包埋型纳米铁(NZVI)的制备及其去除废水中铬(Cr(Ⅵ))的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于含铬废水(主要为Cr(VI))的不合理排放,造成地表水环境的严重污染,甚至会进一步危害动物、植物和人类的健康。近年来,将纳米零价铁(Nanoscale zero-valent iron,NZVI)用于Cr(VI)污染水体的治理是一种新的污染控制技术,然而,在实际应用中NZVI仍然存在易团聚、易被氧化和难于工程实施等问题。针对这些问题,本论文通过柠檬酸改性和壳聚糖(CS)球包埋,成功制备出了有很好的分散性能和稳定性能的NZVI材料,然后通过碳纤维和表氯醇改性提高CS-NZVI球的机械强度。主要研究内容如下:
     通过柠檬酸表面改性的NZVI粒子平均粒径为65.2 nm,有很好的稳定性。随着Cr(VI)初始浓度、温度、pH值和腐殖酸(Humic acid, HA)初始浓度升高,NZVI对Cr(VI)去除效率降低;NZVI投加量的增加,去除率也随之增加。NZVI去除Cr(VI)符合一级反应动力学方程。
     制备壳聚糖-纳米铁(CS-NZVI)球的比较理想条件为:加热温度55℃,加热时间4h,出样口与NaOH液面之间的高度h为10cm,醋酸的浓度0.5%,CS的浓度5.0 g/L,NaOH的浓度选为0.5mol/L。CS-NZVI球为规则均一的黑色球体,球的粒径大约为3.1mm。CS-NZVI球内部具有大小不均一孔状结构,孔径大小分布在9.5-108.8μm之间,孔径尺寸的平均值为42.6μm。CS-NZVI球中的NZVI颗粒有很好的空气稳定性和分散性。CS-NZVI球对Cr(VI)的去除率受NZVI投加量、pH、Cr(VI)初始浓度和温度影响。在Cr(VI)初始浓度为20 mg/L、pH=3.9、NZVI投加量为5.0 g/L和20℃条件下,Cr(VI)去除率达到99.8%。
     CS-NZVI球对Cr(VI)的吸附是一个吸热熵增的过程,去除机理包括CS对Cr(VI)的吸附富集和NZVI还原去除Cr(VI)。CS-NZVI球对Cr (VI)的去除率比NZVI颗粒的略微低一些。CS-NZVI球去除Cr(VI)符合一级反应动力学方程。Freundlich等温吸附方程能够更好地对其进行描述,这表明CS-NZVI球对Cr(VI)的吸附是多层吸附。
     通过碳纤维和表氯醇对新制备的CS-NZVI球进行改性,提高了其机械强度。随着Cr(VI)初始浓度和pH值升高,ECH-CS-NZVI球和碳纤维CS-NZVI球对Cr(VI)去除效率降低;随着溶液温度和NZVI投加量的增加,去除率也随之增加。在相同条件下,ECH-CS-NZVI球对Cr(VI)的去除率与CS-NZVI没有明显的差别,而碳纤维CS-NZVI球对Cr(VI)的去除率与CS-NZVI的相比则有明显的降低,所以采用ECH提高CS-NZVI球的机械强度比较理想。
Due to the unreasonable discharge of wastewater, surface water was contaminated by hexavalent chromium (Cr (VI)). Cr (VI) is a potential carcinogen and often causes both short term and long term adverse effects to humans, animals, and plants. As a result, removal of Cr (VI) from surface water has caused more and more attention from researchers. In recent years, nanoscale zero-valent iron (NZVI) has been widely introduced into water treatment processes to remove numerous heavy metals. However, the agglomeration, oxidation by non-target compounds and higher mobility in the aqueous solution are the major challenges for NZVI use in environmental remediation. To overcome these problems, entrapped Fe0 nanoparticles have been successfully prepared. NZVI coated by citric acid and chitosan (CS) beads shows good dispersibility and stability. Carbon fiber (CF) and epichlorohydrin (ECH), were used to enhance the mechanical strength of CS-NZVI beads. The main objectives of the study are to:
     NZVI modified by citric acid are nearly spherical in shape and uniform in size with a mean diameter of 65.2 nm. NZVI particles are better protected by citric acid and oxidation is hindered. The reduction capacity for Cr (VI) increases with increasing temperature and NZVI dosage but decreases with the increase in initial concentration of Cr (VI) and humic acid (HA) and pH values. HA have a better ability to chelate iron ions or oxide surface and will hinder the formation of Fe(III)-Cr(III) precipitate. The chelation reaction will reduce reactive sites of NZVI available to Cr (VI), so HA adversely affects Cr (VI) removal from the wastewater.
     The optimum conditions of preparation of CS-NZVI beads are: an initial acetic acid solution concentration of 0.5 % (v/v), an initial NaOH concentration of 0.5 M, an initial CS concentration of 5.0 g/L, a height between the exit of the sample and the NaOH surface of 10 cm, 55℃and 4 h. CS-NZVI beads are black, nearly spherical in shape and uniform in size with a mean diameter of 3.1 mm. CS-NZVI beads are macroporous and the pore sizes in the CS-NZVI beads are heterogeneous. The pore size ranges from 9.5 to 108.8μm with an average aperture size of around 42.6μm. Entrapment of NZVI in CS beads prevents the particles from aggregation and oxidation. The Cr (VI) removal rates depended on the dosage of NZVI, the pH value, the initial concentration of Cr (VI) and the reaction temperature. With an initial Cr (VI) concentration of 20 mg/L, a NZVI dosage of 5.0 g/L, a solution pH of 3.9 and 20℃, the removal rate was more than 99.8% after 1 h.
     Cr (VI) removal by CS-NZVI beads is an endothermic process. The removal mechanism may include both physical adsorption of Cr (VI) on the surface or inside of CS-NZVI beads and subsequent reduction of Cr (VI) to Cr (III). The results indicate that there is no significant difference between the reaction rates of bare NZVI and entrapped NZVI. Cr (VI) reduction kinetics follows a pseudo-first-order rate expression. Freundlich isotherm agrees better than Langmuir isotherm with experimental data, which indicates that the adsorption of Cr (VI) by CS-NZVI beads is heterogeneous adsorption.
     Through either physical or chemical modifications by carbon fiber (CF) and epichlorohydrin (ECH), the mechanical strength of CS-NZVI beads were enhanced. The reduction capacity for Cr (VI) increases with increasing temperature and NZVI dosage but decreases with the increase in initial concentration of Cr (VI) and pH values. At the same condition, the results indicate that there is no significant difference between the reaction rates of CS-NZVI beads and ECH-CS-NZVI. However, the reaction rates of CF-CS-NZVI beads are obvious lower than these of CS-NZVI. ECH may be a better choice to enhance the mechanical strength of CS-NZVI beads.
引文
[1]王大纯.水文地质学基础.北京,地质出版社,1998.
    [2] http://stock.sohu.com/20100604/n272566600.shtml.
    [3]柴立元,王云燕,邓荣.水环境中铬的存在形态及迁移转化规律[J].工业安全与环保,2006,8(32):1-3.
    [4] Fendorf S., Wielinga B.W., Hansel C.M. Chromium transformations in natural environments: the role of biological and abiological processes in chromium (VI) reduction. Int. Geol. Rev., 2000, 42:691-701.
    [5]刘婉,李泽琴.水中铬污染治理的研究进展[J].广东微量元素科学,2007,14(9):5-9.
    [6]汤克勇.制革铬污染的防治方法综述[J].中国皮革,1998,27(9):15-18.
    [7]舒丽萍,刘卫艳,周建萍.某电镀厂下游水源六价铬污染情况调查[J].浙江医学,2009,21(12):45-46.
    [8]马青兰,刘秀艳,吕俏.电镀六价铬废水的实用处理工艺研究及应用[J].环境污染与防治,2006,28(12):947-949.
    [9]郝瑞荣,韩俊文.动物营养必需微量元素铬的研究进展[J].四川畜牧兽医,2002,29(137):52-54.
    [10]陆昌淼,马世豪,张忠祥.污水综合排放标准详解.北京,中国标准出版社,1991:55-56.
    [11]谢瑞文.铬在渔业中应用的研究进展[J].南方水产,2006,2 (4):75-79.
    [12] Farag A.M.,May T.,Marty G.D.,et a1.The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha) [J].Aquat Toxicol, 2006, 76(3-4): 246-257.
    [13]胡家会,张永忠,张培玉,等.铅、铬和硒对玫瑰无须鲍毒性的初步研究[J].经济动物学报,2004,8(3):50-53.
    [14]蔺玉华,卢建民,梁智龙,等.铬对鲤、草鱼胚胎发育及鱼苗的毒性影响[J].水产学杂志,2000,13(2):32-35.
    [15]黄展胜,郁建拴,苏循荣,等.铬对文昌鱼的毒性效应和生长的影响[J].海洋环境科学,1990,9(3):22-26.
    [16]周红卫,施国新,徐勤松,等.Cr3+和Cr6+对水花生几种生理生化指标的影响比较[J].农村生态环境,2002,18(4):35-40.
    [17]周易勇,刘同仇,邓波儿.六价铬污染对小白菜产量、养分吸收及若千生理指标的影响[J].环境科学学报,1990,10(2):255-257.
    [18]任安芝,高玉葆.铅、镉、铬单一和复合污染对青菜种子萌发的生物学效应[J].生态学杂志,2000,19(1):19-22.
    [19]陈庆华,王永,陈庆丰.铬对黄瓜种子萌发及早期生长发育的影响[J].广东农业科学,2009,8:75-77.
    [20]张晓薇,刘博.铬对农作物生长的影响[J].环境科技,2010,23(2):48-51.
    [21]李志刚,李素丽,黄海连,等.铬对生活污水中氮磷的植物净化效果及体内氮磷含量的影响[J].生态环境学报,2010,l9(2):286-290.
    [22]杨和连,栗黎明,胡俊美.两个豇豆品种在不同浓度铬处理下的苗期生长表现[J].南方农业,2009,1:53-54.
    [23]高扬,辛树权,杨宗.重铬酸钾对大蒜根尖细胞有丝分裂的影响[J].安徽农业科学,2009,37(28):13557-13559,13573.
    [24]张昊,谭欣,赵林.废水中重金属离子的光催化还原研究进展.天津理工学院学报,2004,20(3):28-32.
    [25]赵林,阎博,张建平,等.氮污染浅层地下水修复的微生物方法实验研究.环境科学学报, 2004, 24(3):504-507.
    [26]蔡宏道.环境污染与卫生检测[M].北京,人民卫生出版社,1981,67-72.
    [27]董春莲,吕林萍.太原电镀厂铬鼻病10年动态观察[J].卫生与职业病,1994,20(4):240-241.
    [28]胡望均.常见有毒化学品环境事故应急处理技术与监测方法[M].北京:中国环境科学出版社,1993,75-77:102-109.
    [29]任瑞美,李中帅,张忠祥.职业性铬对工人生育影响的调查.中国公共卫生管理,2003,19(1):82-83.
    [30]赵彩荣,范文元.凹凸棒石粘土吸附剂处理含铬(Cr6+)废水的研究[J].水处理技术,1990,16(6):422-427.
    [31]成思危,丁翼,杨春荣.铬盐生产工艺[M].北京,化学工业出版社,1987:282-314.
    [32] Vivaraghavan T. Use of peat in pollution control [J]. Intern. J. Environ. Studies, 1991, 37:263-269.
    [33] Bosinco S., Roussy J., Guibal E. et al. Interaction mechanisms between hexavalent chromium and corncob[J]. Environ.Technol.,1996,17(1): 55-62.
    [34] Tan W.T., Ooi S.T., Lee C.K. Removal of chromium (VI) from solution by coconut husk and palm pressed fibres. Environ. Technol., 1993, 14: 277-282.
    [35]陈任翔.粉煤灰吸附法处理含铬废水[J].工业用水与废水,2006,37(5):47-49.
    [36]胡凯,季永盛.含铬废水治理技术及应用现状[J].中国资源综合利用,2005,3:28-29.
    [37]孟祥和,胡国飞.重金属废水处理.北京,化学工业出版社,2001:1-12.
    [38]马青兰,刘秀艳,吕俏.电镀六价铬废水的实用处理工艺研究及应用[J].环境污染与防治,2006,28(12):947-949.
    [39] Lambert J. Treatment of solutions containing trivalent chromium by electrodialysis [J].Desalination,2006,191(1):100-110.
    [40]耿兵.壳聚糖稳定纳米铁的制备与修复地下水中六价铬污染的研究[博士学位论文],天津:南开大学,2009.
    [41]苏海佳,贺小进,谭天伟.球形壳聚糖树脂对含重金属离子废水的吸附性性能研究[J].北京大学学报,2003,30(2):19-22.
    [42]罗固源.水污染物化控制技术与理论[M].北京,化学工业出版社,2003:218-235.
    [43]王娟娟,马晓燕,刘海林,等.废铬治理技术研究进展[J].西部皮革,2003,10:43-45.
    [44]罗固源.水污染物化控制工程[M].北京,高等教育出版社,2006:110-112.
    [45]严忠,丁瑄才,刘福彦.用藏膜技术提取铬、汞[J].环境科学,1982,3(2):1-5.
    [46]张瑞华.液膜分离技术[M].南昌,江西^民出版杜,1984,a:21—22,b:215.
    [47]王靖芳,冯彦琳,孙双红,等.乳状液膜法迁移及分离铬(VI)的研究[J].环境化学,1998,17(1):85-89.
    [48]李硕文,陈扬,万伟.液膜法去除水中Cr(VI)的研究[J].环境科学与技术,1998,1:26-29.
    [49]杨璐,胡澄.铬污染水体修复技术研究进展[J].广西轻工业,2008,7:96-97.
    [50]屈艳芬,叶锦韶,尹华,等.生物吸附剂-活性污泥法吸附处理含铬电镀废水[J].生态科学,2006,25(4):335-338.
    [51]曹抗美,史建福,李克祥,等.活性污泥法处理生活污水过程中铬的变化规律研究[J].四川环境,1995,14(1):14-19.
    [52]尹华,叶锦韶,彭辉,等.酵母菌-活性污泥法吸附处理含铬电镀废水的性能[J].环境科学,2004,25(3):61-64.
    [53]李军强.活性污泥对重金属Cr6+和Cu2+的吸附研究[J].山西化工,2009,29(4):66-68.
    [54]柴立元,刘恢,闵小波,等.改性活性污泥处理含铬废水[J].有色金属学报,2005,15(9):1458-1464.
    [55]李倩瑚,刘明新,颜素珠,等.水生维管束植物对水体铬污染的反应和净化作用[J].暨南大学学报,199l,12(3):79-83.
    [56]张学洪,罗亚平,黄海涛,等.一种新发现的湿生铬超积累植物-李氏禾(Leersia hexandra Swartz)[J].生态学报,2006,26(3):950-953.
    [57] Baker A.J.M. Terrestrial higher plants which hyperaccumulate metallic elements a review of their distribution, ecology and phy-to-chemistry [J].Bio-recovery, 1989, 1:81-126.
    [58]由文辉,刘淑媛,钱晓燕.水生经济植物净化受污染水体研究[J].华东师范大学学报(自然科学版),2000,1:99-102.
    [59]张立德.奇妙的纳米世界[M].北京,化学出版社,2004,3:10-11.
    [60]耿保友.新材料科技论[M].杭州,浙江大学出版社,2007,7:175-176.
    [61]何燕,高月,封文江.纳米科技的发展与应用[J].沈阳师范大学学报(自然科学版),2010,28(2):211-213.
    [62]方秀苇.可反应性纳米SiO2/尼龙1010复合材料的制备和力学性能[J].材料研究学报,2008,5:521-525.
    [63]李泉.纳米粒子[J].化学通报,1995,6:29-32.
    [64]杨迈.半导体纳米粒子的基本性质及光电化学特性[J].化学通报,1997,1:20-24.
    [65] Hassan M.H.A. Nanotechnology : small things and big changes in the developing world [J]. Science, 2005, 309(5731): 65-66.
    [66]张金安,李金焕,张弸.纳米材料的性质、功能及其建构方法[J].齐齐哈尔大学学报,1998,14(2):77-81.
    [67]周小菊,张嫦,刘东,等.纳米材料的性质及应用[J].西南民族学院学报(自然科学版),2002,28(4):566-569.
    [68] Ponder S.M., Darab J.G., Bucher J., et al. Surface chemistry and electrochemistry of supported zero-valent iron nanoparticles in the remediation of aqueous metal contaminants [J]. Chemistry of Materials, 2001, 13(2):479-486.
    [69]程荣,王建龙,张伟贤.纳米金属铁降解有机卤化物的研究进展[J].化学进展,2006,18(1):93-99.
    [70] Cordon C., Yang C., Lee H. L. Chemical reduction of nitrate by nanosized iron: kinetics and pathways [J]. Water Research, 2005, 39: 884-894.
    [71]田凯勋,戴友芝,张良长.超声波/零价铁降解对氯苯胺机理研究[J].环境工程学报,2008, 28(2):331-336.
    [72] Zhang P.F., Tao X., Li Z.H., et al. Enhanced perchloroethylene reduction incolumn systems using surfactant modified zeolite/zero-valent iron pellets [J]. Environ. Sci. Technol., 2002, 36(16):3597-3603.
    [73] Tian X.K., Dai Y.Z., Zhang L.C. The mechanism of degradation of Song H, Carray E R. Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions [J].Environ. Sci. Technol., 2005, 39(16):6237-6245.
    [74] Agrawal A., Tratnyek P.G. Reduction of nitro aromatic compounds by zero-valent iron metal [J]. Environ. Sci. Technol., 1996, 30:135-160.
    [75] Karabelli D., Uzum C., Shahwan T., et al. Batch Removal of Aqueous Cu(Ⅱ) Ions Using Nanoparticles of Zero-Valent Iron: A Study of the Capacity and Mechanism of Uptake[J]. Ind. Eng. Chem. Res., 2008, 47: 4758-4764.
    [76] Yuan C., Lien H.L. Removal of Arsenate from Aqueous Solution Using Nanoscale Iron Panicles [J]. Water Quality Research Journal of Canada, 2006, 41(2): 210-215.
    [77] Kanel S.R., Manning B.A., Charlet L., et al. Removal of arsenic (Ⅲ) from groundwater by nanoscale zero-valent iron[J]. Environ. Sci. Technol., 2005, 39: 1291-1298.
    [78] Wang C.B., Zhang W.X. Synthesizing nanoscale iron particles for rapid complete dechlorination of TCE and PCBs [J]. Environ. Sci. Technol., 1997, 31: 2154-2156.
    [79] Zhang W.X. Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res., 2003, 5:323-332.
    [80] Kustov L., Kirichenko O., Finshina E. N.D. Zelinsky Institute of Organic Chemistry. Reactive metal nanoparticles for environmental remediation: fundamentals and applications. A review of the state of the art related to the use of metal nanoparticles in environmental remediation. ISTC Project No.3885, 2009, Unpublished draft.
    [81] Nurmi J.T., Tratayek P.G., Baer V.R., et al. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics [J]. Environ. Sci. Technol., 2005(39):1221-1230.
    [82] Lien H.L., Zhang W.X. Hydrodechlorination of Chlorinated Ethanes by Nanoscale Pd/Fe Bimetallic Particles [J]. Journal of Environmental Engineering, 2005, 131(1): 4-10.
    [83] Choe S., Lee S.H. Rapid reductive destruction of hazardous organic compoundsby nanoscale Fe [J]. Chemosphere, 2001, 42: 367-372.
    [84] Choe S., Chang Y.Y., Hwang K.Y., et al. Kinetics of reductive denitrification by nanoscale zero-valent iron [J]. Chemosphere, 2000, 41(8):1307-1311.
    [85] He F. and Zhao D. Y. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water [J]. Environ. Sci. Technol., 2005, 39:3314-3320.
    [86] He F., Zhao D. Y., Liu J. C., et al. Stabilization of Fe/Pd Nanoparticles with Sodium Carboxymethyl Cellulose for Enhanced Transport and Dechlorination of Trichloroethylene in Soil and Groundwater[J]. Ind. Eng. Chem. Res., 2007, 46:29-34.
    [87]曹茂盛,刘海涛,陈玉田,等.气-液反应法合成包覆型纳米铁粒子[J].功能材料,2003,34 (2):146-178.
    [88]赵新清,梁勇,胡壮麒.纳米铁微粒表面氧化物的结构及磁性[J].金属学报,2001,37(6):633-636.
    [89]那娟娟,冉均国,苟立,等.超声波/纳米铁粉协同脱氯降解四氯化碳[J].化工进展,2005,24(12):1401-1404.
    [90]程荣、王建龙,张伟贤.纳米Fe0颗粒对三种单氯酚的降解[J].环境科学,2006,26(6):698-702.
    [91]李铁龙,康海彦,刘海水,等.纳米铁的制备及其还原硝酸盐氮的产物与机理[J].环境化学,2006,25(3):294-296.
    [92]张环,金朝晖,韩璐,等.负载型纳米铁化学反硝化法去除硝酸盐氮的研究[J].中国给水排水,2006,22(15):83-87.
    [93] Kang H. Y., Li T. L., Xiu Z. M., et al. Denitrification of nitrate using bimetallic Ni/Fe nanoparticles [J]. Symposia paper of ACS, 2006, 10(14):72-75.
    [94] Wang W., Jin Z. H., Li T. L., et al. Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal [J]. Chemosphere, 2006, 65:1396-1404.
    [95]李铁龙,金朝晖,刘海水,等.Span/Tween混合表面活性剂微乳液制备纳米铁及脱硝研究[J].高等学校化学学报,2006,27(4):672-675.
    [96] Quinn J., Geiger C., Clausen C., et al. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron [J]. Environ. Sci. Technol., 2005, 39:1309-1318.
    [97] Manning B.A., Kiser J.R., Kwon H., et al. Spectroscopic Investigation of Cr(Ⅲ)- and Cr(VI)- Treated Nanoscale Zerovalent Iron[J]. Environ. Sci.Technol., 2007, 41:586-592.
    [98] Li X.Q., Cao J.S., Zhang W.X. Stoichiometry of Cr (VI) Immobilization Using Nanoscale Zerovalent Iron (nZVI): A Study with High-Resolution X-Ray Photoelectron Spectroscopy (HR-XPS)[J]. Ind. Eng. Chem. Res., 2008, 47: 2131-2139.
    [99] Ponder S.M., Darab J.C., Mallouk T. E. Remediation of Cr (VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron [J]. Environ. Sci. Technol., 2000, 34:2564-2569.
    [100] Geng B., Jin Z.H., Li T.L., et al. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles [J]. Chemosphere, 2009, 75: 825-830.
    [101] Liu Q.Y., Bei Y.L., Zhou F. Removal of lead (II) from aqeous solution with amino-functionalized nanoscale zero-valent iron [J]. Central European Journal of Chemistry, 2009,7(1):79-82.
    [102] Zhang X., Lin S., Lu X.Q., et al. Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron[J]. Chemical Engineering Journal,doi:10.1016/j.cej.2010.07.056.
    [103] Kanel S. R., Nepal D., Manning B., et al. Transport of surface-modified iron nanoparticles in porous media and application to arsenic (Ⅲ) remediation [J].J Nanopart. Res., 2007, 9:725-735.
    [104] Giasuddin A.B., Kanel S.R., Choi H. Adsorption of Humic Acid on Nanoscale Zerovalent Iron and Its Effect on Arsenic Removal. Environ. Sci. Technol., 2007, 41:2022-2027.
    [105] Kanel S.R., Grenèche J.Mark., Choi H. Arsenic(V) Removal from Groundwater Using Nano Scale Zero-Valent Iron as a Colloidal Reactive Barrier Material[J]. Environ. Sci. Technol., 2006, 40 (6): 2045–2050.
    [106] Weber F.A., Hofacker A.F., Voegelin A., et al. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil [J]. Environ. Sci. Technol., 2010, 44(1):116-22.
    [107] Li X.Q., Brown D.G., Zhang W.X. Stabilization of biosolids with nanoscale zero-valent iron (nZVI) [J]. Journal of Nanoparticle Research, 2007, 9(2): 233-243.
    [108] Karabelli D., Uzum C., Shahwan T., et al. Batch Removal of Aqueous Cu(Ⅱ) Ions Using Nanoparticles of Zero-Valent Iron: A Study of the Capacity and Mechanism of Uptake[J]. Ind. Eng. Chem. Res., 2008, 47: 4758-4764.
    [109] Zhang Y.Q., Franfenberger W.T. Removal of selenate in river and drainage waters by citrobacter braakii enhanced with zero-valent iron[J].J. Food Chem.,2006,54:152-156.
    [110] Liu S.J., Jiang B., Li X.G., et al. Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier [J]. Water Research, 2006, 40:3401-3408.
    [111] Bezbaruah A.N., Krajangpan S., Chisholm B.J., et al. Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications [J]. J. Hazard. Mater., 2009, 166: 1339-1343.
    [112] Jin L., Bai R.B. Mechanism of lead adsorption on chitosan/PVA hydrogel beads [J]. Langmuir, 2002, 18: 9765-9770.
    [113] Lasko C.L., Hurst M.P. An investigation into the use of chitosan for the removal of soluble silver from industrial wastewater [J]. Environ. Sci. Technol., 1999, 33: 3622-3626.
    [114] Li N., Bai R.B. Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms [J]. Sep. Purif. Technol., 2005, 42: 237-247.
    [115] Li N., Bai R.B., Liu C.K. Enhanced and selective adsorption of mercury ions on chitosan beads grafted with polyacrylamide via surface-initiated atom transfer radical polymerization [J]. Langmuir, 2005, 21: 11780-11787.
    [116] Guo T.Y., Xia Y.Q., Hao G.J., et al. Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads [J]. Biomater. 2004, 25: 5905-5912.
    [117] Boddu V.M., Abburi K., Talbott J.L., et al. Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent [J]. Environ. Sci. Technol., 2003, 37: 4449-4456.
    [118] Rusa M., Whitesell J.K., Fox M.A., et al. Controlled fabrication of gold/polymer nanocomposites with a highly structured poly(N-acylethylenimine) shell [J]. Macromolecules, 2004, 37(8): 2766-2774.
    [119]王宝贞,王琳.城市固体废物渗滤液处理与处置[M].北京:化学工业出版社,2004.
    [120]朱能武.固体废物处理与利用[M].北京:北京大学出版社,2006.
    [121]孟祥和,胡国飞.重金属废水处理[M].北京:化学工业出版社,2000.
    [122]王绍文,蒋凤有.重金属废水治理技术[M].北京:冶金工业出版社,1993.
    [123] Li X.Q., Zhang W.X. Iron nanoparticles: the core-shell structure and unique properties for Ni (Ⅱ) sequestration [J]. Langmuir, 2006, 22: 4638-4642.
    [124] Sun Y.P., Li X.Q., Cao J.S., Zhang W.X., Wang H.P. Characterization of zero-valent iron nanoparticles [J]. Adv. Colloid. Interface Sci., 2006, 120 (1-3): 47-56.
    [125] Genc-Fuhrman H., Wu P., Zhou Y.S., et al. Removal of As, Cd, Cr, Cu, Ni and Zn from polluted water using an iron based sorbent [J]. Desalination, 2008, 226: 357-370.
    [126] Ramos-Tejada M.M., Ontiveros A., Viota J.L., et al. Interfacial and rheological properties of humic acid/hematite suspensions [J]. J. Colloid. Interface Sci., 2003, 268: 85-95.
    [127] Keenan C.R., Sedlak D.L. Factors Affecting The Yield of Oxidants from The Reaction of Nanoparticulate Zero-valent Iron and Oxygen[J]. Environ. Sci. Technol., 2008, 42, 1262-1267.
    [128] Stevenson F.J. Humus Chemistry: Genesis, Composition, Reactions. J. Wiley, New York.1994, 2nded.
    [129] Gu B.H, Schmitt J., Chen Z.H., et al. Adsorption and Desorption of Natural Organic Matter on Iron Oxide: Mechanisms and Models [J]. Environ. Sci. Technol., 1994, 28: 38-46.
    [130] Davis A.P., Bhatnagar V. Adsorption of Cadmium and Humic Acid onto Hematite [J]. Chemosphere, 1995, 30: 243-256.
    [131] Hiemstra T., Van-Riemsdijk W.H. Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides [J]. J. Colloid Interface Sci., 1999, 210: 182-193.
    [132] Mohapatra M., Rout K., Mohapatra B.K. et al. Sorption behavior of Pb (II) and Cd (II) on iron ore slime and characterization of metal ion loaded sorbent [J]. J. Hazard. Mater., 2009, 166: 1506-1513.
    [133] Sun Y.P., Li X.Q., Zhang W.X., et al. A method for the preparation of stable dispersion of zero-valent iron nanoparticles [J]. Colloids Surf., A 2007, 308: 60-66.
    [134] Altundogan H.S., Altundogan S., Tumen F., et al. Arsenic removal from aqueous solutions by adsorption on red mud [J]. Waste Manage., 2000, 20: 761-767.
    [135] Hu J., Lo I.M.C., Chen G.H. Fast removal and recovery of Cr (VI) using surface-modified jacobsite (MnFe2O4) nanoparticles [J]. Langmuir, 2005, 21: 11173-11179.
    [136] Morgada M.E., Levy I.K., Salomone, V., et al. Arsenic (V) removal with nanoparticulate zerovalent iron: effect of UV light and humic acids [J]. Catal. Today, 2009, 143: 261-268.
    [137] Alowitz M.J., Scherer M.M. Kinetics of nitrate, nitrite, and Cr (VI) reduction by iron metal [J]. Environ. Sci. Technol., 2002, 36: 299-306.
    [138] Illes, E., Tombacz, E. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles [J]. J. Colloid Interface Sci., 2006, 295: 115-123.
    [139] Rosa-dela G., Peralta-Videa J.R., Garden-Torresdey J.L. Utilization of ICP/OES for The Determination of Trace Metal Binding to Different Humic Fractions [J]. J. Hazard. Mater., 2003, B97: 207-218.
    [140]杨越冬.甲壳质/壳聚糖特性及其在农业中的应用[J].河北农业技术师范学院学报,1998,12(4):55-59
    [141]高巍.甲壳质及壳聚糖在农业上的应用.农业与技术,2005,25(5):84-85.
    [142]唐兰模,符迈群,张萍,等.用壳聚糖除去溶液中的微量铬(Ⅵ)的研究[J].化学世界,2001,2:59-62.
    [143] Shafaei A., Ashtiani F.Z., Kaghazchi T. Equilibrium studies of the sorption of Hg (II) ions onto chitosan[J].Chemical Engineering Journal,2007,133(1-3): 311-316.
    [144]张延安,豆志河.壳聚糖絮凝剂处理废水中的Ag+[J].东北大学学报,2006,27(1):203-205.
    [145]张延安,豆志河.用壳聚糖脱除废水中的铜离子[J].东北大学学报,2006,27(2):53-56.
    [146]胡瑛,杜予民,刘慧工.壳聚糖抗菌性与分子量和环境介质相关性研究[J].分析科学学报,2003,19(4):305-308.
    [147] Wu X.Y., Zeng Q.X., Mo S.F., et al. Antibacterial activities of chitosans with different degree of deacetylation and molecular masses [J]. Jorurnal of South China University of Technology, 2006, 34(3): 58-62.
    [148]孟晓荣,张敏,胡新婷,等.壳聚糖对食品中常见菌的抑制研究[J].食品安全与检测,2007,23(2):90-92.
    [149]杨声,冯小强,伏国庆,等.水溶性壳聚糖对几种常见菌的抑制作用及其机理初探[J].中国酿造,2007(5):15-18.
    [150]姚瑞华,孟范平,张龙军,等.改性壳聚糖对重金属离子的吸附研究和应用进展[J].材料导报,2004,22(4):65-70.
    [151]孙昌梅,曲荣君,王春花,等.基于壳聚糖及其衍生物的金属离子吸附剂的研究进展[J].离子交换与吸附,2004,30(2):184-192.
    [152] Eiden C.A., Jewell C.A., Wightman J.P. Interaction of lead and chromium with chitin and chitosan [J]. J. Appl. Polym. Sci., 1980, 25(8):1587-1592.
    [153]张延安,杨欢,赵乃仁,等.用壳聚糖絮凝剂处理含镉(Ⅱ)废水[J].东北大学学报(自然科学版),2001,22(5):547-549.
    [154] Guibal E., Jansson-Charrier M., Saucedo I., et al. Enhancement of metal ion sorption performances of chitosan: effect of the structure on the diffusion properties [J]. Langmuir, 1995, 11(2): 591-598.
    [155] Varma A.J., Deshpande S.V., Kennedy J.F. Metal complexation by chitosan and its derivatives: a review [J]. Carbohydr. Polym., 2004, 55: 77-93.
    [156] Krajewska B. Membrane-based processes performed with use of chitin/chitosan materials [J]. Sep. Purif. Technol., 2005, 41: 305-312.
    [157] Kawamura Y., Yoshida H., Asai S. Effects of chitosan concentration and precipitation bath concentration on the material properties of porous crosslinked chitosan beads [J]. Sep. Sci. Technol., 1997, 32: 1959-1974.
    [158] Kawamura Y., Yoshida H., Asai S., et al. Breakthrough curve for adsorption of mercury (II) on polyaminated highly porous chitosan beads [J]. Water Sci. Technol., 1997, 35: 97-105.
    [159] Gupta K.C., Ravi Kumar M.N.V. Structural changes and release characteristics of crosslinked chitosan beads in response to solution Ph [J]. Pure Appl. Chem. A, 1999, 36: 827-841.
    [160] Zhou L.M., Liu S.R., Huang Q.W. Adsorption of mercury and uranyl onto poly(ethyleneimine) grafted chitosan microspheres [J]. Mod. Chem. Ind., 2007, 27: 175-177, 179.
    [161] Wan-Ngah W.S., Endud C.S., Mayanar R. Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads [J]. React. Funct. Polym., 2002, 50: 181-190.
    [162] Jin L., Bai R.B. Mechanism of lead adsorption on chitosan/PVA hydrogel beads [J]. Langmuir, 2002, 18: 9765-9770.
    [163] Li N., Bai R.B., Liu C.K. Enhanced and selective adsorption of mercury ions on chitosan beads grafted with polyacrylamide via surface-initiated atom transfer radical polymerization [J]. Langmuir, 2005, 21: 11780-11787.
    [164]蔡苇,张业明.染料壳聚糖微球的制备及对Cr6+的吸附研究[J].环境科学与技术,2009,32(11):24-27.
    [165]施晓文,杜予民,覃采芹,等.交联羧甲基壳聚糖微球的制备及其对Pb2+的吸附性能[J].应用化学,2003,20(8):715-718.
    [166]周利民,王一平,黄群武,等.硫脲改性磁性壳聚糖微球对Hg2+的吸附特性[J].化学工程,2008,36(10):13-16.
    [167]蔡伟明.壳聚糖聚铵盐的合成及其絮凝性能[J].环境污染与防治,1999,21(4):1-4.
    [168]刘秉涛,张焱,王海荣.壳聚糖对含蛋白废水的絮凝与回收[J].华北水利水电学院学报,2005,26(4):69-71.
    [169]陶冶,张晓茹,张书圣.壳聚糖在工业废水处理中的应用[J].菏泽学院学报,2005,27(5):36-40.
    [170] Wilson A. Biotehnology for a cleaner textile industry [M]. International Dyer, 1996, 12.
    [171]洪爱真,魏燕芳,陈盛.磁性壳聚糖微球对酸性偶氮染料废水的脱色研究[J].福建轻纺,2003,2:1-5.
    [172]杨智宽,袁杨,曹丽芬.羧甲基壳聚糖对水溶性染料废水的脱色研究[J].环境科学与技术,1999,85(2):8-10.
    [173] Siso M.I.G., Lang E., Carren?-Gómez B., et al. Enzyme encapsulation on chitosan microbeads [J]. Process Biochem., 1997, 32: 211-216.
    [174] Krajewska B. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review [J]. Enzyme Microb. Tech., 2004, 35: 126-139.
    [175] Wan Y., Wu H., Yu A., et al. Biodegradable polylactide/chitosan blend membranes [J]. Biomacromolecules, 2006, 7: 1362–72.
    [176] Dambies L., Guimon C., Yiacoumi S., et al. Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy [J]. Colloids Surf. A, 2001, 177: 203-214.
    [177] Melitas N., Chuffe-Moscoso O., Farrell J. Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects [J]. Environ. Sci. Technol., 2001, 35: 3948-3953.
    [178] Bhatia S.C., Ravi N. A Mossbauer study of the interaction of thitosan and D-glucosamine with iron and its relevance to other metalloenzymes [J]. Biomacromolecules, 2003, 4: 723-727.
    [179] Chuang F.W., Larson R.A., Wessman M.S. Zero-valent iron-promoteddechlorination of polychlorinated biphenyls [J]. Environ. Sci. Technol., 1995, 29: 2460-2463.
    [180] Breed A.W., Dempers C.J.N., Searby G.E., et al. The effect of temperature on the continuous ferrous-iron oxidation kinetics of a predominantly Leptospirillum ferrooxidans culture [J]. Biotechnol. Bioeng., 1999, 65: 44-53.
    [181]袁东海,张孟群,高士祥,等.几种粘土矿物和粘粒土壤吸附净化磷素的性能和机理[J].环境化学,2005,24(1):7-11.
    [182] Hanif M.A., Nadeem R., Bhatti H.N., et al. Ni(II) biosorption by Cassia fistula (golden shower) biomass [J]. J. Hazard. Mater., 2007, 139: 345-355.
    [183] Sarin V., Pant K.K. Removal of chromium fron industrial waste by using eucalyptus bark [J]. Bioresour. Technol., 2006, 97:15-20.
    [184] Cordero B., Lodeiro P., Herrero R., et al. Biosorption of cadmium by Fucus spiralis [J]. Environ. Chem., 2004, 1: 180-187.
    [185] Sarin V., Singh T.S., Pant K.K. Thermodynamic and breakthrough column studies for aelective sorption of chromium from industrial effluents on activated eucalyptus bark [J]. Bioresour. Technol., 2006, 97:1986-1993.
    [186] Candy T., Sharma C.P. Chitosan matrix for oral sustained delivery of ampicillin [J]. Biomater., 1993, 14: 939-944.
    [187] Mara R., Suder B.J., Wightman J.P. Interaction of heavy metals with chitin and chitosan: chrominum (Ⅲ) [J]. J. Appl. Polym. Sci., 1982, 27: 4827-4837.
    [188] Shu X.Z., Zhu K.J. Chitosan/gelatin microsphere prepared by modified emulsification and ionotropic gelation [J]. J. Microencapsulation, 2001, 18: 237-245.
    [189] Zeng X., Ruckenstein E. Cross-linked macroporous chitosan anion-exchange membraned for protein separations [J]. J. Membr. Sci., 1998, 148: 195-205.
    [190] Guibal E., Larkin A., Vincent T., et al. Chitosan sorbents for platinum sorption from dilute solutions [J]. Ind. Eng. Chem. Res., 1999, 38: 4011-4022.
    [191] Zeng X.F., Ruckenstein E. Cross-linked macroporous chitosan anion-exchange membranes for protein separations [J]. J. Membrane Sci., 1998, 148: 195-205.
    [192] Huang G.L., Zhang H.Y., Shi J.X., et al. Adsorption of chromium (VI) from aqueous solutions using cross-linked magnetic chitosan beads [J]. Ind. Eng. Chem. Res., 2009, 48: 2646-2651.
    [193] Viswanathana N., Sairam Sundaramb C., Meenakshia S. Removal of ?uoridefrom aqueous solution using protonated chitosan beads [J]. J. Hazard. Mater., 2009, 161: 423-430.
    [194] Ruckenstein E., Zeng X.F. Albumin separation with Cibacron Blue carrying macroporous chitosan and chitin affinity membranes [J]. J. Membrane Sci., 1998, 142: 13-26.
    [195] Guibal E., Dambies L., Milot C., et al. In?uence of polymer structural parameters and experimental conditions on metal anion sorption by chitosan [J]. Polym. Int., 1999, 48:671-680.
    [196]李方,赵峰,尹玉姬,等.壳聚糖基智能凝胶材料及其应用[J].化学通报,2001,3: 129-134.
    [197] Wan Ngah W.S., Hanafiah M.A.K.M., Yong S.S. Adsorption of humic acid from aqueous solutions on crosslinked chitosan–epichlorohydrin beads: Kinetics and isotherm studies [J]. Colloids and Surfaces B: Biointerfaces, 2008, 65: 18-24.
    [198] Sahin M., Kocak N., Arslan G., et al. Synthesis of crosslinked chitosan with epichlorohydrin possessing two novel polymeric ligands and its use in metal removal [J]. J. Inorg. Organomet. Polym., 2011, 21:69-80.