几种填料在生物接触氧化工艺中的应用特性及工艺改良研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水资源缺乏,水污染形势很严峻。目前,我国很多大城市已经对污水处理开始重视,也采取了一定的治理措施。由于现在很多中小城镇尚无污水处理设施,大量的生活污水、工业废水不经过处理就直接就近排入水体,给当地水体造成严重污染,所以为了实现人与自然的可持续发展,必须对所有的中小城镇的污水进行有效处理后排放。
     填料是生物接触氧化法的核心,填料的性能直接影响着水处理的效果,我们现在所运用的填料需要满足比表面积大、孔隙率大、经久耐用、生物稳定性好、价格便宜等要求。
     本实验研究反应器的启动运行及填料挂膜进行了研究比对,选取启动运行方式及填料挂膜法中比较好的填料进行实验,活性污泥接种法最先达到指定去除效果其次是投菌启动法,在投菌法启动最初加入的菌液中引入了较多的菌种,启动时间最长的是自然富集培养法,直至31日,COD去除率才达到61.51%。反应器的启动研究为后续开展实验提供了良好条件。
     对填料的特性进行研究,分别研究了不同填料的吸附吸附能力和不同水力条件对实验的影响。选择的吸附参数包括:亚甲兰吸附值、单宁酸吸附值、碘吸附值、氨氮吸附值及对有机物的吸附值,其中3#填料的吸附特性最好,且在反应器中运行效果也是最好的,这是由于3#填料表面粗糙度较高,有利于微生物附着生长,3#孔隙率也较大,为微生物的生长提供了充分空间,在填料表面的生物量比较大。通过以上实验有利于比较出填料的最佳类型以及评价填料好坏的重要影响因子,从而进一步展开实验,选取最优填料和反应器最好的启动方式进行实验,考察对污染物的去除效果。
     对工艺进行改良,在原来反应器的基础上做改进,把原来一段曝气生物接触氧化法变成两段曝气生物接触氧化法,中间和底部分别进行曝气,将反应器分为A段与B段,改变了反应器中水流流态,溶解增加,同时,微生物的分布及与废水中有机物污染物的接触概率等都发生变化。两段曝气生物接触氧化法中功能区的划分和生物群落分布划分明显,A段有机物浓度比较高,生长的优势菌种为异养型微生物,主要用于COD的降解;随着有机物浓度不断降低,B段主要培养的优势菌种为自养型微生物,主要用于去除氨氮以及进一步去除有机污染物,从而使两段曝气接触氧化法获得稳定、良好的出水水质。
The shortage of water and water pollution situation is very severe in our country. At present, importance has been attached to sewage treatment and measures have been taken as well in many big cities. Because there is no sewage treatment facilities in many small towns, a large amount of domestic sewage, industrial hydrated without treatment has been poored directly into the nearest body of water, which has caused serious pollution of local water, so in order to achieve the sustainable development of man and nature, sewage of small towns must be treated effectively before emission.
     Biological Contact Oxidation can also be called the "submerged bio-filter ".Filler provides place for the growth and reproduction of microb.Immersed in water, covered with biofilm,filler maks sewage and biofilm contacted . The metabolism of microb on the biofilm is to remove organic pollutants in wastewater, and consequently purify the sewage.
     Filler is the core of contact oxidation, and the performance of filler has a direct impact on effects of water treatment.Fillers used now are required to be with large surface area, porosity, durability ,great biological stability, low price and the other. The start-up of reactor and attaching biofilm on filler was compared in the study. Better start-up mode and attaching method was chosen to conduct experiments. The method of activated sludge inoculation reached removal requirements firstly, followed by a method of start-up with bacteria,which add in a large amount of bacteria through bacilli at the start-up period. Natural enrichment culture method was the longest. Up to 36 days, COD removal rate reached 62.14%. Good conditions were provided for the following experiments.
     The characteristics of the filler were studied , including the adsorption of different fillers and the impact of water on the experimental conditions. 3 # filler had the best adsorption characteristics and operating effects in the reactor was also the best, because the surface of 3 # filler was rough, which was beneficial for the growth of attaching micro-organisms. The porosity of 3 # was larger , providing ample space for microbial growth,with lager biomass on the filler surface. It is helpful to compare the best type of filler and evaluate the key factors on the goodness and badness of filler through the above experiments , and then conduct the experiment further, to select the best filler and the best way to start the reactor,and study the removal of pollutants .
     Improvements were made to the process. Based on the original reactor, the aeration bio-contact oxidation was improved into two aerated bio-contact oxidation. Two aerated bio-contact oxidation achieved a functional area and bio-phase classification. Dominant species cultured in a segment were heterotrophic microorganisms, mainly for the removal of COD; the main advantages of cultured bacteria in B section were autotrophic microorganisms, mainly for removal of ammonia and further removal of organic contaminants, which made two aerated bio-contact oxidation method obtain stable and good water quality.
引文
[1]王志勇,彭福全,沃留杰,等.生物接触氧化技术在河道治理中的研究进展[J].市政技术, 2009,27(002):171-173.
    [2]王阳. UASB处理猪粪废水启动试验研究[J].气象与环境学报, 2007,23(2):34r-37r.
    [3]肖羽堂,许建华.生物接触氧化工艺应用评析[J].净水技术, 1998(001):31-34.
    [4] Chudoba P, Pujol R. A Three-Stage Biofiltration Process: Performances of a Pilot Plant[J]. Water Science and Technology, 1998,38(8-9):257-265.
    [5] Boller M, Gujer W, Tschui M. Parameters Affecting Nitrifying Biofilm Reactors[J]. Water Science and Technology, 1994,29(10-11):10-11.
    [6] Abou-Elela S I, Kamel M M, Fawzy M E. Biological Treatment of Saline Wastewater Using a Salt-Tolerant Microorganism[J]. Desalination, 2010,250(1):1-5.
    [7]韩治成,陈艳华.生物接触氧化法处理生活污水[J].环境卫生工程, 2004,12(3):162-163.
    [8]符颉,金艳,杨虎.生物接触氧化法在生活污水处理中的应用[J].云南冶金, 2010,1.
    [9]丁振宇,黎忠,刘贺. EGSB+生物接触氧化工艺处理啤酒废水[J].安全与环境工程, 2011,18(001):18-20.
    [10]袁青彬,庞金钊,苗飞.组合化学混凝-水解酸化-好氧-生物活性炭工艺处理高盐度钻井废水[J]. Technology of Water Treatment, 2010,36(12).
    [11]李晓晨,吴成强,杨敏,等.用于生物接触氧化工艺的填料特性比较研究[J].环境污染治理技术与设备, 2005,6(1):44-57.
    [12] Anthonisen A C, Loehr R C, Prakasam T, et al. Inhibition of Nitrification by Ammonia and Nitrous Acid[J]. Journal (Water Pollution Control Federation), 1976,48(5):835-852.
    [13]申颖洁,吴光夏,续曙光,等.新型填料曝气生物滤池去除氮化合物的效果[J].中国给水排水, 2009(009):83-86.
    [14]孙霞,王清杰,纪轶.填料对曝气生物滤池影响的概述[J].中小企业管理与科技, 2010(003):159-160.
    [15]张守彬,邱立平,杜茂安,等. 3种填料曝气生物滤池处理效能及硝化特性对比[J].哈尔滨工业大学学报, 2009,41(002):57-60.
    [16]程金兰.填料物理化学特性对留着性能的影响[D].南京林业大学, 2009.
    [17]刘建付,谢益民.阳离子松香基聚氨酯型施胶剂的合成及应用[J].湖南造纸, 2009(001):15-17.
    [18] Gill R A, Sanders N D. Precipitated Calcium Carbonate-Cationic Starch Binder as Retention Aid System for Papermaking[Z]. Google Patents, 1990.
    [19] Capdeville B. Application of Nitrifying Biofilms Reactor in Wastewater Nitrification Process, 1994[C].
    [20] Han S, Yue Q, Yue M, et al. Effect of Sludge-Fly Ash Ceramic Particles (Sfcp) On Synthetic Wastewater Treatment in an a/O Combined Biological AeratedFilter[J]. Bioresource Technology, 2009,100(3):1149-1155.
    [21] Delatolla R, Berk D, Tufenkji N. Rapid and Reliable Quantification of Biofilm Weight and Nitrogen Content of Biofilm Attached to Polystyrene Beads[J]. Water Research, 2008,42(12):3082-3088.
    [22]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].中囯建筑工业出版社, 2000.
    [23]唐泽燕,陈港,张宏伟,等.填料基本特性对留着和成纸强度的影响[J].造纸科学与技术, 2003,22(006):51-52.
    [24]张自杰,张忠祥.废水处理理论与设计[J].北京:中国建筑工业出版礼, 2003.
    [25]何健洪. CASS工艺处理屠宰废水的工程应用[J].工业水处理, 2009(006):86-88.
    [26] Black A S, Waring S A. Effect of Nitrate Leaching in Oxisol Columns On 15 N Abundance and Nitrate Breakthrough Curves[J]. Communications in Soil Science and Plant Analysis, 1979,10(3):521-529.
    [27]刘春晓.生物接触氧化工艺的启动及处理效能研究[D].长安大学长安大学环境工程, 2010.
    [28]高俊发.管锥形填料生物床特性及应用研究[D].西安建筑科技大学, 2006.
    [29]郑元景,沈光范,邬扬善.生物膜法处理污水[M].中国建筑工业出版社, 1983.
    [30]纳丽萍.生物接触氧化工艺处理生活污水填料性能试验研究[D].长安大学长安大学市政工程, 2008.
    [31]王洪禧,路文芳,刘俊良,等.接触氧化/BAF工艺处理城市生活污水的挂膜研究[J].中国给水排水, 2008,24(21).
    [32] Loukidou M X, Zouboulis A I. Comparison of Two Biological Treatment Processes Using Attached-Growth Biomass for Sanitary Landfill Leachate Treatment[J]. Environmental Pollution, 2001,111(2):273-281.
    [33]郑土章,王诗发. ABR-生物接触氧化工艺处理制药废水[J].广东化工, 2008,35(007):101-103.
    [34]吴国旭,杨永杰,王旭.生物接触氧化法及其变形工艺[J].工业水处理, 2009,29(6).
    [35] Borregaard V R. Experience with Nutrient Removal in a Fixed-Film System at Full-Scale Wastewater Treatment Plants[J]. Water Science and Technology, 1997,36(1):129-137.
    [36] Guglielmi G, Chiarani D, Judd S J, et al. Flux Criticality and Sustainability in a Hollow Fibre Submerged Membrane Bioreactor for Municipal Wastewater Treatment[J]. Journal of Membrane Science, 2007,289(1-2):241-248.
    [37] Cao H B, Li X G, Wu J C, et al. Simulation of the Effects of Direct Electric Current On Multispecies Biofilms[J]. Process Biochemistry, 2003,38(8):1139-1145.
    [38]祖波,张代钧,卢培利,等.普通活性污泥富集好氧氨氧化菌试验[J].重庆大学学报(自然科学版), 2005,28(2):1O.
    [39]鲜海军,屈安贵.利用高效脱色降解菌和活性污泥接种处理印染废水的比较研究[J].环境污染与防治, 1993,15(005):8-11.
    [40]高洋,刘东心.现代给水处理新技术的应用[J].黑龙江科技信息, 2008,17.
    [41]陈金声,史家梁.硝化速率测定和硝化细菌计数考察脱氮效果的应用[J].上海环境科学, 1996,15(003):18-20.
    [42]李探微,彭永臻,陈志根,等.活性污泥法的生物泡沫形成和控制[J].中国给水排水, 2001,17(4):73-76.
    [43]王冠平,谢曙光,施汉昌,等.预处理生物滤池挂膜的影响因素[J]. China Water \& Wastewater, 2003,19(z1).
    [44]邱波,郭静,邵敏,等. ABR反应器处理制药废水的启动运行[J].中国给水排水, 2000,16(8):42-44.
    [45]岳昕,林伟国.居住小区生活污水处理的工程实践[J].生态科学, 2003,22(002):168-170.
    [46]聂艳秋,周青.活性污泥中微生物种群特性及对底物降解的影响研究[J].中国生态农业学报, 2005,13(4):25-28.
    [47]李盈利.天津市外环河投菌方法的模拟研究[D].天津大学, 2007.
    [48]李晓晨,吴成强,杨敏,等.用于生物接触氧化工艺的填料特性比较研究[J].环境污染治理技术与设备, 2005,6(1):44-57.
    [49]刘翔,高廷耀.生物接触氧化法处理污水的一种新型填料—悬浮填料[J].重庆环境科学, 1999,21(002):42-44.
    [50]刘彧,张晓红,陆慧琪,等.生物接触氧化工艺中填料的研究进展[J].吉林化工学院学报, 2008,25(004):32-35.
    [51] Heng-Yu A, Qun-Hui W, Wei-Min X, et al. Development and Application of Biological Package Media Used in Contact Oxidation Tank [J][J]. Water \& Wastewater Engineering, 2005,2.
    [52] Lei W, Shucheng L. Study On Removing Ammonium Nitrogen From Wastewater by Immobilized Nitrobacteria.[J][J]. Chinese Journal of Enviromental Science, 1997,2.
    [53] Qing W, Shanfeng Z. The Application of Immobilized Microorganism Technology in Wastewater Treatment [J]. Environmental Science and Management, 2008,11.
    [54]周艳凤,翁燕波,肖国起.高锰酸盐指数测定条件控制[J].中国环境监测, 1994,10(2):39-40.
    [55] Wu H, Wang S, Kong H, et al. Performance of Combined Process of Anoxic Baffled Reactor-Biological Contact Oxidation Treating Printing and Dyeing Wastewater[J]. Bioresource Technology, 2007,98(7):1501-1504.
    [56] Jetten M S M, Horn S J, van Loosdrecht M. Towards a More Sustainable Municipal Wastewater Treatment System[J]. Water Science and Technology, 1997,35(9):171-180.
    [57] Jiao Y, Zhao Q, Jin W, et al. Bioaugmentation of a Biological Contact Oxidation Ditch with Indigenous Nitrifying Bacteria for in-Situ Remediation of Nitrogen-Rich Stream Water[J]. Bioresource Technology, 2010.
    [58]王国平,张林军,黄晓菊,等.曝气生物滤池处理生活污水主要参数试验研究[J].徐州建筑职业技术学院学报, 2004,4(003):24-26.
    [59]郭静波.生物菌剂的构建及其在污水处理中的生物强化效能[D].哈尔滨工业大学, 2010.
    [60] Molinuevo B, Garc I A M C, Karakashev D, et al. Anammox for AmmoniaRemoval From Pig Manure Effluents: Effect of Organic Matter Content On Process Performance[J]. Bioresource Technology, 2009,100(7):2171-2175.
    [61]邱珊.曝气生物滤池处理城市生活污水的特性研究及工艺改良[D].哈尔滨工业大学,2010.
    [62]梁捷明.重组毕氏酵母发酵过程的代谢—氧传递组合模型[D].上海交通大学, 2007.
    [63] Abou-Elela S I, Kamel M M, Fawzy M E. Biological Treatment of Saline Wastewater Using a Salt-Tolerant Microorganism[J]. Desalination, 2010,250(1):1-5.
    [64]姜安玺,曹相生.耐冷菌的分离及在低温污水处理中的应用研究[J].哈尔滨工业大学学报, 2002,34(004):563-565.
    [65] Huang R X, Li D, Li X K, et al. Positive Role of Nitrite as Electron Acceptor On Anoxic Denitrifying Phosphorus Removal Process[J]. Chinese Science Bulletin, 2007,52(16):2179-2183.
    [66]张安龙,李颖,崔炜.水解-接触氧化—砂滤工艺处理高浓果汁加工废水[J].工业水处理, 2006,26(003):91-92.
    [67]张志扬,李江华,贾丽云,等. UASB-生物接触氧化-絮凝沉淀法处理皂素废水$\Xi$[J].城市环境与城市生态, 2003.
    [68]杜昱.水解—接触氧化工艺处理屠宰废水[J].环境卫生工程, 2005,13(6).
    [69]李先宁,宋海亮,吕锡武.反应器分区提高生物接触氧化硝化性能的研究[J].中国环境科学, 2006,26(001):62-66.
    [70] Raja Priya K, Sandhya S, Swaminathan K. Kinetic Analysis of Treatment of Formaldehyde Containing Wastewater in Uafb Reactor[J]. Chemical Engineering Journal, 2009,148(2-3):212-216.
    [71]张晓宁.两级生物接触氧化+MBR组合工艺处理高氨氮废水试验研究[D].长安大学长安大学环境工程, 2010.
    [72] Li G Y, Wang K M, Qiu B Q. Relationship Between Performance of Biological Aerated Filter and its Height[J]. Environmental Pollution and Control-Hangzhou-, 2002,24(1):26-28.
    [73]徐绍明.水解—两级接触氧化工艺处理啤酒废水的生产性试验研究[D].哈尔滨工业大学, 2009.
    [74] Qiu I, Yang X L. The Biological Promotion Effect of a New Biological Promotive Ceramsite[J].武汉理工大学学报:材料科学英文版, 2010(004):604-608.