中国人股骨头缺血性坏死人群股骨近端髓腔形态研究及其人工股骨柄的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景对于人工髋关节置换,随着生物力学的发展及假体设计的不断改善,过去常见的近期假体失败,如假体断裂、脱位等已很少见,只要植入正确,不论在短期或长期的随访研究中都取得了极高的成功率,远期无菌性松动成为假体失效的主要原因。从假体外形设计考虑增加假体和骨的密合度、降低初期微动,增加远期骨长入是实现远期固定的必由的路。而这一密合程度由髓腔形态与假体外形共同决定,因此股骨髓腔形态必须纳入假体设计的考量的中,而研究各种影响髓腔形态的因素就极具价值和意义。许多研究提示股骨头缺血性坏死患者无论是年龄分布还是骨质特征都比较特殊。
     目的探索AVN患者股骨近端髓腔的特点,证实AVN髓腔形态的特殊改变,针对其特点设计一款AVN特异股骨柄,使其与此种疾病患者的髓腔形态更加匹配,并建立AVN股骨置换的有限元模型,对该假体效果进行评价。
     方法1、通过研究AVN患者标准X线正、侧位片127例(179髋),获得股骨近端的解剖学数据,利用荟萃分析的方法比较AVN患者股骨近段髓腔特征平面(LT+20,LT,LT-20)及CFI的改变与以往研究数据的差异,并利用创伤性FNF患者资料代替正常人股骨数据进一步比较髓腔前、后、内、外四条曲线段上的差异。2、通过结合现代CAD技术,将内、外、前、后曲线拟合到AVN柄的外形上,选用短柄假体设计,近段设计利用AVN患者骨髓腔CT相对应位置的断面进行修正,设计AVN人工股骨柄。3、计算机三维有限元分析:①使用CAD软件SolidWorks和有限元软件Ansys所建立的髋关节股骨侧假体置换后的三维有限元模型。②使用有限元分析软件Ansys进一步分析AVN柄特点,主要包括髓腔填满程度、适合程度及截面应力情况。③与另两种常用假体进行比较研究,包括髓腔填满程度、股骨近端内侧皮质应力、最大微动量及微动面积百分比等。
     结果1、丰富了以AVN疾病分类的解剖学数据,AVN疾患股骨近段髓腔特征平面(LT+20,LT,LT-20)的改变,无论相对于以往西方人数据还是国人的数据都有统计学差异,比较创伤性FNF和AVN证实存在髓腔曲线段上的统计差异,因此,为AVN患者设计特异性假体具有科学意义和现实的市场需求。2、通过CAD技术,成功将正位片上的内、外两条曲线,侧位片上的前、后两条曲线全部或部分拟合到AVN柄的外形上,选用短柄假体设计,近段设计利用AVN患者骨髓腔CT相对应位置的断面进行修正,最终形成了特点鲜明的AVN人工股骨柄设计。3、通过使用CAD软件SolidWorks和有限元软件Ansys所建立的髋关节股骨侧假体置换后的三维有限元模型,形态逼真,结构完整,模拟加载,可以很好地用于人工常用股骨柄的生物力学评估及新假体设计的验证。通过模拟AVN股骨例置换的有限元分析,AVN柄表现出了良好的股骨近端匹配(fit &fill),优于Zimmer的Versys假体,在fill的某些平面上不如Zimmer的新型短柄假体Fitmore。在内侧皮质应力分析上,Fitmore虽然近端2cm表现出比AVN柄更高的应力,自收敛部达到应力最高值后没有很好的回落,在后续的微动试验中Fitmore最大微动量已经超过150微米,而且微动出现在假体内侧的远近端的4.5%的面积,61.2%面积的骨长入不可靠,而AVN柄微动面积则均未超过150微米,更易获得初期稳定,利于远期骨长入。
     结论1、丰富了以AVN疾病分类的解剖学数据。2、为AVN患者设计特异性假体具有科学意义和现实的市场需求。3、使用CAD软件SolidWorks和有限元软件Ansys所建立的髋关节股骨侧假体置换后的三维有限元模型可以很好地用于人工股骨柄的生物力学评估及新假体设计的验证。4、有限元结果证实AVN柄近端匹配性能优于长柄设计Versys股骨假体,应力分布比Fitmore假体更合理,微动量更小,更有利于骨长入获得假体长期固定,适合AVN患者股骨特征。
Background:With the development of biomechanics and continuous improvement of prosthetic design in THA,the common failures of prosthesis in the past,such as prosthesis fracture and dislocation,rarely occurred.As long as the implant procedure is correctly done,high success rates can be achieved either in short term or long term follow-ups.Aseptic loosening of prosthesis has become the main reason for failure. From the prospect of prosthesis design,increasing the prosthesis and bone adaptation to reduce the initial micromotion and increase long term bone ingrowth is the only way to achieve long term fixation.This kind of adaptation is determined by both the shapes of medullary cavity and prosthesis.Therefore it must incorporate the shape of femoral medullary cavity into prosthesis design considerations.Research for the factors which affect variety of medullary cavity has become a valuable and scientific trend.In addition, many studies of patients with AVN showed plenty of special characteristics,such as age distribution and bone quality.
     Objective:To study the geometric features of proximal femur for the Chinese AVN population,in order to prove the existence of special characteristic of proximal femur for the disease and then develop an AVN-specialized stem evaluated by a validated finite element analysis(FEA).
     Methods:1.The author investigated the standard X-ray data of 127 cases(179 hips) with definite diagnosis of AVN to provide anatomical references for this disease.At the same time,we conducted a meta-analysis of anatomical studies of normal proximal femur data,including the section of LT+20,LT,LT-20 and CFI to identify the potential difference between AVN and normal population.Furthermore,the author also performed a comparison of proximal femur canal curve between AVN and traumatic FNF(as a substituent of normal population).2.With the help of modern CAD technology,the stem was designed by the medial,lateral,anterior,posterior canal curves and consummated by the CT scanning data.3.In this FEA study:①A validated FEM was set up by CAD software SolidWorks and FE software Ansys,②the features of stem was evaluated in respects of fill,fit and section stress distribution,③the comparison study among AVN stem and another two common-used prostheses, including fill status,stress distribution of medial proximal femur,max micromotion and percentage at critical micromotion point.
     Results:1.The author gained a large series data of AVN proximal femur and indentified the changes of AVN population at the plane of LT+20,LT,LT-20. Furthermore,the difference of canal cures was found in comparison of traumatic FNF and AVN.As a result,a developed stem special for AVN patient does not only posses scientific meaning but also meet the demand of market.2.A novel AVN stem was designed with the characteristics of canal curve.3.A validated FEM of stem replacement was set up in realistic form,integritive structure to simulate the load for artificial hip stems,so that it can be well used to assess and verify the biomechanical characteristics of the new prosthesis design.AVN stem showed a better match feature(fit & fill) than the Versys prosthesis,but the fill status of AVN stem did not overweigh Fitmore prosthesis at some plane.In the stress analysis of medial cortex,Fitmore showed higher stress than AVN stem in the proximal 2 cm area,but the stress did not drop back quickly after it achieved the highest value.In the following fretting test,the largest micromotion of Fitmore was more than 150 microns,and the area with micromotion over 150 microns occupied 4.5%in the medio-proximal and medio-distal part of stem.Over 61.2%of bone ingrowth area is not reliable,while AVN stem is more likely to gain the initial stability and more beneficial to long term bone ingrowth with no micromotion over 150 microns.
     Conclusions:1.This study enriches the data for proximal femur anatomic parameters of AVN population.2.Newly designed AVN-specialized stem does not only posses scientific meaning but also meets the demand of market.3.A validated FEM of stem replacement was established,it is beneficial to assess and verify the biomechanical characteristics of the new stem design.4.The AVN stem confirmed by FEA was especially adaptive for AVN patient with features of good match and stress distribution in the proximal femur,which predicted better initial stability and long term bone ingrowth.
引文
1 Ramamurti BS,Orr TE,Bragdon CR,et al.Factors influencing stability at the interface between a porous surface and cancellous bone:a finite element analysis of a canine in vivo micromotion experiment.J Biomed Mater Res,1997,36(2):274-80.
    2 Schmalzried TP,Jasty M,Harris WH.Periprosthetic bone loss in total hip arthroplasty.Polyethylene wear debris and the concept of the effective joint space.J Bone Joint Surg Am,1992,74(6):849-63.
    3 Szmukler-Moncler S,Salama H,Reingewirtz Y,et al.Timing of loading and effect of micromotion on bone-dental implant interface:review of experimental literature.J Biomed Mater Res,1998,43(2):192-203.
    4 Fuku H.[Cementless hip prosthesis design:a basic study and analysis of the proximal femur in normal Japanese people].Nippon Seikeigeka Gakkai Zasshi,1994,68(9):763-73.
    5 Noble PC,Alexander JW,Lindahl LJ,et al.The anatomic basis of femoral component design.Clin Orthop Relat Res,1988(235):148-65.
    6 Khang G,Choi K,Kim CS,et al.A study of Korean femoral geometry.Clin Orthop Relat Res,2003(406):116-22.
    7 Nakamura T,Turner CH,Yoshikawa T,et al.Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans?.J Bone Miner Res,1994,9(7):1071-6.
    8 Laine HJ,Lehto MU,Moilanen T.Diversity of proximal femoral medullary canal.J Arthroplasty,2000,15(1):86-92.
    9 Husmann O,Rubin PJ,Leyvraz PF,et al.Three-dimensional morphology of the proximal femur.J Arthroplasty,1997,12(4):444-50.
    10 Rubin PJ,Leyvraz PF,Aubaniac JM,et al.The morphology of the proximal femur.A three-dimensional radiographic analysis.J Bone Joint Surg Br,1992,74(1):28-32.
    11 Noble PC,Box GG,Kamaric E,et al.The effect of aging on the shape of the proximal femur.Clin Orthop Relat Res,1995(316):31-44.
    12 Massin P,Geais L,Astoin E,et al.The anatomic basis for the concept of lateralized femoral stems:a frontal plane radiographic study of the proximal femur.J Arthroplasty,2000,15(1):93-101.
    13 KY Chiu,D Fang.Endosteal shape of the proximal femur in Chinese.J Orhtop Surg,1997,5(2):21-24.
    14 Lin RM,Yang CY,Yu CY.Proximal femoral geometry in Chinese adults.J Orthop Surg ROC,1990(7):192-199.
    15 Dorr LD,Absatz M,Gruen TA,et al.Anatomic Porous Replacement hip arthroplasty:first 100 consecutive cases.Semin Arthroplasty,1990,1(1):77-86.
    16 Petit MA,Beck TJ,Shults J,et al.Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents.Bone,2005,36(3):568-76.
    17 Petit MA,Beck TJ,Hughes JM,et al.Proximal femur mechanical adaptation to weight gain in late adolescence:a six-year longitudinal study.J Bone Miner Res,2008,23(2):180-8.
    18 Kaptoge S,Beck TJ,Reeve J,et al.Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures.J Bone Miner Res,2008,23(12):1892-904.
    19 Dincel VE,Sengelen M,Sepici V,et al.The association of proximal femur geometry with hip fracture risk.Clin Anat,2008,21(6):575-80.
    20 Liu YF,Chen WM,Lin YF,et al.Type Ⅱ collagen gene variants and inherited osteonecrosis of the femoral head.N Engl J Med,2005,352(22):2294-301.
    21 Seguin C,Kassis J,Busque L,et al.Non-traumatic necrosis of bone (osteonecrosis) is associated with endothelial cell activation but not thrombophilia.Rheumatology(Oxford),2008,47(8):1151-5.
    22 Kobayashi S,Saito N,Horiuchi H,et al.Poor bone quality or hip structure as risk factors affecting survival of total-hip arthroplasty.Lancet,2000,355(9214):1499-504.
    23 S.Terry Canale.Campbell's Operative Orthopaedics.11 ed.北京:人民军医出版社,2009.
    24 Huiskes R,Verdonschot N,Nivbrant B.Migration,stem shape,and surface finish in cemented total hip arthroplasty.Clin Orthop Relat Res,1998(355):103-12.
    25 Engh CA,O'Connor D,Jasty M,et al.Quantification of implant micromotion,strain shielding,and bone resorption with porous-coated anatomic medullary locking femoral prostheses.Clin Orthop Relat Res,1992(285):13-29.
    26 Makela KT,Eskelinen A,Pulkkinen P,et al.Total hip arthroplasty for primary osteoarthritis in patients fifty-five years of age or older.An analysis of the Finnish arthroplasty registry.J Bone Joint Surg Am,2008,90(10):2160-70.
    27 Archibeck MJ,Surdam JW,Schultz SC Jr,et al.Cementless total hip arthroplasty in patients 50 years or younger.J Arthroplasty,2006,21(4):476-83.
    28 Chiu KY,Ng TP,Tang WM,et al.Charnley total hip arthroplasty in Chinese patients less than 40 years old.J Arthroplasty,2001,16(1):92-101.
    29 Chiu KH,Shen WY,Chan KM.Uncemented porous-coated anatomic total hip replacement in Chinese patients.Int Orthop,1995,19(5):304-8.
    30 朱建炜,董启榕,刘璠,等.正常国人股骨近端解剖参数的研究.苏州大学学报:医学版,2008,28(4):582-585.
    31 汪伟,崔健,等.正常股骨近端CT测量及其临床意义.中国临床解剖学杂志,2003,21(2):125-128.
    32 沈慧勇,李忠华.股骨上段的测量与股骨假体设计.中国临床解剖学杂志,1999,17(2):148-149.
    33 章纯光,吕厚山.国人正常股骨CT测量与假体设计的相关研究.中华骨科杂志,1998,18(8):467-470,1002.
    34 龙公,戴克戎.股骨上端几何参数测量与动态分类.医用生物力学,1997,12(1):8-12.
    35 高中礼,刘云霞,等.股骨上段髓腔几何形态的研究及临床意义.骨与关节损伤杂志,2001,16(4):297-299.
    36 张家红,王秋艳.成人股骨上段几何形态的测量和分析.上海第二医科大学学报,1998,18(1):82-85.
    37 王震宇,戴克戎.股骨距与股骨上段有效髓腔的几何形态学研究.中华骨科杂志,1994,14(7):436-440.
    38 陆晴友,吴岳嵩,王成焘.股骨近端解剖形态的CT三维重建与分析.第二军医大学学报,2005,26(9):1029-1033.
    39 薛文东,戴克戎,等.中国人股骨近端几何形态参数的测量和分类.生物医学工程学杂志,2002,19(1):84-88.
    40 丁悦,刘尚礼,马若凡,等.国人股骨假体设计的解剖学基础.中国临床解剖学杂志,2003,21(4):341-343.
    41 董有海,黄铁柱,等.成人股骨骨髓腔影像解剖学及临床意义.中国临床解剖学杂志,2002,20(1):18-20.
    42 汪伟,王岩,韩刚,等.股骨近端三维几何形态重建.中华外科杂志,2003,41(10):744-748.
    43 刘勤,王慧娟,李秀平,等.中国人股骨近端参数统计.解剖与临床,2005,10(1):25-27.
    44 Maillefert JF,Tavernier C,Toubeau M,et al.Non-traumatic avascular necrosis of the femoral head.J Bone Joint Surg Am,1996,78(3):473-4.
    45 Radl R,Egner S,Hungerford M,et al.Survival of cementless femoral comoonents after osteonecrosis of the femoral head with different etiologies.J Arthroplasty,2005,20(4):509-15.
    46 Laine HJ,Kontola K,Lehto MU,et al.Image processing for femoral endosteal anatomy detection:description and testing Of a computed tomography based program.Phys Med Biol,1997,42(4):673-89.
    47 Kawate K,Ohneda Y,Ohmura T,et al.Computed tomography-based custom-made stem for dysplastic hips in Japanese patients.J Arthroplasty,2009,24(1):65-70.
    48 Flecher X,Parratte S,Aubaniac JM,et al.Three-dimensional custom-designed cementless femoral stem for osteoarthritis secondary to congenital dislocation of the hip.J Bone Joint Surg Br,2007,89(12):1586-91.
    49 Ding M,Dalstra M,Danielsen CC,et al.Age variations in the properties of human tibial trabecular bone.J Bone Joint Surg Br,1997,79(6):995-1002.
    50 Ding M.Age variations in the properties of human tibial trabecular bone and cartilage.Acta Orthop Scand Suppl,2000,292:1-45.
    51 Ender SA,Machner A,Pap G,et al.Cementless CUT femoral neck prosthesis:increased rate of aseptic loosening after 5 years.Acta Orthop,2007,78(5):616-21.
    52 Ishaque BA,Gils J,Wienbeck S,et al.[Results after replacement of femoral neck prostheses-thrust plate prosthesis(TPP) versus ESKA cut prosthesis].Z Orthop Unfall,2009,147(1):79-88.
    53 Hagel A,Hein W,Wohlrab D.Experience with the Mayo conservative hip system.Acta Chir Orthop Traumatol Cech,2008,75(4):288-92.
    54 Milecki M,Kowalczewski J,Wielopolski A,et al.[Modular short-stem prosthesis in total hip arthroplasty—preliminary report].Chir Narzadow Ruchu Ortop Pol,2008,73(4):244-7.
    55 B.Noureddine,C.Dorner,D.Scheunemann,M.Wurm,A.P.Schulz.Early results of the CFP prosthesis in post-traumatic hip deformity.Injury Extra,2008,39(5):162.
    56 Gulow J,Scholz R,Freiherr von Salis-Soglio G.[Short-stemmed endoprostheses in total hip arthroplasty].Orthopade,2007,36(4):353-9.
    57 Webb PA.A review of rapid prototyping (RP) techniques in the medical and biomedical sector.J Med Eng Technol,2000,24(4):149-53.
    58 Brkelmans W,Rybicki EF.A new method to analyse the mechanical behavior of skeletal part.Acta Ortho Scand,1972,43:301.
    59 Pastrav LC,Devos J,Van der Perre G,et al.A finite element analysis of the vibrational behaviour of the intra-operatively manufactured prosthesis-femur system.Med Eng Phys,2009,31(4):489-94.
    60 Deuel CR,Jamali AA,Stover SM,et al.Alterations in femoral strain following hip resurfacing and total hip replacement.J Bone Joint Surg Br,2009,91(1):124-30.
    61 Behrens BA,Wirth CJ,Windhagen H,et al.Numerical investigations of stress shielding in total hip prostheses.Proc Inst Mech Eng [H],2008,222(5):593-600.
    62 Park Y,Shin H,Choi D,et al.Primary stability of cementless stem in THA improved with reduced interfacial gaps.J Biomech Eng,2008,130(2):021008.
    63 Amirouche F,Romero F,Gonzalez M,et al.Study of micromotion in modular acetabular components during gait and subluxation:a finite element investigation.J Biomech Eng,2008,130(2):021002.
    64 Behrens BA,Bouguecha A,Nolte I,et al.Strain adaptive bone remodelling:influence of the implantation technique.Stud Health Technol Inform,2008,133:33-44.
    65 Abdul-Kadir MR,Hansen U,Klabunde R,et al.Finite element modelling of primary hip stem stability:the effect of interference fit.J Biomech,2008,41(3):587-94.
    66 Viceconti M,Monti L,Muccini R,et al.Even a thin layer of soft tissue may compromise the primary stability of cementless hip stems.Clin Biomech (Bristol,Avon),2001,16(9):765-75.
    67 Verdonschot N,Huiskes R.Dynamic creep behavior of acrylic bone cement.J Biomed Mater Res,1995,29(5):575-81.
    68 Verdonschot N,Huiskes R.Subsidence of THA stems due to acrylic cement creep is extremely sensitive to interface friction.J Biomech,1996,29(12):1569-75.
    69 Mann KA,Bartel DL,Ayers DC.Influence of stem geometry on mechanics of cemented femoral hip components with a proximal bond.J Orthop Res,1997,15(5):700-6.
    70 Smolinski P,Rubash HE.Bone remodeling around total hip implants.Crit Rev Biomed Eng,1992,20(5-6):461-83.
    71 Huiskes R,Weinans H,van Rietbergen B.The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials.Clin Orthop Relat Res,1992(274):124-34.
    72 Ding M,Odgaard A,Linde F,et al.Age-related variations in the microstructure of human tibial cancellous bone.J Orthop Res,2002,20(3):615-21.
    73 Mann KA,Bartel DL,Wright TM,et al.Coulomb frictional interfaces in modeling cemented total hip replacements:a more realistic model.J Biomech,1995,28(9):1067-78.
    74 Lennon AB,Prendergast PJ.Evaluation of cement stresses in finite element analyses of cemented orthopaedic implants.J Biomech Eng,2001,123(6):623-8.
    75 Park Y,Choi D,Hwang DS,et al.Statistical analysis of interfacial gap in a cementless stem FE model.J Biomech Eng,2009,131(2):021016.
    76 Reggiani B,Cristofolini L,Taddei F,et al.Sensitivity of the primary stability of a cementless hip stem to its position and orientation.Artif Organs,2008,32(7):555-60.
    77 Wong AS,New AM,Isaacs G,et al.Effect of bone material properties on the initial stability of a cementless hip stem:a finite element study.Proc Inst Mech Eng [H],2005,219(4):265-75.
    78 Shultz TR,Blaha JD,Gruen TA,et al.Cortical bone viscoelasticity and fixation strength of press-fit femoral stems:finite element model.J Biomech Eng,2006,128(1):7-12.
    1 Oparaugo PC,Clarke IC,Malchau H,et al.Correlation of wear debris-induced osteolysis and revision with volumetric wear-rates of polyethylene:a survey of 8 reports in the literature.Acta Orthop Scand,2001,72(1):22-8.
    2 Margevicius KJ,Bauer TW,McMahon JT,et al.Isolation and characterization of debris in membranes around total joint prostheses.J Bone Joint Surg Am,1994,76(11):1664-75.
    3 Hirakawa K,Bauer TW,Stulberg BN,et al.Comparison and quantitation of wear debris of failed total hip and total knee arthroplasty.J Biomed Mater Res,1996,31(2):257-63.
    4 Zhu YH,Chiu KY,Tang WM.Review Article:Polyethylene wear and osteolysis in total hip arthroplasty.J Orthop Surg(Hong Kong),2001,9(1):91-99.
    5 Haynes DR,Crotti TN,Potter AE,et al.The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis.J Bone Joint Surg Br,2001,83(6):902-11.
    6 Masui T,Sakano S,Hasegawa Y,et al.Expression of inflammatory cytokines,RANKL and OPG induced by titanium,cobalt-chromium and polyethylene particles.Biomaterials,2005,26(14):1695-702.
    7 Darnay BG,Haridas V,Ni J,et al.Characterization of the intracellular domain of receptor activator of NF-kappaB(RANK).Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase.J Biol Chem,1998,273(32):20551-5.
    8 Lacey DL,Timms E,Tan HL,et al.Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation.Cell,1998,93(2):165-76.
    9 Hsu H,Lacey DL,Dunstan CR,et al.Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand.Proc Natl Acad Sci U S A,1999,96(7):3540-5.
    10 Wada T,Nakashima T,Hiroshi N,et al.RANKL-RANK signaling in osteoclastogenesis and bone disease.Trends Mol Med,2006,12(1):17-25.
    11 Xing L,Schwarz EM,Boyce BF.Osteoclast precursors,RANKL/RANK,and immunology.Immunol Rev,2005,208:19-29.
    12 Kudo O,Fujikawa Y,Itonaga I,et al.Proinflammatory cytokine (TNFalpha/IL-lalpha) induction of human osteoclast formation.J Pathol,2002,198(2):220-7.
    13 Anandarajah AP,Schwarz EM.Anti-RANKL therapy for inflammatory bone disorders:Mechanisms and potential clinical applications.J Cell Biochem, 2006,97(2):226-32.
    14 Campagnuolo G,Bolon B,Feige U.Kinetics of bone protection by recombinant osteoprotegerin therapy in Lewis rats with adjuvant arthritis.Arthritis Rheum,2002,46(7):1926-36.
    15 Schwarz EM,O'Keefe RJ,Looney RJ.Bone implant interface,osteolysis and potential therapies.J Musculoskelet Neuronal Interact,2004,4(4):390-2.
    16 Holding CA,Findlay DM,Stamenkov R,et al.The correlation of RANK,RANKL and TNFalpha expression with bone loss volume and polyethylene wear debris around hip implants.Biomaterials,2006,27(30):5212-9.
    17 Koulouvaris P,Ly K,Ivashkiv LB,et al.Expression profiling reveals alternative macrophage activation and impaired osteogenesis in periprosthetic osteolysis.J Orthop Res,2008,26(1):106-16.
    18 Romas E,Sims NA,Hards DK,et al.Osteoprotegerin reduces osteoclast numbers and prevents bone erosion in collagen-induced arthritis.Am J Pathol,2002,161(4):1419-27.
    19 Reddy GK,Nadler E,Jain VK.Denosumab (AMG 162),a Fully Human Monoclonal Antibody Against RANK Ligand Activity.Support Cancer Ther,2005,3(1):14-5.
    20 Lewiecki EM,Miller PD,McClung MR,et al.Two-year treatment with denosumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low BMD.J Bone Miner Res,2007,22(12):1832-41.
    21 Szmukler-Moncler S,Salama H,Reingewirtz Y,et al.Timing of loading and effect of micromotion on bone-dental implant interface:review of experimental literature.J Biomed Mater Res,1998,43(2):192-203.
    22 Gulan G,Jurdana H.The canal fill ratio as a factor influencing the aseptic loosening of the Muller-type cemented stem—preliminary report.Coll Antropol,2007,31(1):195-8.
    23 van der Wal BC,de Kramer BJ,Grimm B,et al.Femoral fit in ABG-Ⅱ hip stems,influence on clinical outcome and bone remodeling:a radiographic study.Arch Orthop Trauma Surg,2008,128(10):1065-72.
    24 Fuku H.[Cementless hip prosthesis design:a basic study and analysis of the proximal femur in normal Japanese people].Nippon Seikeigeka Gakkai Zasshi,1994,68(9):763-73.
    25 Noble PC,Alexander JW,Lindahl LJ,et al.The anatomic basis of femoral component design.Clin Orthop Relat Res,1988(235):148-65.
    26 Khang G,Choi K,Kim CS,et al.A study of Korean femoral geometry.Clin Orthop Relat Res,2003(406):116-22.
    27 Nakamura T,Turner CH,Yoshikawa T,et al.Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans?.J Bone Miner Res,1994,9(7):1071-6.
    28 Laine HJ,Lehto MU,Moilanen T.Diversity of proximal femoral medullary canal.J Arthroplasty,2000,15(1):86-92.
    29 Husmann O,Rubin PJ,Leyvraz PF,et al.Three-dimensional morphology of the proximal femur.J Arthroplasty,1997,12(4):444-50.
    30 Rubin PJ,Leyvraz PF,Aubaniac JM,et al.The morphology of the proximal femur.A three-dimensional radiographic analysis.J Bone Joint Surg Br,1992,74(1):28-32.
    31 Noble PC,Box GG,Kamaric E,et al.The effect of aging on the shape of the proximal femur.Clin Orthop Relat Res,1995(316):31-44.
    32 Massin P,Geais L,Astoin E,et al.The anatomic basis for the concept of lateralized femoral stems:a frontal plane radiographic study of the proximal femur.J Arthroplasty,2000,15(1):93-101.
    33 KY Chiu,D Fang.Endosteal shape of the proximal femur in Chinese.J Orhtop Surg,1997,5(2):21-24.
    34 Lin RM,Yang CY,Yu CY.Proximal femoral geometry in Chinese adults.J Orthop Surg ROC,1990(7):192-199.
    35 Dorr LD,Absatz M,Gruen TA,et al.Anatomic Porous Replacement hip arthroplasty:first 100 consecutive cases.Semin Arthroplasty,1990,1(1):77-86.
    36 Petit MA,Beck TJ,Shults J,et al.Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents.Bone,2005,36(3):568-76.
    37 Petit MA,Beck TJ,Hughes JM,et al.Proximal femur mechanical adaptation to weight gain in late adolescence:a six-year longitudinal study.J Bone Miner Res,2008,23(2):180-8.
    38 Kaptoge S,Beck TJ,Reeve J,et al.Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures.J Bone Miner Res,2008,23(12):1892-904.
    39 Dincel VE,Sengelen M,Sepici V,et al.The association of proximal femur geometry with hip fracture risk.Clin Anat,2008,21(6):575-80.
    40 Liu YF,Chen WM,Lin YF,et al.Type Ⅱ collagen gene variants and inherited osteonecrosis of the femoral head.N Engl J Med,2005,352(22):2294-301.
    41 Seguin C,Kassis J,Busque L,et al.Non-traumatic necrosis of bone (osteonecrosis) is associated with endothelial cell activation but not thrombophilia.Rheumatology (Oxford),2008,47(8):1151-5.
    42 Kobayashi S,Saito N,Horiuchi H,et al.Poor bone quality or hip structure as risk factors affecting survival of total-hip arthroplasty.Lancet,2000,355(9214):1499-504.
    43 Makela KT,Eskelinen A,Pulkkinen P,et al.Total hip arthroplasty for primary osteoarthritis in patients fifty-five years of age or older.An analysis of the Finnish arthroplasty registry.J Bone Joint Surg Am,2008,90(10):2160-70.
    44 Archibeck MJ,Surdam JW,Schultz SC Jr,et al.Cementless total hip arthroplasty in patients 50 years or younger.J Arthroplasty,2006,21(4):476-83.
    45 Gratz KR,Wong VW,Chen AC,et al.Biomechanical assessment of tissue retrieved after in vivo cartilage defect repair:tensile modulus of repair tissue and integration with host cartilage.J Biomech,2006,39(1):138-46.
    46 Huiskes R,Weinans H,van Rietbergen B.The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials.Clin Orthop Relat Res,1992(274):124-34.
    47 Viceconti M,Brusi G,Pancanti A,et al.Primary stability of an anatomical cementless hip stem:a statistical analysis.J Biomech,2006,39(7):1169-79.
    48 Reggiani B,Cristofolini L,Varini E,et al.Predicting the subject-specific primary stability of cementless implants during pre-operative planning:preliminary validation of subject-specific finite-element models.J Biomech,2007,40(11):2552-8.
    49 Reggiani B,Cristofolini L,Taddei F,et al.Sensitivity of the primary stability of a cementless hip stem to its position and orientation.Artif Organs,2008,32(7):555-60.
    50 Viceconti M,Pancanti A,Varini E,et al.On the biomechanical stability of cementless straight conical hip stems.Proc Inst Mech Eng [H],2006,220(3):473-80.
    51 Mandell JA,Carter DR,Goodman SB,et al.A conical-collared intramedullary stem can improve stress transfer and limit micromotion.Clin Biomech (Bristol,Avon),2004,19(7):695-703.
    52 Wong AS,New AM,Isaacs G,et al.Effect of bone material properties on the initial stability of a cementless hip stem:a finite element study.Proc Inst Mech Eng [H],2005,219(4):265-75.
    53 Viceconti M,Cristofolini L,Toni A.Design revision of a partially cemented hip stem.Proc Inst Mech Eng [H],2001,215(5):471-8.
    54 Shultz TR,Blaha JD,Gruen TA,et al.Cortical bone viscoelasticity and fixation strength of press-fit femoral stems:finite element model.J Biomech Eng,2006,128(1):7-12.
    55 Park Y,Choi D,Hwang DS,et al.Statistical analysis of interfacial gap in a cementless stem FE model.J Biomech Eng,2009,131(2):021016.
    56 Park Y,Shin H,Choi D,et al.Primary stability of cementless stem in THA improved with reduced interfacial gaps.J Biomech Eng,2008,130(2):021008.
    57 Abdul-Kadir MR,Hansen U,Klabunde R,et al.Finite element modelling of primary hip stem stability:the effect of interference fit.J Biomech,2008,41(3):587-94.
    58 Viceconti M,Monti L,Muccini R,et al.Even a thin layer of soft tissue may compromise the primary stability of cementless hip stems.Clin Biomech (Bristol,Avon),2001,16(9):765-75.
    59 Ramamurti BS,Orr TE,Bragdon CR,et al.Factors influencing stability at the interface between a porous surface and cancellous bone:a finite element analysis of a canine in vivo micromotion experiment.J Biomed Mater Res,1997,36(2):274-80.
    1 Joseph TN,Chen AL,Di Cesare PE.Use of antibiotic-impregnated cement in total joint arthroplasty.J Am Acad Orthop Surg,2003,11(1):38-47.
    2 Durbhakula SM,Czajka J,Fuchs MD,et al.Spacer endoprosthesis for the treatment of infected total hip arthroplasty.J Arthroplasty,2004,19(6):760-7.
    3 Hsieh PH,Shih CH,Chang YH,et al.Two-stage revision hip arthroplasty for infection:comparison between the interim use of antibiotic-loaded cement beads and a spacer prosthesis.J Bone Joint Surg Am,2004,86-A(9):1989-97.
    4 Scharfenberger A,Clark M,Lavoie G,et al.Treatment of an infected total hip replacement with the PROSTALAC system.Part 1:Infection resolution.Can J Surg,2007,50(1):24-8.
    5 D'Angelo F,Negri L,Zatti G,et al.Two-stage revision surgery to treat an infected hip implant.A comparison between a custom-made spacer and a pre-formed one.Chir Organi Mov,2005,90(3):271-9.
    6 Haaker R,Senge A,Kramer J,et al.[Osteomyelitis after endoprostheses].Orthopade,2004,33(4):431-8.
    7 Thabe H,Schill S.Two-stage reimplantation with an application spacer and combined with delivery of antibiotics in the management of prosthetic joint infection.Oper Orthop Traumatol,2007,19(1):78-100.
    8 Anagnostakos K,Furst O,Kelm J.Antibiotic-impregnated PMMA hip spacers: Current status.Acta Orthop,2006,77(4):628-37.
    9 周勇刚,肖逸鹏,王岩.二期翻修在人工全髋关节置换术后感染治疗中的作用.中国矫形外科杂志,2007,15(11):808-810.
    10 Muller M,Morawietz L,Hasart O,et al.Diagnosis of periprosthetic infection following total hip arthroplasty-evaluation of the diagnostic values of preand intraoperative parameters and the associated strategy to preoperatively select patients with a high probability of joint infection.J Orthop Surg,2008,3:31.
    11 Takahira N,Itoman M,Higashi K,et al.Treatment outcome of two-stage revision total hip arthroplasty for infected hip arthroplasty using antibiotic-impregnated cement spacer.J Orthop Sci,2003,8(1):26-31.
    12 Meek RM,Masri BA,Dunlop D,et al.Patient satisfaction and functional status after treatment of infection at the site of a total knee arthroplasty with use of the PROSTALAC articulating spacer.J Bone Joint Surg Am,2003,85-A(10):1888-92.
    13 Hsieh PH,Shih CH,Chang YH,et al.Treatment of deep infection of the hip associated with massive bone loss:two-stage revision with an antibiotic-loaded interim cement prosthesis followed by reconstruction with allograft.J Bone Joint Surg Br,2005,87(6):770-5.
    14 Anagnostakos K,Kelm J,Regitz T,et al.In vitro evaluation of antibiotic release from and bacteria growth inhibition by antibiotic-loaded acrylic bone cement spacers.J Biomed Mater Res B Appl Biomater,2005,72(2):373-8.
    15 Stallmann HP,Faber C,Wuisman PI.Response to:release of gentamicin and vancomycin from temporary human hip spacers in two-stage revision of infected arthroplasty.J Antimicrob Chemother,2004,54(2):570;author reply 570-1.
    16 Affatato S,Mattarozzi A,Taddei P,et al.Investigations on the wear behaviour of the temporary PMMA-based hip Spacer-G.Proc Inst Mech Eng[H],2003,217(1):1-8.
    17 MacAvoy MC,Ries MD.The ball and socket articulating spacer for infected total knee arthroplasty.J Arthroplasty,2005,20(6):757-62.