低浓度甲烷催化燃烧实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化燃烧作为一种高效清洁的燃烧技术,越来越引起各界的关注,世界各国对催化燃烧进行了大量的研究工作。本文就甲烷在低浓度条件下的催化燃烧进行了实验研究。
     分析了气体燃料多孔介质中的催化燃烧的机理,多孔介质中燃烧反应分为催化剂表面反应和空隙中的均相反应,表面反应由于催化剂的参与,其反应速度大约是均相反应速度的26万倍。催化反应通过改变反应的路径,降低反应的活化能,加快了反应速度。多孔介质具有良好的热稳定性,比较高的机械强度和化学稳定性,在催化燃烧过程中既作为催化剂载体,又起到了预热进气和稳定燃烧温度作用。
     设计了多孔介质催化燃烧实验装置。采用浸渍法制备了碳化硅蜂窝陶瓷载体稀土催化剂。
     对多孔介质阻力进行了冷态实验研究。测量了不同风速和孔径条件下阻力的大小。结果表明:在多孔介质内气流速度较低时,流动阻力成线性增加;在气流速度较高的时,阻力迅速增加。
     对低浓度甲烷进行了催化燃烧实验研究。实验测量了催化燃烧温度,催化燃烧尾气排放,并根据进气甲烷浓度和尾气排放浓度,计算了甲烷的催化燃烧的转化率。结果表明:从200℃到400℃催化活性明显上升,甲烷的燃烧转化率从92%上升到98%,500℃-800℃催化燃烧活性高且稳定,甲烷转化率达到99%以上。
As a clean and highly efficient combustion technology, catalytic combustion has be attracted more and more attention and was thorough research in the world. In the paper catalytic combustion of the lean methane was researched.
     It was analyzed that catalytic combustion mechanism in porous media. Combustion reaction in porous media consists of catalytic surface reaction and homogeneous reaction. As a result of the participation of the catalyst, catalytic surface reaction rate is about 260,000 times homogeneous reaction rate. Catalytic reaction speeds up the reaction rate by changing the path of reaction and lowering reaction activation energy. Porous media which has a good thermal stability, relatively high mechanical strength and chemical stability,have the role of the catalyst carrier and the stability of combustion temperature.
     Device as the fundamental equipment together with the gas system, catalytic combustion burner device and test system was established. Rare Earth catalysts with Silicon carbide honeycomb support were prepared.
     The cold resistance test experiment was measured. In different conditions of wind speed and aperture size the resistance was carried out, the resistance loss of the porous media was calculated. The results show: flow resistance is linear increase when flow speed is low; flow resistance is rapid increase when flow speed is high in porous media.
     Methane Rare Earth catalyst combustion experiment was carried out. Catalyst combustion temperature and composition of fuel exhausts were measured and methane conversion was calculated. The results show that methane conversion was above 92% from 200℃to 400℃,methane conversion is above 99% from 500℃to 800℃.
引文
1世界能源统计2008. BP公司, 2008.
    2江泽民.世界能源统计2008.上海交通大学学报, 2008, 42(3).
    3 Weinberg F J. Combustion Temperature: the future. Nature, 1971,233(239-241).
    4 Jones A R, Lloyd S A, Weinberg F J. Combustion in heat exchanger. Proc. R. Soc. Lond. A, 1978, 360(97-115).
    5 Ronney P D. Analysis of non-adiabatic heat-recirculating combustors.Combustion and Flame, 2003, 135(4), 421-439.
    6 Kotani Y , Behbahani H F, Takeno T. An excess enthalpy flame combustor for extended flow ranges. Symposium (International) on Combustion, 1985, 20(1), 2025-2033.
    7 Shinoda M, Tanaka R, Arai N. Optimization of heat transfer performances of a heat-recirculating ceramic burner during methane/air and low-calorific-fuel/air combustion. Energy Conv. and Manag, 2002, 43, 1497-1491.
    8 Hoffmann J G., Echigo R, Yoshida H, Tada S. Experimental study on combustion in porous media with a reciprocating flow system. Combustion and Flame, 1997, 111(1-2), 32-46.
    9 Jugjai S, Sawananon A. The surface combustor-heater with cyclic flow reversal combustion embedded with water tube bank. Fuel, 2004, 83(17-18): 2369-2379.
    10 Xiong T Y, Khinkis M J, Fish F F. Experimental study of a high-efficiency, low emission porous matrix combustor--heater. Fuel, 1995, 74(11), 1641-1647.
    11 Cavaliere A, De Joannon M. Mild Combustion. Progress in Energy and Combustion Science, 2004, 30(4), 329-366.
    12邢献军,王宝源,林其钊.常温空气无焰燃烧在燃煤锅炉煤改气中的应用.热能动力工程, 2007, 22(3), 284-287.
    13孟凡生.我国低热值燃气内燃机的研究现状.内燃机, 2007(3), 46-49.
    14赵黛青,夏亮,何立波.低热值燃料稳定燃烧的研究现状与进展.世界科技研究与发展, 2005, 27(5), 33-39.
    15史俊瑞,解茂昭,李刚.稀混合气低速过滤燃烧的数值模拟与理论分析.燃烧科学与技术, 2008, 14(1), 79-85.
    16王恩宇,程乐鸣,骆仲泱等.天然气在渐变型多孔介质中的预混燃烧启动特性.燃烧科学与技术, 2007, 13(5), 393-397.
    17王盈,朱吉钦,李成岳.低浓度甲烷流向变换催化燃烧取热技术.北京化工大学学报, 2006, 33(5), 14-17.
    18 Pfefferle L D,Pfefferle W C.Catalysis in combustion. Catal.Rev.Sci.Eng,1987,29 (2,3),219-267.
    19 Prasad R, Kennedy L A ,Ruckenstein E.Catalytic combustion,Catal. Rev.Sci. Eng, 1984,26(1): 1-58.
    20谭炯,陈峰,万家义.燃气炉低温催化燃烧研究,西南民族学院学报(自然科学版) 2002,2 8(2):23 6-238.
    21储伟.催化剂工程四川,四川大学出版社,2006.
    22严河清,张甜,王鄂凤.甲烷催化燃烧催化剂的研究进展武汉大学学报2005,4 52(2):161-166.
    23岑可法,姚强,骆仲泱.高等燃烧学2002.12.
    24 M Larini, F Giroud, B Porterie, J C.Loraud.A multiphase formulation for fire propagation in heterogeneous combustible media,1998, Vol41, No.6-7:881-897.
    25 L.Forni, I.Rossetti. Catalytic combustion of hydrocarbons over perovskites. Applied Catalysis B :Environmental.2002.38:29-37.
    26 J Andrae , P Bjombom. Numerical study of wall effects with laminar methane flames, Combustion and Flame.2002,128:165-180.
    27 R Burch,D J Crittle, M J Hayes. C-H bond activation in hydrocarbon Oxidation on heterogeneous catalysts, catalysis today,1999,47 :229-234.
    28 Yong Seog See ,Sung June Cho. Experimental and numerical studies on Combustion characteristics of a catalytically stabilized combustor. Catalysis Today. 2000,59: 75-86.
    29 V Dupont, Shihong Zhang, R Bentkey, A Williams. Experimental and odelingstudies of the catalytic combustion of methane.Fuel.2002,81:799- 810.
    30张鑫,陈耀强,史忠华等.过渡金属氧化物催化剂上甲烷催化燃烧的研究,化学应用与研究.2002,3(14):352-354.
    31唐晓兰,张鑫,陈耀强等.整体式甲烷燃烧催化剂的活性研究,天然气化工,2000,25:4-7.
    32 M Ryoo, S Gwi Chung, J Ho Kim, Y Soon Song, G Seo. The effect of mass transfer on the catalytic combustion of benzene and methane over palladium catalysts supported on porous materials, catalysis today,2003,83:131-139.
    33 John W,Geus Joep C,van Giezen. Monoliths in catalytic oxidation. Catalysis Today .1999,47:169-180.
    34 W M Carty, P W Lednor. Monolithic ceramics and heterogeneous catalysts: honeycombs and foams,Current Opinion in Solid State & Materials Science. 1996,1:88-95.
    35 M Lyubovsky,H Karim,P Menacherry, Complete and partial catalytic oxidation of methane over substrates with enhanced transport properties, Catalysis today, 2003,83:183-197.
    36 A Brautsh,T Griffin,Andreas Schlegel,Heat transfer characterization of support structures for catalytic combustion. International Journal of Heat and Mass Transfer. 2002,45: 3223-3231.
    37 J Mantzaras,C Appel. Effects of finite rate heterogeneous kinetics on Homogeneous ignition in catalytically stabilized channel flow Combustion. Combustion and Flame.2002,130:336-351.
    38 C T Goralskijr,L D Schmidt. Modelling heterogeneous and homogeneous reactions in the high-temperature catalytic combustion of methane. Chemical Engineering Science.1999,54:5791-5807.
    39陈长军,刘莉.低NOX燃烧技术的研究,应用能源技术,2002,1:15-16.
    40 Arman P C.Fluid flow through a granular bed, Trans. Inst. Chem. Eng. London, 1937, 15:150-156.
    41 Rgun S. Fluid flow through packed columns.Chem Eng Prog,1952,48(2):89-94.
    42 Ward J C.Turbulent flow in porous media,Proc. Amer.Soc.Civil Eng.No.HY5,1964, 90: 1-12.
    43杜军,饶文涛.陶瓷蓄热体阻力特性的实验研究.工业炉,2002,24(1):6-9.