形状记忆可降解股骨远端骨水泥塞的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:无菌性松动是骨水泥型人工髋关节置换常见的并发症,股骨假体的长期生存率与良好的骨水泥技术密切相关。在股骨远端使用骨水泥塞是现代骨水泥技术的重要组成部分,骨水泥塞能够显著增加髓腔内骨水泥的压力,对股骨柄形成良好的固定。相比普通骨水泥塞在翻修手术或用于股骨峡部以下较宽大部位时的局限性和缺点,可降解并能快速恢复形状的骨水泥塞具有明显的优点。
     聚乳酸是常用的具有良好生物相容性和可降解性的高分子化合物,已被美国FDA批准并在许多生物医学领域应用。我们设计加工了PLLA与PDLLA的共聚物P(D,L-LA-CO-L,L-LA),对其细胞相容性和力学性能进行研究。利用该材料制作了骨水泥塞,试图设计出一种能够在体内自行降解,并且在髓腔峡部以下能够有效抵抗髓腔内压力和移位的骨水泥塞。
     方法:通过原位聚合法合成PLLA与PDLLA的聚合物P(D,L-LA-CO-L,L-LA)并加工成骨水泥塞。采用采用细胞形态学观察法和细胞增殖法观察该材料与兔骨髓干细胞的相容性。用倒置相差显微镜观察细胞形态和生长情况,细胞增值率通过CCK-8检测。采用溶血试验检查材料对血液红细胞的溶解作用,测定红细胞溶解和血红蛋白游离的程度。
     采用福尔马林浸泡防腐的人体股骨进行实验。股骨远端在髁上截骨,近端保留15mm左右的股骨距。插入软钻逐级扩髓,直到软钻与股骨峡部的皮质相接触为止。软钻的直径即为股骨峡部的直径。选取2对峡部直径为12mm的股骨作为实验样品。采用髓腔锉由小到大依次打入对髓腔塑形。选择并置入合适大小的骨水泥塞。分别测试3种骨水泥塞在股骨峡部以上和股骨峡部以下的力学特点。记录骨水泥塞的抵抗压力的能力和向髓腔远端移位的关系。
     结果:体外实验显示不同浓度的P(D,L-LA-CO-L,L-LA)浸提液下培养的兔骨髓干细胞生长和形态与对照组无明显差异。细胞毒性实验无明显毒性。溶血实验未见明显溶血反应发生,溶血指数为0.28%,低于国家标准(5%)。
     体外测试表明,三种骨水泥塞的表现各异并与使用位置有关。当用于髓腔峡部以上时,所有类型骨水泥塞的抵抗压力的能力均超过345KPa,即Noble发表文章中认为的骨水泥塞应具备的抵抗压力的能力。用于股骨峡部以下时,除了一个较大型号并且发生侧翼严重磨损的超高分子量聚乙烯骨水泥塞外,其余的超高分子量聚乙烯骨水泥塞均在较小的压力下失败。P(D,L-LA-CO-L,L-LA)骨水泥塞在用于股骨峡部以下时具有最强的抵抗压力的能力。新型骨水泥塞在体外实验中至少能够抵抗超过740 kPa的压力。
     结论:P(D-L-LA-CO-L,L-LA)具有良好的生物相容性。用于股骨近端时,新型的可降解骨水泥塞同其他两种常用骨水泥塞一样,能够有效抵抗髓腔内的压力并防止向远端移位。常用的聚乙烯骨水泥塞在用于股骨峡部以下时在压力较低的情况下即告失败,可降解形状记忆骨水泥塞由于其形状记忆的特点,在用于髓腔峡部以下部位时能够有效抵抗髓腔内的压力,具有一定的优势。如何进一步降低玻璃化温度和找到更简单的使用方法需要进一步研究。其在体内的降解过程还需要实验来证实。
Objective:A septic loosening is a common long-term complication of cemented femoral components in hip armroplasty.Improved cementing technique could increases cemented femoral component survival.The use of a cement restrictor in cemented femoral fixation during hip arthroplasty is an important part of modern cementing technique.Cement restrictor can increase intramedullar cement pressure significantly and create an optimum cementing of the femoral stem.Compared of the limitation and disadvantage of the UHMWPE cement restrictor in potential revision surgery or used below the femoral isthmus,the biodegradable and sharp memory cement restrictor has immense advantages.
     Poly lactic acid is a well-known synthetic polymer with excellent biocompatibility and degradability,which has been approved by American FDA and used in various biomedical fields.In this thesis,the preparation, cytocompatibility and biomechanical properties of copolymer of PLLA and PDLLA were studied.We designed a novel restrictor with the copolymer,which can degrade in medullary cavity and can reliable resist distal migration and pressure created by cement pressurized.
     Methods:We fabricatied the copolymer P(D,L-LA-CO-L,L-LA) by PLLA and PDLLA via in site intercalative polymerlization and made a novel biodegradable sharp memory cement restrictor.Biocompatibility of the copolymer with rabbit bone marrow stem cell was investigated by means of cell morphology and cell proliferation.The morphology of the cells was observed by inverted phase contrast microscope and cell proliferation determined by CCK-8 assay. Hemolysis was evaluated in vitro through measuring erythrocyte lyses and ferrohemoglobin freeing degree with indirect contact method.
     We used human femora preserved by formalin in all experiments.The femora were sectioned distally at the epicondylar and preserved 15 mm of the calear femorale.Insert soft reamer by gradually increased size until the reamer contacted with the cortex of the femoral isthmus.The size of the reamer was regarded as the diameter of the isthmus.We selected two pairs of femur whose diameter was 12mm as the specimen.The femoral canal is prepared with a series of broaches that create an envelope for the implant.Remove the broach and measure the size of the canal,and then insert a suitable cement restrictor.The mechanical proprieties of the restrictors were test above and below the femoral isthmus.The relationship of pressure resists ability and distal migration was recorded.
     Results:The number of rabbit bone marrow stem cells increased significantly and the morphology was normal.The growth and morphology of the cells in different concentration of P(D,L-LA-CO-L,I.-LA) extraction medium had no difference to control group.Cytotoxicity test showed that P(D,L-LA-CO-L,L-LA) did not have obvious toxicity to rabbit bone marrow stem cells.Hemolysis test suggested that the P(D,L-LA-CO-L,L-LA) did not have obvious hemolysis reaction.The hemolysis index was 0.28%,which was less than the national standard(5%).
     There was variation in the performance of the three cement restrictors and changed with the position.When used above the isthmus of the femur,all kinds of restrictors were successful to resist pressures greater than 345KPa,which has been described by Noble in an earlier publication.But,most of UHMWPE cement restrictors failed at low pressures when deployed below the isthmus,except a larger diameter restrictor which had serious wear on the wings. P(D,L-LA-CO-L,L-LA) cement restrictor could resist the greatest pressures when the restrictor used below the femoral isthmus.The novel cement restrictor could resist cement pressures of more than 740KPa in vitro.
     Conclusions:The P(D,L-LA-CO-L,L-LA) copolymer has an excellent biocompatibility.The novel restrictor can reliably resist intramedullar cement pressure and distal migration at the proximal femur as well as the two types of UHMWPE restrictors.The UHMWPE restrictors with a smaller diameter failed at low pressures when deployed below the isthmus and the restrictor with a larger diameter could resist pressures of 345KPa but may create wear particles.The biodegradable shape memory cement restrictor can reliably resist intramedullar cement pressure.When used below the isthmus,this kind of restrictor had some advantages because of its sharp memory and degradable property.How to decrease its Tg temperature and find an easy to use method for the novel restrictor still need to be further study.More study should be performed to prove its degradable character in vivo.
引文
1.Spitzer AI,Evensen K,Vinograd I.The rationale for cemented THA.J Bone Joint Surg(Br),2005,87B(suppⅢ):377
    2.Churchill DL,Incavo SJ,Uroskie JA,et al.Femoral Stem Insertion Generates High Bone Cement Pressurization.J Orthop Res,2001,393(12):335-344
    3.Munro N,Nicol M,Selvaraj S,et al.Femoral cement pressurization in hip arthroplastya comparison of 3 systems.J Arthroplasty.2007,22(6):893-901
    4.Gisep A,Curtis R,Flutsch S,et al.Augrnentation of osteoporotic bone:effect of pulsed jet-lavage on injection forces,cement distribution,and push-out strength of implants.J Biomed Mater Res,2006,78(1):83-88
    5.Kalteis T,Pforringer D,Herold T,et al.An experimental comparison of different devices for pulsatile high-pressure lavage and their relevance to cement intrusion into cancellous bone.Arch Orthop Trauma Surg,2007,127(10):873-877
    6.张希昌.骨水泥.第1版.北京:中国标准出版社,1997:64-104
    7.周乙雄.第3代骨水泥技术在人工全髋置换术中的应用及随访.中国矫形外科杂志.2005,13(21):1605-1607
    8.Moran M,Heisel C,Rupp R,et al.Cement restrictor function below the femoral isthmus.Clin Ortho Relat Res,2007,458(5):111-116
    9.Wembridge KR,Hamer AJ.A prospective comparison of cement restrictor migration in primary total hip arthroplasty.J Arthroplasty,2006,21(1):92-96
    10.Bulstra SK,Geesink RG,Bakker D,et al.Femoral canal occlusion in total hip replacement using a resorbable and flexible cement restrictor.J Bone Joint Surg(Br),1996,78(6):892-898
    11.Freund KG,Herold N,Rock ND,et al.Poor results with the Shuttle Stop:resorbable versus nonresorbable intramedullar cement restrictor in a prospective and randomized study with a 2-year follow-up.Acta Orthop Stand,2003,74(1):37-41
    12.Schauss SM,Hinz M,Mayr E,et al.Inferior stability of a biodegradable cement plug.122 total hip replacements randomized to degradable or non-degradable cement restrictor.Arch Orthop Trauma Surg,2006,126(5):324-329
    13.Eric LS,Kurt PW,et al.A comparison of distal canal restrictors in primary cemented femoral hip arthroplasty.Orthopedics,2004,27(8):847-851
    1.顾其胜、侯春林、徐政.实用生物医用材料学.上海:上海科学技术出版社,2005
    2.朱光明.形状记忆聚合物及其应用.北京:化学工业出版社,2002
    3.俞耀庭.生物医用材料.天津:天津大学出版社,2003
    4.周长忍.生物材料学.北京:中国医药科技出版社,2004
    5.Yasuo Shikinami.sharp memory biodegradable and absorbable material.US 6281262B1.2001
    6.杨团民、刘淼、杨爱玲等.Resorbable high-strength rod for fracture internal fixation.西安交通大学学报(英文版),2004,16(1):58-61
    7.Alves A,Boutrand JP.Biocompatibility and performance of an interbody resorbable fusion cage implanted in functional site in sheep.Euro Cells Mater,2003,5(Suppl):46
    8.Ko(e|¨)ter S,V Loon CJM,V Susante JLC.Lateral femoral condyle osteochondral fracture caused by a patella luxation:advantages and disadvantages of PLA fixation.Eur J Orthop Surg Traumatol,2006,16(3):268-270
    9.Waris T,Pohjonen T,T(o|¨)rm(a|¨)l(a|¨) P.Self-reinforced absorbable polylactide (SR-PLLA) plates in craniofacial surgery.Eur J Plast Surg,1994,17(5):236-238
    10.Tomoaki K,Toshio S.Examination of properties of bioabsorbable osteosynthetic material using finite element method.J Hard Tiss Biology,2005,(14)65-66
    11.Eppley BL,Morales L,Wood R.Resorbable PLLA-PGA Plate and Screw Fixation in Pediatric Craniofacial Surgery:Clinical Experience in 1883Patients.Plast Reconstr Surg,2004,114:850-856
    12.Rokkanen P,Bostman O,Hirvensalo E,et al.Absorbeble implants in the fixation of fractures,osteotomies,arthrodeses and ligaments.Aeta Orthep Scand 1994:65(Suppl 260):19-20
    13.刘建国,徐莘香.骨科生物降解吸收材料30年进展.中华创伤杂志, 1996,12(1):64-66
    14.Suganuma J,Alexander H.Biological response of lntramedullary bone to poly-l-lactic acid.J Appl Biomater.1993,4(1):13-27
    15.廖凯荣,全大萍,高建,等.PLLA/PDLLA共混物的力学性能及体外降解特性研究.中山大学学报(自然科学版),2002,41(1):51-54
    1.廖凯荣,卢泽俭,李洪权.聚(L-乳酸)的成纤模压增强.高分子学报,2000,(3):335-339
    2.廖凯荣,全大萍,高建文,等.聚(L-丙交酯)/聚(DL-丙交酯)的结晶性能及相溶性.高分子学报.2002,(2):137-141
    3.Chen CC,Chueh JY,Tseng H,et al.Preparation and characterization of biodegradable PLApolymeric blends.Biomaterials,2003(24):1167-1173
    4.Stephen MB,Sean M.Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty.Spine,28(14):1555-1559
    5.Churchill RSean,Boorman RS,Fehringer EV,et al.Glenoid Cementing May Generate Sufficient Heat to Endanger the Surrounding Bone.Clin Orthop,2004,419:76-79
    6.Josepha AD,Georges SS,Amoltd B,et al.The temperature problem at the bone-acrylic cement interface of the total hip replacement.Clin Orthop,1978,121:95-98
    7.郝和平,奚廷斐,卜长生.医疗器械监督管理和评价.第一版.北京:中国医药出版社,2000.122-175
    8.顾其胜、侯春林、徐政.实用生物医用材料学.上海:上海科学技术出版社,2005
    9.Tsuchiya T.Studies on the Standardization of Cytotoxicity Tests and New Standard Reference Materials Useful for Evaluating the Safety of Biomaterials.J Biomater Appl,1994,9(2):138-157
    10.熊建文、肖化、张镇西.MTT法和CCK-8法检测细胞活性之测试条件比较.激光生物学报,2007,16(5):559-562
    1.Churchill DL,Incavo SJ,Uroskie JA,et al.Femoral stem insertion generates high bone cement pressurisation.Clin Orthop Relat Res.2001,393:335-344
    2.Noble PC,Collier MBBS,Maltry JA,et al.Pressurization and Centralization Enhance the Quality and Reproducibility of Cement Mantles.Clin Ortho Relat Res,Volume 355,October 1998,pp 77-89
    3.Stauffer RN.Ten-year follow-up study of total hip replacement.J Bone Joint Surg Am.1982;64:983-990
    4.Smith SW,Estok DM II,Harris WH.Total hip arthroplasty with use of second-generation cementing techniques.An eighteenyear-average follow-up study.J.Bone Joint Surg Am.1998;80:1632-1640.
    5.Mulroy RD,Harris WH:The effect of improved cementing techniques on component loosening in total hip replacement.J Bone Joint Surg 72B:757-760,1990
    6.Stauffer RN:Ten-year follow-up study of total hip replacement with particular reference to roentgenographic loosening of the components.J Bone Joint Surg 64A:983-990,1982
    7.Suominen S,Antti-Poika I,Tallroth K,et al:Femoral component fixation with and without intramedullary plug.A 6-year follow-up.Arch Orthop Trauma Surg 115:276-279,1996
    8.Trakru S,Rubash HE:Early loosening of precoated femoral components in hybrid total hip arthroplasty.Proceedings of the Hip Society (In Press) 1998
    9.Mulroy RD,Harris WH.The effect of improved cementing techniques on component loosening in total hip replacement.J Bone Joint Surg,1990,72B:757-760,
    10.Dozier J K,Harrigan T,Kurtz W H,Hawkins C,Hill R.Does increased cement pressure produce superior femoral component fixation? J Arthroplasty.2000,15 (4):488-94
    11.Maltry JA,Noble PC,Kamaric E,et al:Factors influencing pressurization of the femoral canal during cemented total hip arthroplasty.J Arthroplasty,1995,10:492-497
    12.Johnson AJ,Johnston D,El Hawary R et al.Occlusion and stability of synthetic femoral canal plugs used in cemented hip arthroplasty.J Appl Biomat.1995,6:213-218
    13.Beim GM,Lavernia C,Convery FR:Intramedullary plugs in cemented hip arthroplasty.J Arthroplasty,1989,4:139-141
    14.Paul AS,Hodgkinson JP.A new femoral cement restrictor.J Arthroplasty,1992,7(Supp):411-413
    15.Oh I,Carlson CE,Tomford WW,et al.Improved fixation of the femoral component after total hip replacement using a methacrylate intramedullary plug.J Bone Joint Surg,1978,60A:608-612
    16.Bulstra SK,Geesink RG,Bakker D,et al.Femoral canal occlusion in total hip replacement using a resorbable and flexible cement restrictor.J Bone Joint Surg(Br),1996,78(6):892-898
    17.Heisel C,Norman T,Rupp R,et al.In vitro performance of intramedullary cement restrictors in total hip arthroplasty.J Biomech,2003,36(6):835-843
    18.Sharma S,Rymaszewski LA.Bone as a cement restrictor in elbow arthroplasty.Orthopedics,2004,27(8):810-812
    19.Wembridge KR,Hamer AJ.A prospective comparison of cement restrictor migration in primary total hip arthroplasty.J Arthroplasty,2006,21(1):92-96
    20.Schauss SM,Hinz M,Mayr E,et al.Inferior stability of a biodegradable cement plug.122 total hip replacements randomized to degradable or non-degradable cement restrictor.Arch Orthop Trauma Surg,2006,126(5):324-329
    21.Eric LS,Kurt PW,et al.A comparison of distal canal restrictors in primary cemented femoral hip arthroplasty.Orthopedics,2004,27(8):847-851
    22.Freund KG,Herold N,Rock ND,et al.Poor results with the Shuttle Stop:resorbable versus nonresorbable intramedullar cement restrictor in a prospective and randomized study with a 2-year follow-up.Acta Orthop Stand,2003,74(1):37-41
    23.刘勤,王慧娟,李秀平,等.中国人股骨近端参数统计.解剖与临床,2005,10(1),25-27
    24.朱建炜,董启榕,刘瑶,等.正常国人股骨近端解剖参数的研究.苏州大学学报(医学版).2008,28(4):582-585
    25.王岩,周勇刚.嵌扭植骨技术在人工个髋关节翻修术中的应用.中华外科 杂志,2005,43(20):1309-1312
    26.周勇刚,王岩.应用解剖型骨水泥股骨假体结合冻干骨打压植骨进行骸关节翻修.中国矫形外科杂志,2007,15(7):507-509
    27.Board TN,Rooney P,Kearmey,et al.lmpaction allografting in revision total hip replacment.J Bone Joint Surg(Br),2006,88(7):865-869
    28.Roeck ND,Drabu K.Impaction bone grafting using freeze-dried allograft in revision hip arthroplasty.J Arthroplasty,2001,16(2):201-206
    29.Kleunen VJP,Anbari KK,Vu D,et al.Impaction allografting for massive femoral defects in revision hip arthroplasty using collared textured stems.J Arthroplasty,2006,21(3):362-371
    30.Moran M,Heisel C,Rupp R,et al.Cement restrictor function below the femoral isthmus.Clin Ortho Relat Res,2007,458(5):111-116
    31.Prendergast PJ,Birthistle P,Waide DV,Kumar NV.An investigation of the performance of Biostop G and Hardinge bone plugs.Proc Inst Mech Eng.1999,213:361-365
    1.Nedungayil SK,Mehendele S,Gheduzzi S,et al.Femoral cementing techniques:current trends in the UK.Ann R Coll Surg Engl,2006,82(2):127-130
    2.张希昌.骨水泥.第1版.北京:中国标准出版社,1997:64-104
    3.Churchill DL,Incavo SJ,Uroskie JA,et al.Femoral Stem Insertion Generates High Bone Cement Pressurization.J Orthop Res,2001,393(12):335-344
    4.周乙雄.第3代骨水泥技术在人工全髋置换术中的应用及随访.中国矫形外科杂志.2005,13(21):1605-1607
    5.Gisep A,Curtis R,Flutsch S,et al.Augmentation of osteoporotic bone:effect of pulsed jet-lavage on injection forces,cement distribution,and push-out strength of implants.J Biomed Mater Res,2006,78(1):83-88
    6.Niki YMH,Otani T,Tomatsu T,et al.How much sterile saline should be used for efficient lavage during total knee arthroplasty? Effects of pulse lavage irrigation on removal of bone and cement debris.J Arthroplasty,200722(1):95-99
    7.Kalteis T,Pforringer D,Herold T,et al.An experimental comparison of different devices for pulsatile high-pressure lavage and their relevance to cement intrusion into cancellous bone.Arch Orthop Trauma Surg,2007,127(10):873-877
    8.Dayton MR,Incavo SJ,Churchill DL,et al.Effects of early and late stage cement intrusion into cancellous bone.Clin Orthop,2002,405:439
    9.Breusch S,Heisel C,Muller J,et al.Influence of cement viscosity on cement interdigitation and venous fat content under in vivo conditions:a bilateral study of 13 sheep.Acta Orthop Scand,2002,73(4):409-15
    10.Dozier JK,Harrigan T,Kurtz WH,et al.Does increased cement pressure produce superior femoral component fixation? J Arthroplasty,2000,15(4):488-495
    11.Paul AS,Hodgkinson JR A new femoral cement restrictor.J Arthroplasty,1992,7(Supp):411-413
    12.Bulstra SK,Geesink RG,Bakker D,et al.Femoral canal occlusion in total hip replacement using a resorbable and flexible cement restrictor.J Bone Joint Surg(Br),1996,78(6):892-898
    13.Heisel C,Norman T,Rupp R,et al.In vitro performance of intramedullary cement restrictors in total hip arthroplasty.J-Biomech,2003,36(6):835-843
    14.Sharma S,Rymaszewski LA.Bone as a cement restrictor in elbow arthroplasty.Orthopedics,2004,27(8):810-812
    15.Eric LS,Kurt PW,et al.A comparison of distal canal restrictors in primary cemented femoral hip arthroplasty.Orthopedics,2004,27(8):847-851
    16.Wembridge KR,Hamer AJ.A prospective comparison of cement restrictor migration in primary total hip arthroplasty.J Arthroplasty,2006,21(1):92-96
    17.Freund KG,Herold N,Rock ND,et al.Poor results with the Shuttle Stop:resorbable versus nonresorbable intramedullar cement restrictor in a prospective and randomized study with a 2-year follow-up.Acta Orthop Scand,2003,74(1):37-41
    18.Schauss SM,Hinz M,Mayr E,et al.Inferior stability of a biodegradable cement plug.122 total hip replacements randomized to degradable or non-degradable cement restrictor.Arch Orthop Trauma Surg,2006,126(5):324-329
    19.Moran M,Heisel C,Rupp R,et al.Cement restrictor function below the femoral isthmus.Clin Ortho Relat Res,2007,458(5):111-116
    20.Heisel C,Mau H,Borchers T,et al.Fat embolism during total hip arthroplasty.Cementless versus cemented:a quantitative in vivo comparison in an animal model.Orthopade,2003,32(3):247-252
    21.Breusch SJ,Heisel C.Insertion of an expandable cement restrictor reduces intramedullary fat displacement.J Arthroplasty,2004,19(6):739-744
    22.Bourne RB,Rorabeck CH,Skutek M.,et al.The Harris Design-2 Total Hip Replacement Fixed with So-Called Second-Generation Cementing Techniques:A Ten to Fifteen-Year Follow-up.J Bone Joint Surg(Am),1998,80A(12):1775-1780
    23.Smith SW,Estok DMII,Harris WH.Total hip arthroplasty with use of second-generation cementing techniques:an eighteen-year-average follow-up study.J Bone Joint Surg(Am),1998,80A(11):1632-1640
    24.Mulroy WF,Estok,Daniel M,Harris WH.Total hip arthroplasty with use of so-called second-generation cementing techniques:a fifteen-year-average follow-up study.J Bone Joint Surg(Am),1995,77-A(12):1845-1852
    25.Ong A,Wong KL,Lai MB,et al.Early failure of precoated femoral components in primary total hip arthroplasty.J Bone Joint Surg(Am),2002,84A(5):786-792
    26.Kuehn KD,Ege W,Gopp U.Acrylic bone cements:mechanical and physical properties.Orthop Clin N Am,2005,36(1):29-39
    27.Kuehn KD,Ege W,Gopp U.Acrylic bone cements:composition and properties.Orthop Clin N Am,2005,36(1):17-28
    28.Iesaka K,Jaffe WI,Kummer FJ.Effects of preheating of hip prostheses on the stem-cement interface.J Bone Joint Surg(Am),2003,85(3):421-427
    29.Hsieh PH,Tai Cl,Chang YH,et al.Precooling of the femoral carnal enhances shear strength at the cement-prosthesis interface and reduces the polymerization temperature.J Orthop Res,2006,24(9):1809-1814
    30.Oishi CS,Walker RH,Colwell CW.The femoral component in total hip arthroplasty,six to eight-year follow-up of one hundred consecutive patients after use of a third-generation cementing technique.J Bone Joint Surg(Am),1994,76A(8):1130-1136
    31.赛佳明.骨水泥和骨水泥技术在人工髋关节置换中的临床应用价值及其原理.中国骨与关节损伤杂志,2007,22(6):526-528
    32.Kim YH,Kim JS.Cemented total hip arthroplasty using a fourth generation cement technique and polished femoral prosthesis.J Bone Joint Surg(Br),2002,84B(SuppⅢ):240.
    33.Santori FS,Santori N.Stem position with a fourth generation cementing technique.J Bone Joint Surg(Br),2002,84B(SuppⅢ):277-278.
    34.Almunir Y,Angus W.The effectiveness of the proximal femoral stem centraliser on the stem alignment in total hip replacement.Eur J Orthop Traum,2006,16(3):223-227
    35.Evans CR.,Philips SJ,Steele NA,et al.Cement mantle defects and the role of distal femoral centralising devices.Eur J Orthop Traum,2007,17(6):595-598
    36.Evans CR.,Steele NA,Jeys L,et al.The effect of distal femoral centralisers on the cement mantle.J Bone Joint Surg(Br),2004,86B(SuppⅠ),72.
    37.Munro N,Nicol M,Selvaraj S,et al.Femoral cement pressurization in hip arthroplastya comparison of 3 systems.J Arthroplasty.2007,22(6):893-901
    38.Spitzer AI,Evensen K,Vinograd I.The rationale for cemented THA.J Bone Joint Surg(Br),2005,87B(suppⅢ):377
    39.刘献祥,尉禹,王志彬,等.骨伤科生物力学研究.第1版.北京:中国科学技术出版社,2006:200-204
    40.Barrack RL,Mulroy RDJ,Harris WH.Improved cementing techniques and femoral component loosening in young patients with hip arthroplasty.J Bone Joint Surg(Br),2002,74B(3):385-389
    41.Mulroy WF,Harris WH.Revision total hip arthroplasty with use of so-called second-generation cementing techniques for aseptic loosening of the femoral component.J Bone Joint Surg(Am),1996,78:325-330