4.曹晔,杨玉东.论中国草地资源的现状、原因与持续利用对策[J].草业科学,1999,16(4):1-6.
    5.蔡义民,熊井清雄,廖芷,等.乳酸菌剂对青贮饲料发酵品质的改善效果[J].中国农业科学,1995,28(2):73-82.
    6.陈艳.中国草地类型分布的地理条件特点及其存在的问题和开发的潜力[J].西昌师专学报,1996,(2):70-72.
    7.陈佐忠.我天然草地生态系统的退化及其调控.中国土地退化防治研究[M].北京:中国科技出版社,1998:86-92.
    8.董志国.优质苜蓿青贮饲料调制技术研究[D].乌鲁木齐:新疆农业大学,2005.
    9.杜连祥.工业微生物试验技术[M].天津:科学技术出版社,1992:10-13.
    10.冯鹏,孙启忠.不同比例玉米与沙打旺混贮营养成分及有毒有害物质分析[J].畜牧兽医学报,2011,42(9):1264-1270.
    11.甘肃农业大学.草原学[M].北京:农业出版社,1961:9-13.
    12.高彩霞,王培,高振生.苜蓿打捆前的含水量对营养价值和产草量的影响[J].草地学报,1997,(1):27-32.
    13.巩月民,曹桂玲.影响干草品质的因素及其贮藏方法[J].养殖技术顾问,2009:33.
    14.顾雪莹,玉柱,郭艳萍,等.白花草木樨与燕麦混合青贮的研究[J].草业科学,2011,28(1):152-156.
    15.郭江泽.苜蓿青干草在调制和贮藏过程中的质量变化规律研究[D].郑州:河南农业大学,2009
    16.海龙,于艳萍,包玉杰,宋立业.青干草的调制方法[J].草原与饲料,2006,29-30.
    17.韩明通.西藏地区紫花苜蓿和多年生黑麦草干草调制与贮藏技术的研究[D].南京:南京农业大学,2011.
    18.黄文秀.农业自然资源[M].北京:科学出版社,1998:5-11.
    19.霍成君,韩建国,洪绂曾,武宝成,李显瑞.刈割期和留茬高度对新麦草产量及品质的影响[J].草地学报,2000,8(4):319-327.
    20.贾慎修.中国草地的类型、分布和改良[C].第十四届国际草地会议论文集[A].1981::365-368.
    21.《贾慎修文集》编辑委员会.贾慎修文集[M].北京:中国农业大学出版社,2002:11-15.
    22. Лавренко Е М.苏联的草原[M](祝廷成等,译).北京:科学出版社,1940:3-15.
    23.李博,曾泗第,郝广勇.内蒙古呼伦贝尔盟草原区羊草、丛生禾草群落水分生态的初步研究[J].植物生态学与地植物学丛刊.1964,2(1):70-80.
    24.李博.内蒙古地带性植被的基本类型及其生态地理规律[J].内蒙古大学学报(自然科学),1962,(2):41-74.
    25.李博.我国草地资源现状及其管理对策[J].大自然探索,1997a,16(1):12-14.
    26.李博.我国草原生物多样性保护、草地生物多样性保护研究[M].呼和浩特:内蒙古大学出版社,1995:2-14.
    27.李博.中国北方草地退化及其防治对策[J].中国农业科学,1997b,30(4):1-9.
    28.李长春.混合天然牧草青贮最适宜条件筛选研究[D].呼和浩特:内蒙古农业大学,2008.
    29.李海.典型草原天然牧草青贮技术研究[D].呼和浩特:内蒙古农业大学,2008.
    30.李鸿祥,韩建国,吴宝称.收获期和调制方法对草木樨干草产量和质量的影响[J].草地学报,1999,(7):271-276.
    31.李建东.松嫩平原羊草群系的分类[C].东北西部草原学术会议论文集[A],1964:32-37.
    32.李丽萍.科学调制青干草促进草业发展[J].饲料工业,2001,22(5):31-32.
    33.李晓芳.全国牧草种质资源保护与利用构想[J].中国草地,2000,(5):74-75.
    34.李志丹,王文强,陈志权,白昌军.不同刈割周期、留茬高度对4种柱花草属牧草产量的影响[J].热带农业工程,2009,33(3):10-13.
    35.李志勇,宁布,杨晓东,赵景锋.内蒙古牧草种质资源的收集保存[J].内蒙古草业,2004,16(3):1-2.
    36.刘建新.青贮饲料质量评定标准(试行)[J].中国饲料,1996,21:5-7.
    37.刘淑新,朱若蝉.收获与调制过程对干草品质的影响[J].现代畜牧兽医2011:46-47.
    38.刘洋,黄涛,张鹤山,田宏,蔡化.我国牧草种质资源多样性的保护及利用[J].牧草与饲料,2008,(3):34-36.
    39.刘振宇.紫花苜蓿合理收获及晒制打捆技术[J].当代畜牧,2001,(4):23.
    40.刘钟令.内蒙古草原区植被概貌[J].内蒙古大学学报(自然科学),1960,(2):47-74.
    41.卢小良,蒲英远,陈荣珍,谢渭彬,谢晓雨.干燥和贮存对株花草叶黄素和胡萝卜素的影响[J].草地学报,2001,9(1):39-43.
    42.孟林,高洪文.中国退化草地现状及其恢复方略[C].现代草业科学进展—中国国际草业发展大会暨中国草原学会第六届代表大会论文集[A].2002:304-307.
    43.曲宪军.世界青贮饲料技术的进展[J].内蒙古草业,2006,18(3):1-2.
    44.苏加楷.加强牧草种质资源保护的建议[C].中国草业可持续发展战略论坛论文集[A].2004:350-353.
    45.孙京魁.刈割期和晒制方法对苜蓿青干草粗蛋白和粗纤维含量的影响[J].草原与草坪,2000,(2):26-28.
    46.汪志铮.奶牛优质青干草的调制与饲喂技术[J].草业与畜牧,2010,(2):54-55.
    47.王波,王春媛,王世珍.浅谈牧草的收刈及调制与贮藏[J].草原与饲料,2005,(9):24-26.
    48.王德利,杨利民.草地生态与管理利用[M].北京:化学工业出版社,2004:128-134.
    49.王栋.草原管理学[M].南京:畜牧兽医图书出版社,1955:21-29.
    50.王根旺.紫花苜蓿干草调制过程营养物质变化规律及干草调制技术[J].甘肃农业,2005,(2):93-94.
    51.夏红梅.影响甜菜块根产量及含糖量的因素[J].中国甜菜糖业,2001,(3):39-41.
    52.鲜秀梅,马文涛.高寒阴湿地区大然牧草青贮技术初探[J].当代畜牧,2005,(1):39-41.
    53.徐柱.面向21世纪的中国草地资源[J].中国草地,1998,(5):1-8.
    54.许庆芳,王保平,董宽虎,玉柱,孙启忠.淋雨对苜蓿干草品质的影响[J].草地学报,2010,18(6):848-853.
    55.薛艳林,聂明达,白春生,玉柱.苜蓿草渣与小麦秸混贮发酵品质的研究[J].中国饲料,2008,(2):42-44.
    56.杨杨.西藏地区藏蒿草附生乳酸菌的分离、鉴定及理化特性研究[D].兰州:兰州大学,2012.
    57.杨耀胜.不同调制方式对苜蓿干草品质的影响[D].郑州:河南农业大学,2009.
    58.杨志忠,艾克拜尔,丁敏,雷志刚.苜蓿干草调制晾晒时间与水分损失规律的研究[J].草食家畜,2005,(4):60-61.
    59.玉柱,陈燕,孙启忠.不同添加剂对白三叶青贮发酵品质与体外消化率的影响[J].中国农业科技导报,2009,11(4):133-138.
    60.玉柱.牧草青贮技术研究[D].北京:中国农业大学,2002.
    61.张大伟,陈林海,朱海霞,王宁.青贮饲料中主要微生物对青贮品质的影响[J].饲料研究,2007a,(3):65-68.
    62.张大伟.乳酸菌的分离鉴定及其在玉米秸秆青贮中的应用[D].郑州:郑州大学,2007b.
    63.张刚.乳酸细菌—基础、技术和应用[M].北京:化学工业出版社,2006:11.
    64.张桂国,谢武华,张清林.干草加工调制的意义及技术[J].饲料博览,2005,(9):31-33.
    65.张国立,贾纯良,杨维山.青贮饲料的发展历史、现状及其趋势[J].饲料与营养,1996:19-21.
    66.张和平.自然发酵乳制品中乳酸菌生物多样性[M].北京:科学出版社,2012:2-7.
    67.张涛,崔宗均,李建平等.不同发酵类型青贮菌制剂对青贮发酵的影响[J].草业学报,2004,(3):67-71.
    68.张秀芬.饲草料加工与贮藏[M].北京:农业出版社,1992:15-58.
    69.张跃林.提高青贮饲料转化利用率的技术要点[J].畜牧与饲料科学,2006,(6):93-94.
    70.章祖同.草地资源研究[M].呼和浩特:内蒙古大学出版社,2004:1-3.
    71.郑伟.玉米青贮技术的研究[J].饲料博览,1994,(3):14-16.
    72.中国科学院内蒙古宁夏综合考察队.内蒙古植被[M].北京:科学出版社,1985:447-474.
    73.中国科学院内蒙古宁夏综合考察队.新疆植被及其改造利用[M].北京:科学出版社,1978:7-11.
    74.中国植被编辑委员会.中国植被[M].北京:科学出版社,1995:505-511.
    75.周德宝.青贮饲料的研究、发展及现状[J].氨基酸和生物资源,2004,26(2):32-34.
    76.朱莹莹.青贮饲料新工艺的研究[D].哈尔滨:黑龙江大学,2011.
    77.祝廷成.概论我国东北的主要草原[J].东北师范大学科学集刊,1958,(1):98-116.
    78. Alli I. The effect of molasses on the fermentation of chopped whole-plant maize andLucerne[J]. Journal of the Science of Food and Agriculture,1984,35(3):285-289.
    79. Ashbell G, Weinberg Z G, Hen Y, Filya I. The effects of temperature on the aerobic stabilityof wheat and corn silages[J]. Journal of Industrial Microbiology&Biotechnology,2002,28:261-263.
    80. Baele M, Vancanneyt M, Devriese L A. Lactobacillus ingluviei spp. nov., isolated from theintestinal tract of pigeons[J].International Journal of Systematic and EvolutionaryMicrobiology,2003,(53):133-136.
    81. Bnchanan R B, Gibbons N E. Bergey's Manual of Determinative Bacteriology8th ED[J].Williams and Wilkins CO.Baltimore.1974:298-307.
    82. Brown W F, Pate F M. Concentration and degradation of nitrogen fractions in selectedprotein feeds[J]. Journal Dairy Science,1995,73(1):36.
    83. Buckmaster D R. Alfalfa raking losses as measured on artificial stubble[J]. Transactions ofthe Amarican Society of Agricultural Engineers,1993,36:645-651.
    84. Cai Y, Benno Y, Ogawa M, Ohmomo S. Influence of Lactobacillus spp. from an inoculantand of weissella and Leuconostoc spp. from forage crops on silage fermentation[J]. Appliedand Environmental Microbiology,1998,64:2982-2987.
    85. Cai Y. Identification and Characterization of Enterococcus Species Isolated from ForageCrops and Their Influence on Silage Fermentation [J].Journal Dairy Science,1999,82:2466–2471.
    86. Cai Y., Kumai S. The proportion of lactate isomers in farm silage and the influence ofinoculation with lactic acid bacteria on the proportion of L-lactate in silage[J]. JapaneseJournal of Zootechny Science,1994,65:14~21.
    87. Charmley E. Intake, live weight gain and feed preference by steers fed combinations oflucerne and Westerwolds ryegrass silages[J] Grass and forage science: the journal of theBritish Grassland Society,2002,57(1):11-18.
    88. Coblentz W K, Fritz J O, Bolsen K K. Quality Changes in Alfalfa Hay During Storage inBales[J]. Journal Dairy Science,1996,79:873-885.
    89. Collins M T, Taylor H. Quality changes of late summer and autumn produced alfalfa and redclover [J]. Agronomy Journal.1984,76:409-415.
    90. Cussen R.F., Merry R.J., Williams A.P., et al. The effect of additives on the ensilage offorage of differing perennial ryegrass and white clover content[J]. Grass and Forage Science,1995,50(3):249~258.
    91. David M, Stevenson, Richard E. Use of real time PCR to determine population profiles ofindividual species of lactic acid bacteria in alfalfa silage and stored corn stover[J].ApplMicrobiol Biotechnol,2006,71:329–338.
    92. Davies D.R., Merry R.J., Williams A.P., et al. Proteolysis during ensilage of forages varyingin soluble sugar content[J]. Journal of Dairy Science,1998,81(2):444~453.
    93. Deaschel M A, Andersson R E, Fleming H P. Microbial ecology of fermenting plantmaterials[J]. FEMS Microbiology Reviews,1987,46:357-367.
    94. Driehuis F, Elferink S J, Spoelstra S F. Anaerobic lactic acid degradation during ensilage ofwhole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improvesaerobic stability[J]. Journal of Applied Microbiology,1999,87(4):583-594.
    95. Driehuis F, Oude Elferink S J W H, Van Wikselaar P G. Fermentation characteristics andaerobic stability of grass silage inoculated with Lactobacillus buchneri,with or withoutHomofermentative lactic acid bacteria[J]. Grass and Forage Science,2001,56(4):330-343.
    96. Ely L O, Moon N J, Sudweeks E M. Chemical evaluation of lactobacillus addition to alfalfa,corn, sorghum and wheat forage at ensiling [J]. Journal of Dairy Science,1982,65:1021-1026.
    97. Fonnesbeck P V. Estimating yield and nutrient losses due to rainfall on field-drying alfalfahay[J]. Animal Feed Science and Technology,1986,16(1):7-15.
    98. Gordon F J. Improving the feeding value of silage through biological control[A]. Prceedingsof the Alltech European Lecture Tour [C]. Birmingham, Alltech U K,1992:2-17.
    99. Guimaraes J R, Goncalves L C, Rodrigues J A S, at al. Dry matter, crudeprotein, ammoniacal nitrogen and pH of three pearl millet genotypes silages [Pennisetumglaucum (L). R. Br.] in different fermentation periods[J]. Revista Brasileirade Milhoe Sorgo,2005,4(2):251-258.
    100. Haigh P.M., Chapple D.G., Powell T.L. Effects of silage additives on big-bale grass silage[J].Grass and Forage Science,1996,51(3):318~323.
    101. Hlodversson R, Kaspersson A. Nutrient losses during deterioration of hay in relation tochanges in biochemical composition and microbial growth[J]. Animal Feed ScienceTechnology,1986,15:149.
    102. Johnson D G, Otterby D E, Lundquist R G. Yield and quality of alfalfa as affected byharvesting and storage methods[J]. Journal Dairy Science,1984,67:2475–2480.
    103. Johnson L, Harrison J H, Hunt C, et al. Nutritive value of corn silage as affceted by maturityand mechanical Processing: a contemporary review[J]. Journal of Dairy Science.1999,82(12):2813-2825.
    104. Jones C M, Heinriehs A J, Roth G W, Ishier V A. From harvest to feed: understanding silagemanagement [J].College of Agricultural Sciences Agricultural Researeh and CooperativeExtension,2004:1-34.
    105. Луговедения A, Дмитриев M. Луговодств С Основами (草原基础概论)[M].1948:36-43.
    106. Koch G, Morvarid A, Kirchgessner M. The influence of micro-organisms of Corn on thestability of silage[J]. Wirtschaftseigene Futter, l973,19:15-21.
    107. Koehler L H. Differentiation of carbohydrate by anthrone reaction rate and colour intensity[J].Analytical Chemistry,1952,24:1576-1579.
    108. Kung J, Ranjit N K. The effect of Lactobacillus buchneri and other additives on thefermentation and aerobic stabiliry of barley silage [J].Journal of Dairy Science,2001,84(5):1149-1155.
    109. Langston C W, Bouma C. A study of the microorganism of grass silage II. The lactobacilli[J].Applied Mirobiology,1960,8(4):223-234.
    110. Lin C. Epithytic microflora on alfalfa and corn, Lactic acid bacteria succession during thepre-ensiling and ensiling periods, and the effect of additives on microbial succession andsilage fermentation[D]. Manhattan: Kansas State University,1992.
    111. Lindgren, Pettersson K O, Jonsson A, et al. Silage inoculation. Selected strains, temperatures,wilting and practical application [J]. Swedish Journal of Agricultural Research,1985,15:9-18.
    112. Lioveras J, Ferran J, Alvarez A. Harvest management effects on alfalfa production andquality in Mediterranean regions[J]. Grass and Forage Science,1998,53(1):88-92.
    113. McDonald D, Henderson A R. Determination of water-soluble Carbohydrates in grass[J].Journal of the Science of Food and Agriculture,1964,15:395-398.
    114. McDonald P A. The Biochemistry of silage(2th ed)[M]. Chalcombe publication,1991:46-49.
    115. McDonald P A, Henderson R, Heron S J E. The Biochemistry of Silage[M]. Kingston:Chalcombe Publications,1999:41-49.
    116. Muck R.E. O'Kiely P. Aerobic deterioration of lucerne (Medicago sativa) and maize (Zeamais) silages effects of fermentation products [J]. Journal of the science of food andagriculture,1992,59(2):145-149.
    117. Muck R E. Initial bacterial numbers on Lucerne prior to ensiling[J]. Grass and ForageScience,1989,44(1):19-25.
    118. Nadeau E M G, Russell J R, Buxton D R. Intake, digestility, and composition of orchardgrassand alfalfa silage treated with cellulase, inoculant, and formic acid fed to lambs[J]. AmericanSociety of Animal Science,2000,78(11):2980-2989.
    119. Naoki N, Senji U. Labotatory evalutation of previously fermented juice as a fermentationstimulant for Lucerne silage[J].Sci.Food Agric.1999,79:1285-1288.
    120. Narasimhlau P, Kunelius T, McRae K B. Chemical and mechanical conditioning for fielddrying of Trifolium pratense [J]. Canadian Journal of plant science,1992,72:1193-1198.
    121. Pahlow G, Muck R E. Microbiology of ensiling [M]. USA Madison: ASAI. CSSAI. SSSAI,2003a:31-94.
    122. Pahlow G., Muck R.E., Driehuis F., et al. Microbiology of ensiling. In: Buxton D.R., MuckR.E., Harrison J.H. Silage science and technology[C]. Madison: American Society ofAgronomy, Crop Science Society of America, Soil Science Society of America,2003b.
    123. Patil R T, Sokhansanj S, Arinze E A. Methods of expediting drying rates of choppedalfalfa[J]. Transactions of the Amarican Society of Agricultural Engineers,1993,36(6):1799-1803.
    124. Pitt R E, Muck R E and l eibensperger R Y, A quantitative model of the ensilage prodess inlactate silages[J]. Grass and Forage Science,1985,(40):279-303.
    125. Playne M J, McDonald P. The buffering constituents of herbage and silage[J]. Journal of theScience of Food Agriculture,1966,17(6):264-268.
    126. Rotz C A, Abrams S M, Davis R J. Alfalfa drying, loss and quality as influenced bymechanical and chemical conditioning [J]. Transactions of the Amarican Society ofAgricultural Engineers,1987,30(3):630-635.
    127. Rotz C A, Muck R E. Changes in forage quality during harvest and storage[A]. In: Fahey GC (ed).Forage quality, evaluation, and utilization[C].Madison:ASA-CSSA-SSSA,1994:828-868.
    128. Schaefer D.M., Brotz P.G., Arp S. C, et al. Inoculation of corn silage and high moisture cornwith lactic acid bacteria and its effects on the subsequent fermentation and feedlotperformance of beef steers[J]. Animal Feed Science Technology,1989,25(1):23-38.
    129. Seglar W. J. Silage fermentation[J]. Compendium on continuing education for the practicingveterinarian,1997,19:S65-S71.
    130. Selmer-olsen, Henderson A R, Robertson S, Mcginn R. Cell wall degrading enzymes forsilage.1.The fermentation of Enzyme-treated ryegrass in laboratory silos[J]. Grass and ForageScience.l993,48(1):45~54.
    131. Sheperd A C. Additives containing bacteria and enzymes for alfalfa silage[J]. Dairy Science,1995,78:565-572.
    132. Shinners K J, Koegel R G, Straub R J. Leaf loss and drying rate of alfalfa as affected byconditioning roll type [J]. Applied Engineering in Agriculture,1991,7:46-49.
    133. Spoelstra S.F., Wikselaar P.G., Harder B. The effects of ensiling whole crop maize with amultienzyme preparation on the chemical composition of the resulting silages[J]. Journal ofthe science of food and agriculture,1992,60(2):223-228.
    134. Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improveing the sensitivity ofprogressive multiple sequence alignment through sequence weighting positon apecific gappenalties and weight matrix choice[J].Nucleic Acids Res.,1994,22:4673-4680.
    135. Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber,and nonstarch polysaccharides in relation to animal nutrition[J]. Journal Dairy Science,1991,74(10):3583-3597.
    136. Weinberg Z G, Ashbell G, Hen Y. The effect of applying lactic acid bacteria at ensiling onthe aerobic stability of silages [J]. Journal of Applied Bacteriology,1993,75:512-518.
    137. Weinberg Z G, Ashbell G. Engineering aspects of ensiling[J]. Biochemical EngineeringJournal,2003,(13):181-188.
    138. White L M, Wight J R. Forage yield and quality of dry land grasses and legumes[J]. Journalof Range Management,1984,37(3):233-236.
    139. Wilkinson J M. Silage UK (6th ed.) Chalcombe Publ[M]. Church Lane, Kingston,Canterbury,Kent, UK,1991:9-17.
    140. Wilkinson. Losses in the conservation and utilization of grass and forage[J]. Annals AppliedBiology,1981,98:365-375.
    141. Woo P C, Chong K T, Leung K. Identification of Arcobacter cryaerophilus isolated from atraffic accident victim with bacteremia by16s ribosomal RNA gene sequencing[J]. DiagnMicrobiol Infect Dis.,2001,40:125-127.
    142. Woolford M K, Sawczyc M K. An investigation into the effect of cultures of lactic acidbacteria on fermentation in silage[J].Grass and Forage Science,1984,69(2):149-158.