塔里木沙漠公路防护林咸水灌溉水盐调控机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南北贯穿塔克拉玛干大沙漠的塔里木沙漠公路防护林生态工程,是就地利用地下咸水、采用滴灌方式营建的大型防护林工程。极端干旱的气候条件使防护林长期存在着潜在土壤次生盐渍化的威胁,防护林的可持续性面临着严峻考验。本论文以塔里木沙漠公路防护林为研究对象,以土壤物理学、植物生态学为理论指导,从林地土壤水盐特征、植物耐盐生长特性、植物耗水和土壤蒸发、土壤水盐平衡等方面入手,采取定位监测和小区实验相结合的方法,研究沙漠地区防护林的咸水滴灌技术及水盐调控机理,为塔里木沙漠公路防护林工程的可持续发展提供依据,主要研究结论如下:
     (1)林地土壤水分状况主要取决于灌水制度。土壤水分时间动态属于灌溉周期型,在稳定灌溉情况下,随灌溉年限的增加,土壤水分与土壤贮水量呈递减趋势。根据土壤水分垂直变化特性,可将剖面划分为水分速变层(0cm-20cm)、中变层(20cm-60cm)、弱变层(60cm-90cm)以及稳定层(90cm以下)4个层次。
     (2)林地土壤盐分以钠型氯化物为主,林地土壤盐分分布和累积程度受灌水制度影响大,具有显著的表聚性。在地下水较深地段,自上而下依次可以分为表聚层、淋溶层和累积层3个层面,其中淋溶层盐分含量低且较为稳定。随灌溉年限增加,土壤盐分累积呈增长趋势;盐结皮厚度早期随时间呈快速增加趋势,后期增幅变小并最终趋于稳定。
     (3)柽柳(Tamarix)、梭梭(Haloxylon)和沙拐枣(Calligomum)三类植物的生长状况和对盐分的适应能力具有显著差异。沙拐枣第一年生长迅速,柽柳前期4年-6年生长相对较慢,梭梭生长速度较为均匀。地下植物根系的分布呈现两个核心层:20cm-60cm集中分布着三种植物的根系,100cm以下只分布有梭梭和柽柳的根系。其中,梭梭的根系分布深度可达2m以下,而沙拐枣一般不超过90cm。咸水灌溉对三种植物成活及生长的影响表现为:随灌水矿化度升高,抑制作用愈强,且存在阈值变化现象。以灌水矿化度为标准,沙拐枣和柽柳存活阈值为15g·L-1-20g·L-1,抗盐阈值分别为10g·L-1-15g·L-1和20g·L-1左右,梭梭均大于30g·L-1。以土壤盐浓度为标准,沙拐枣存活和抗盐阈值在0.25ms/cm左右,柽柳为0.3ms/cm,梭梭在0.45ms/cm以上,三种植物抗盐能力依次为:梭梭>柽柳>沙拐枣。较大的降雨能够给沙拐枣造成盐害,补充灌水是较好的解决办法。
     (4)植物蒸腾和土壤水分蒸发耗水量与气象因素有着直接的关系。整个生长季内林地土壤水分蒸发量7月最大(18.09kg.m-2.mon-1),三月最小(5.40kg.m-2.mon-1),单株植物林下土壤总蒸发量为202.24kg。三种植物植物蒸腾耗水6月、7月、8月、9月较大,基本各占年耗水量的20%左右。在一个生长季节内,对于地径2.0cm左右的柽柳、沙拐枣和梭梭,总蒸腾耗水量依次为:351kg、305kg和280kg。
     (5)林地的盐分输入项主要取决于灌水量和灌水矿化度两个因素,防护林的水盐调控既要将林内土壤盐分淀积层控制在不对植物构成威胁的深度以下,同时还要考虑满足植物正常生长的耗水需求。在计算植物需水量时,土壤有效贮水量以林地主要根系分布层深度为计算尺度(梭梭120cm、沙拐枣和柽柳60cm),而这一深度也正是土壤盐分的控制目标层。
     (6)咸水灌溉的塔里木沙漠公路防护林工程将长期面临着土壤次生盐渍化的威胁,实现科学合理的水盐调控是解决问题的关键。通过建立合理的灌水制度,并辅助土壤水盐监测预报、双支管轮灌、林分控制和减少土壤蒸发等水盐调控技术措施,可有效解决土壤次生盐渍化问题,保证防护林的可持续经营。
Shelterbelts ecological project along the Tarim Desert Highway, which is cross the Taklimakan Desert from north to south. It is the large-scale eco-project by using the local underground saline water with drip irrigation. In the conditions of extreme arid climate, the sustainability of the shelterbelts is confronted with severe tests by a long-time potential threat of soil secondary salinization. In this paper, the Tarim Desert Highway shelterbelts as the study object. to the soil physics, plant ecology as a theoretical guidance, by measuring the woodland soil water-salt characteristics, growth characteristics of salt-tolerant plants, plants and soil water evaporation, soil water and salt balance and so on, by using the combining method of the located monitoring and the plot experiments, it is studied on drip irrigation technology by saline water and the mechanism of water and salt regulation and control of the shelterbelts in the desert area. It is to be provided a basis for sustainable development of the Tarim Desert Highway shelterbelts. The main results are as follows:
     (1) It is closely related between soil moisture status and irrigation scheduling in Tarim Desert Highway shelterbelt, Soil moisture depends on irrigation system. Under the stable irrigation quota, the dripper discharge and the volume of soil moist is changed larger with time increases. In the horizontal direction, the maximum radius is about 1.4m. And it did not increase with the irrigation amount; in the vertical direction, when the irrigation amount is greater than the water losses by vaporized, the soil moist had a gradual downward trend over time. Temporal dynamics of soil water is a type of irrigation cycle. Under the constant irrigation regime, the shelterbelt's soil moisture and soil water storage all had a decreasing trend by following the increase in irrigation years. According to the vertical variation of soil moisture, soil profiles could be divided into four layers, including water quick change layer (0cm-20cm), water moderate change layer (20cm-60cm), water weak layer (60cm-90cm) and water stable layer (90cm below).
     (2) Na-chloride is the main soil salinity in Tarim Desert Highway shelterbelt, and soil salt distribution and the cumulative impact of a large degree by the irrigation system. Salt accumulation at the surface soil layer is generally significant. In the deeper sites in the groundwater, Salt distribution in soil profiles in the vertical direction from top to bottom can be divided into three layers:one layer of salt leaching is low and relatively stable. The surface accumulation layer is about 2cm in general; leached layer and the accumulation layer thickness (depth) depended largely on irrigation quota. With the increase of irrigation years, soil salinity accumulation also increased. While the surface salt crust thickness is rapidly increased in the early period, is increa sed to a lesser extent in the late period, and the ultimate basically tended to stable state.
     (3) A significant difference of adaptability to salty water shows between three families plants, including Tamarix, Haloxylon and Calligonum, constituted the Tarim Desert Highway shelterbelt. Calligonum rapid grew in the first year; Tamarix relatively slowly grew in the initial 4-6 years; Haloxylon kept relatively stable growth rate. The distribution of shelterbelt plant roots presents two core layers:In the 20cm-60cm depth layer, these three plants'roots concentrated distribution. Below 100cm, there are only distributed to the roots of Tamarix and Haloxylon. Among them, Haloxylon roots' distribution depth could be reached to 2m below the surface and even deeper, but Calligonum is generally no more than 90cm.The impact on the three kinds of plant survival and growth to irrigate with saline water are as follows:With the irrigation salinity increased, the effect to inhibit plants growth is stronger. For Calligonum and Tamarix, their degree of influence by salt stress had a threshold mutation. To irrigation salinity as a standard, the survival threshold of Tamarix and Calligonum is 15g·L-1-20g·L-1, salt-resistance threshold are about lOg·L-1-15g·L-1 and 20g·L-1, and Haloxylon is higher than 30g·L-entirely To soil salinity as the standard, the survival and salt-resistance threshold of Calligonum are about 0.25ms/cm, those of Tamarix are about 0.3ms/cm, and those of Haloxylon are beyond 0.45ms/cm. The sequence of salt-resistance ability of 3 plants is Haloxylon ammodendron, Tamarix ramosissima and Calligonum arborescons. While soil salinity beyond Calligonum's salt resistance threshold, it would death, because the larger rainfall leached the salt to be accumulated from soil surface to the main root distribution layer. To solve this problem, a better approach is to supple irrigation without delay
     (4) Plant transpiration and soil water evaporation has a direct relationship with meteorological factors. During growing period, there are similar regulation for soil water evaporation and plant transpiration of the shelterbelt, which appeared obvious "single peak" inter-monthly variation. During the whole growing season, the maximum of soil water evaporation appeared in July
     (18.09kg·m-2·mon-1), the minimum appeared in March(5.40kg·m-2·mon-1), cumulative evaporation is 101.12kg·m-2, and the total soil evaporation of per-plant is 204.24kg. Plant transpiration of three plants had little difference from June to September, and the rate of annual water consumptions of every month is nearly 20%. The transpiration and water consumption of Haloxylon is the lowest, which of Tamarix and Calligonum are relatively large. In the growing season, for the plant diameter at 2.0cm of Haloxylon, Tamarix and Calligonum, their total transpiration are 351kg,305kg and 280kg, respectively.
     (5) Woodland salt input mainly depends on two factors which are irrigation amount and irrigation salinity. The input salt of woodland is mainly found in the soil layer which under the wet layer. Establishing reasonable irrigation scheduling, which could control the soil salt of deposition layer in the certain soil layer without threaten the growing of shelterbelt plant. At the same time, consumption water demand could be included in the irrigation regime, which involved soil available water content, and it is based on the distribution depth of root system(Haloxylon 120cm, Tamarix and Calligonum 60cm). Also this depth is the controlling layer of soil salt.
     (6) The Tarim Desert Highway shelterbelt project is confronted with a long-term threat of soil secondary salinization by irrigated with saline water. Water and salt to achieve scientific and reasonable regulation is the key to solving the problem. Through the establishment of rational irrigation scheduling, with assist monitoring and forecasting soil water and salt, use two branch pipes rotation irrigation, control woodland, reduce soil evaporation and other technical measures of water and salt regulation, soil secondary salinization problems could be an effective solution. And the sustainable management of protection forest can be ensured.
引文
[1]阿拉木萨,蒋德明,等.沙地人工小叶锦鸡儿植被根系分布与土壤水分关系研究[J].水土保持学报,2003,17(3):78-81.
    [2]艾先涛,李雪源,孙国清,等.新疆棉花应用膜下滴灌技术中存在的问题[J].中国棉花,2004,31(2):38-39.
    [3]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2008:178-200.
    [4]北京林学院.植物生理学[M].北京:中国林业出版社,1989:237-281.
    [5]陈小兵,杨劲松,杨朝晖,等.渭干河灌区灌排管理与水盐平衡研究[J].农业工程学报,2008,24(4):59-65.
    [6]陈玉民,郭国双,王广兴,等.中国作物需水量与灌溉[M].北京:水利水电出版社,1995:45-72.
    [7]陈启生,戚隆溪.有植被覆盖条件下土壤水盐运动规律研究[J].水利学报,1996,(1):38-46.
    [8]陈玉民,肖俊夫,王宪杰,等.非充分灌溉研究进展与展望[J].灌溉排水,2001,(2):73-75.
    [9]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报(自然科学版),2003,42(6):993-997.
    [10]董新光,周金龙,陈跃滨.干旱内陆区水盐监测与模型研究及其应用[M].北京:科学出版社,2007,223-233.
    [11]董新光,姜卉芳,邓铭江,等.内陆盆地的盐分分布与平衡分析研究[J].水科学进展,2005,16(5):638-642.
    [12]杜虎林,马振武,熊建国,等.塔里木沙漠公路与沙漠油田区域水资源研究及其利用评价[M].北京:海洋出版社,2005:153.
    [13]段争虎,何兴东,赵爱国,等.塔克拉玛干沙漠腹地灌溉条件下土壤盐渍度变化研究[J].干旱区资源与环境,2000,(3):65-70.
    [14]冯起,高前兆.禹城沙地水分动态规律及其影响因子[J].中国沙漠,1995,15(2):153-157.
    [15]高军.几种新的节水灌溉技术.http//www.Sdau.edu.Cn/jieshui/index.Html.2000:3.
    [16]龚福华,何兴东,彭小玉,等.塔里木沙漠公路不同固沙体系的性能和成本比较[J].中国沙漠,2001,21(1):25-29.
    [17]郭永杰,崔云玲,吕晓东,等.国内外微咸水利用现状及利用途径[J].甘肃农业科技,2003,(8):3-5.
    [18]郭永辰,陈秀玲,高巍.咸水与淡水联合运用的策略[J].农田水利与小水电,1992,(6):15-18.
    [19]郭善利,王秀芝.植物抗盐性及其遗传工程[J].聊城师范学报(自然科学版),1998,11(2):53-58.
    [20]国家林业局.全国森林培育技术标准汇编[M].北京:中国标准出版社出版社,2003:30.
    [21]黄昌勇.土壤学[M].北京:中国农业出版社,2000:171-179.
    [22]黄强,李生秀,宋郁东.咸水灌溉沙地后的水盐运移规律[J].土壤学报,2003,40(4):547-553.
    [23]黄志刚,曹云,欧阳志云,等.南方红壤丘陵区油桐人工林土壤水分动态[J].应用生态学报,2007,18(2):241-246.
    [24]胡安炎,高瑾,贺屹,等.干旱区内陆灌区土壤水盐模型[J].水科学进展,2002,13(6):726-729.
    [25]胡顺军,田长彦,宋郁东,等.塔里木河流域水面蒸发折算系数分析[J].中国沙 漠,2005,25(5):649-651.
    [26]姜凤岐,朱教君,曾德慧,等.防护林经营学[M].北京:中国林业出版社,2003.89-120.
    [27]梁籍,李颖,张学红,等.阿克苏地区地下水资源与水盐调控分析[J].吉林大学学报(地球科学版),2003,33(2):191-196.
    [28]刘家琼,邱过玉,石庆辉,等.塔克拉玛干沙漠耐旱、耐盐植物种的选择[J].生态学杂志,1994,13(3):21-24.
    [29]雷加强,王雪芹,王德,等.塔里木沙漠公路风沙危害形成研究.干旱区研究,2003,20(1):1-6.
    [30]雷声隆.灌溉水源工程改造与发展[J].中国农村水利水电,1999,5:37-40.
    [31]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3):311-318
    [32]李韵珠,王少英,陈研.不同地学条件下的土壤水均衡特点及类型[J].西南农业大学学报增刊,1989,(6):41—46.
    [33]李福祥,王少丽,方树星,等.宁夏银北干旱半干旱地区水盐动态和调控措施[J].灌溉排水.2001,20(3):41-44.
    [34]李海涛.白皮沙拐枣(Calligonum leucocladum)根系与环境关系的初步研究[J].新疆农业大学学报,1996,19(1):56-61.
    [35]李维江,李景岭.以色列盐水灌溉及研究状况[J].作物杂志,1998,3:14-16.
    [36]李丙文,徐新文,雷加强,等.塔里木沙漠公路防护林生态工程立地类型的划分[J].科学通报,2008,53(增Ⅱ),25-32.
    [37]李生宇,雷加强,徐新文,等.流动沙漠地区灌溉林地盐结皮特征的初步研究[J].北京林业大学学报,2007,29(2):41-49.
    [38]李瑞芬,王雪青,王宏芝,等.野大麦耐盐适应性反应机制的研究[J].中国农业科学,2006,39(12):2459-2461.
    [39]李晓燕,宋占午,董志贤等.植物的盐胁迫生理[J].西北师范大学学报,2004,40(3):106-111.
    [40]李艳梅,王克勤.人工植被土壤水分状况与动态研究进展[J].西南林学院学报,2003,23(3):68-73.
    [41]廖岩,彭友贵,陈桂珠.植物耐盐性机理研究进展[J].生态学报,2007,27(5):2077-2078.
    [42]蔺海明.旱地农业区对咸水灌溉的研究和应用[J].世界农业,1996,(2):45-47.
    [43]刘春卿,杨劲松,陈德明,等.不同耐盐性作物对盐胁迫的响应研究[J].土壤学报,2005,42(6):993-997.
    [44]吕殿青,王文焰,王全九.入渗与蒸发条件下土壤水盐运移的研究[J].水土保持研究,1999,2:61-66.
    [45]马林英.以色列发展沙漠可持续农业的启示,以色列农业发展论文集.2002.29-31.
    [46]毛学森.硬覆盖对盐渍土水盐运动及作物生长发育影响的研究[J].土壤通报,1998,29(6)264-266.
    [47]农业部.“948”项目“微咸水农田灌溉技术”验收技术文件报告[R].编号:961048.中国农科院土壤研究所,2000.55.
    [48]倪秀珍,张强.植物抗盐研究进展[J].特产研究,2004,(4):58-62.
    [49]潘晓玲,张宏达.塔里木盆地植物区系的研究[J].新疆大学学报(自然科学版),1994,11(4):77-83.
    [50]胡玉昆,潘伯荣.塔克拉玛干沙漠公路沿线植被及特点[J].干旱区研究,1996,42(4):9-14.
    [51]祁淑艳,储诚山.盐生植物对盐渍环境的适应性及其生态意义[J].天津农业科学,2005,11(2):42-45.
    [52]乔玉辉,宇振荣.灌溉对土壤盐分的影响及微咸水利用的模拟研究[J].生态学报,2003,23(10):2050-2056.
    [53]乔玉辉.微咸水灌溉对盐碱地区冬小麦生长的影响和土壤环境效应[J].土壤肥料,1999,(4):11-14.
    [54]秦耀东.土壤物理学[M].北京:高等教育出版社出版社,2003.68-75.
    [55]阮明艳,张富仓,候振安.咸水膜下滴灌对棉花生长和产量的影响[J].耕作与栽培.2006,(6):4-5.
    [56]任芝花,黎明琴,张纬敏.小型蒸发器对E-601B蒸发器的折算系数[J].应用气象学报,2002,13(4):508-512.
    [57]沈国舫.森林培育学[M].北京:中国林业出版社,2007:104-105.
    [58]石元春,辛德惠,等.黄淮海平原的水盐运动和旱涝盐碱的综合治理[M].河北人民出版社,1983:12-126
    [59]石元春,李保国,李韵珠,等.区域水盐运动监测预报[M].河北科学技术出版社,1991:216.
    [60]施钧亮,窦以松,朱尧洲.喷灌设备与喷灌系统规划设计[M].北京:水利水电出版社出版社,1979:256-289.
    [61]孙时轩,沈国舫等.造林学[M].北京:中国林业出版社,2001:235-237.
    [62]孙洪祥,孟和.干旱区造林[M].北京:中国林业出版社,1991:38-41.
    [63]孙树国,张建国,徐新文.塔中沙漠地区Guilspare(?)抑制土壤蒸发的效应的研究[J].水土保持通报,2008,28(5):99-103.
    [64]水利部农村水利司.节水灌溉技术标准选编[M].北京:中国水利水电出版社,1999:89-112.
    [65]水利部农村水利司.灌溉工程手册.水利水电出版社,1994:56-59.
    [66]水利部国际合作司,水利部农村水利司等编译.美国国家灌溉工程手册.中国水利水电出版社.1994:37-38.
    [67]汪林,甘泓,汪珊,等.宁夏引黄灌区水盐循环演化与调控[M].北京:中国水利水电出版社,2003,10-137.
    [68]王建勋.干旱区节水农业技术—咸水灌溉的研究与应用[J].新疆环境保护,1999,21(1):43-46.
    [69]王卫光,王修贵,等.微咸水灌溉研究进展[J].节水灌溉,2003,(2):9-11.
    [70]王明治.咸水灌溉芹菜试验研究[J].东北水利水电,2000,18(8):25-26.
    [71]王红春,崔武社,寇文正.关于防护林的防护成熟概念[J].北京林业大学学报,2000,22(3):81-85.
    [72]王苹,李建东,欧勇玲.松嫩平原盐碱化草地星星草的适应性及耐盐生理特征的研究[J].草地学报,1997,5(2):80-84.
    [73]王百田,贺康宁,史常青,等.节水抗旱造林[M].北京:中国林业出版社,2004,48-49.
    [74]王学全,高前兆,卢琦,等.内蒙古河套灌区水盐水盐平衡与干排水脱盐分析[J].地理科学.2006,26(4):455-460.
    [75]王全九,王文焰,汪志荣等.盐碱地膜下滴灌技术参数确定的研究[J].农业工程学报,2001,17(2):47-52.
    [76]王全九,徐益敏,王金栋等.咸水与微成水在农业灌溉中的应用[J].灌溉排水,2002,21(4):73-76.
    [77]王仰仁,唐绍忠.基于作物水盐生产函数的咸水灌溉制度确定方法[J].水利学报,2006,(6):46-51.
    [78]王德荣,张泽,李艳丽等.水资源与农业可持续发展[M].北京:北京出版社,2000:89.
    [79]王洪彬.沧州地区利用微咸水灌溉分析[J].河北水利水电技术,1998,(4):4-5.
    [80]王世贵.咸水灌溉技术研究[J].农田水利与小水电.1990,(9):3-8.
    [81]王雪芹,雷加强,黄强.塔里木沙漠公路风沙危害分异规律的研究.中国沙漠,2000,20(4):438-442.
    [82]王振龙,高建峰.实用土壤墒情监测预报技术[M].北京:中国水利水电出版社,2006:23-24.
    [83]魏由庆,严慧峻,张锐,等.黄淮海平原季风区盐渍土培育“淡化肥沃层”措施与机理的研究[J].土壤肥料,1992,(5):28-32.
    [84]魏由庆,刘思义,邢文刚.黄淮海平原土壤次生潜在盐渍化分级研究[J].土壤肥料,1994,(5):5-9.
    [85]尉宝龙等.咸水灌溉试验研究[J].山西水利科技,1999,127(3):88-90.
    [86]吴敏,薛立,李燕.植物盐胁迫适应机制研究进展[J].林业科学,2007,43(8):111-117.
    [87]吴瑕,杨金忠.区域地下水的具有时变特性的预报模型[J].中国农村水利水电,1999,4:26-28.
    [88]郗金标,张福锁,田长彦.新疆盐生植物[M].北京:科学出版社,2006:5-93.
    [89]夏训诚,李崇舜,周兴佳,等.新疆沙漠化与风沙灾害治理[M].北京:科学出版社,1991:112-113.
    [90]肖生春,肖洪浪,司建华等.干旱区多枝柽柳的生长特性[J].西北植物学报,2005,25(5):1012-1016.
    [91]刑文刚,俞双恩,安文玉,等.鲁北盐渍土区棉花微咸水滴灌技术研究[J].河海大学学报,2003,31(2):140-143.
    [92]肖振华,万洪福,郑莲芬,等.灌溉水质对土壤化学特征和作物生长的影响[J].土壤学报,1997.34(3):272-285.
    [93]徐新文,李丙文,周智彬,等.塔中油田基地路生物防沙技术示范-沙地咸水滴灌制度试验研究[J].土壤通报,2001.32(5):112-114.
    [94]徐新文,李丙文,王晓静.塔克拉玛干沙漠腹地沙地咸水灌溉(技术)研究[J].科学通报,2006.51(Ⅰ):133-136.
    [95]严晔端,李悦.发展咸淡水混灌技术合理开发地下水资源[J].地下水,2000,22(4):153-156.
    [96]杨维西.论我国北方地区人工植被的土壤干化问题[J].林业科学,32(1):78-84.
    [97]杨月红,孙庆艳,沈浩.植物的盐害和抗盐性[J].生物学教学,2002,27(11):1-2.
    [98]杨诗秀,雷志栋,刘远波,等.裸沙地降雨入渗水分动态分析.中国科学院沙坡头沙漠试验站研究站.沙漠生态系统研究,1995,1,33-35.
    [99]杨金忠.区域地下水溶质运移随机理论的研究与进展[J].水科学进展,1998,9(1):84-98.
    [100]叶海燕,王永平,王金栋等.渭干河灌区水盐均衡特征分析[J].农业工程学报,2003,19(4):92-96.
    [101]喻文虎.白沙蒿耐盐性研究初报[J].草业科学,2005,22(6):49-51.
    [102]余新晓,陈丽华.人工降雨条件下入渗试验研究[J].水土保持学报,1989,3(4):15-22.
    [103]原焕英,许喜明.黄土高原半干旱丘陵沟壑区人工林土壤水分动态研究[J].西北林学院学报,2004,19(2):5-8.
    [104]赵晨阳,郑荣梁.DNA氧化损伤与端粒缩短[J].生物化学与生物物理进展.2000,27(4):351-354.
    [105]赵清,陆朝阳,申士彦,等.咸水灌溉高冰草的试验研究[J].节水灌溉.1998,(6):12-14.
    [106]赵爱芬.差巴嘎蒿和小叶锦鸡儿根系分布即生长动态的初步研究[J].中国草地.1994,(2):15-19.
    [107]赵存玉,陈广庭,王涛.塔克拉玛干沙漠腹地的生态条件及植物防沙试验研究[J].水土保持学报技,2005,19(4):139-143.
    [108]赵可夫.植物对盐渍环境的适应[J].生物学通报,2002,37(6):7-10.
    [109]赵可夫,李法曾,樊守金,等.中国的盐生植物[J].植物学通报,1999,16(3):201-207.
    [110]郑九华,冯永军,于开芹,等.7g/L咸水灌溉棉花试验研究[J].灌溉排水,2002,21(3):64.
    [111]张国盛,王林和,李玉灵,等.毛乌素沙地臭柏根系分布及根量[J].中国沙漠,1999,19(4):378-383.
    [112]张永波,王秀兰.表层盐化土壤区咸水灌溉试验研究[J].土壤学报,1997,34(1):53-59.
    [113]张启海,周玉香.微咸水灌溉发展的基础与措施探讨[J].中国农村水利水电,1998,(10):11-13.
    [114]张会元.咸水利用可行性分析[J].天津农林科技,1994,(3):18-19.
    [115]张建新,王爱云.利用咸水灌溉碱茅草的初步研究[J].干旱区研究,1996,13(4):30-33.
    [116]张健锋,李吉跃,宋玉民等.植物耐盐机理与耐盐植物选育研究进展[J].世界林业研究,2003,16(2):16-22.
    [117]张利.咸水利用若干问题的探讨[J].自然资源学报,1994,(4):375-378.
    [118]张展羽,郭相平,等.节水控盐灌溉制度的优化设计[J].水利学报,2001,(4):89-94.
    [119]张春新,庄炳昌,李自超.植物耐盐性研究进展[J].玉米科学,2002,10(1):50-56.
    [120]张楠楠,徐香玲.植物抗盐机理的研究[J].哈尔滨师范大学自然科学学通报,2005,21(1):65-68.
    [121]张建国,徐新文,雷加强,等.咸水滴灌对沙漠公路防护林土壤环境的影响[J].农业工程学报,2008,24(10):34-39.
    [122]张志新,等.滴灌工程规划设计原理与应用[M].北京:中国水利水电出版社,2007,6-7.
    [123]郑东峰,高贤彪,张玉兰,等.滴灌淋洗土壤盐分效果的研究初报[J].山东农业科学,1999.4:32-34.
    [124]中国科学院塔克拉玛干沙漠综合科学考察队.塔克拉玛干沙漠地区土壤和土地资源[M].北京:科学出版社,1994:234-235.
    [125]中国科学院塔克拉玛干沙漠综合科学考察队.塔克拉玛干沙漠地区水资源评价与利用[M].北京:科学出版社,1993:156-165.
    [126]中国科学院塔克拉玛干沙漠综合科学考察队.塔克拉玛干沙漠和周边山区天气气候[M].北京:科学出版社,2003:201-574.
    [127]中国石油天然气总公司塔里木石油勘探开发指挥部.塔里木沙漠石油公路[M].北京:石油工业出版社,1996:31-33.
    [128]周智彬,徐新文,李丙文.塔克拉玛干沙漠腹地人工绿地水盐动态的研究[J].干旱区研 究,2000,17(1):21-26.
    [129]周智彬,徐新文,雷加强等.咸水灌溉下塔里木沙漠公路防护林盐分平衡及盐分运移[J].干旱地理,2006,29(4):470-475.
    [130]周智彬,徐新文.塔克拉玛干沙漠腹地植物引种试验[J].干旱区研究,2004,21(4):363-368.
    [131]左强,王数.咸水灌溉地区盐分累积的数值分析[J].北京林业大学学报,2003,19(4):32-41.
    [132]Ali Kerem Saysel, Yaman Barlas. A dynamic model of salinization on irrigated lands. [J] Ecological Modelling,2001,40:183-188.
    [133]Amnon Bustan, Moshe Sagi, Yoel De Malach. Effect of saline irrigation water and heat waves on potato production in an arid environment. [J] Field Crops Research,2004,90: 275-285.
    [134]Atef Hamdyetal. Saline water management for optimum crop production. [J] Agricultural WaterManagement,1993,24:203-289.
    [135]Bemdtsson R, Nodomi K. Soil water and temperature patterns in arid desert dune sand. [J] Journal of Hydrology,1996,185:221-240.
    [136]Boyko H. Saline irrigation for agriculture and forestry.[M] Dr W. June. N. V. Publishers-The Hague.1968:325.
    [137]Bresler, E. Simultaneous transport of solute and water under transient unsaturated flow conditions. [J] Water Resour. 1972,9:975-980.
    [138]Bresler, E. Theoretical modeling of mixed-eletrolyte flows unsaturated soil. [J] Soil Sci.1978,125:1965-1971.
    [139]Cardon G E, etal.Letey J. Soil-based irrigation and salinity management model. [J] Soil Sci Soc Am J.1992,56:1881-1892.
    [140]Dutt G. R, et al. Prediction of gypsum and leaching requirement for sodium-affected soils.[J] Soil Sci.1972,114:93-103.
    [141]D.戈德堡,B.戈内特,D.里蒙(以),西世良,余康临译.滴灌原理与运用.[M]北京:中国农业机械出版社,1984:79-112.
    [142]Flowers T J, Ragab R, Malash N, et al. Sustainable strategies for irrigation in salt-prone Mediterranean:SALTMED. [J] Agricultural Water Management,2005, (78): 3-14.
    [143]Hanson B R. Drip irrigation of row crops:An overview [A]. In:Proceedings, Fifth International Microirrigation Congress. [C] Orlando, FL, April 2-6,1995.651-655.
    [144]H·Φ库利克(苏),赵兴梁译.干旱地区沙地水分状况与水分平衡[M].内蒙古:内蒙古林学院,1989:282.
    [145]Kaddah M. T., Rhoades J. D. Salt and water-balance in imperial valley. [J] Soil Sci. 1976,40(1):93-100.
    [146]Keller I. and Alfaro J. F. Effect of water application rate on leching. [J] Soil Sci.1966,102:107-116.
    [147]Kovada, V. A. Origin and regime of salt affected soils. [R] Akad. Nauk. SSSR. Noskva. 1947,Ⅰ and Ⅱ:52-55.
    [148]Khosla B K, Gupta R K. Response of wheat to saline irrigation and drainage. [J]
    Agricultural Water Management,1997,32:285-291.
    [149]Konukcu F, Gowing J W, Rose D A. Dry drainage:a sustainable solution to waterlogging and salinity problems in irrigation areas. [J} Agricultural water management, 2006, (83),1-12.
    [150]L.D.贝佛尔,W.H.加德纳,W.R.加德纳,周传槐译.土壤物理学[M].北京:农业出版社,1983:384-409.
    [151]Moreno F, Cabrera F, Fernandez-B E et al. Irrigation with saline water in the reclaimed marsh soils of south-west Spain:impact on soil properties and cotton and sugar beet crops.[J] Agr. Water Manage.,2001,48:133-150.
    [152]Nish M s, Wierenga P J. Time series analysis of soil moisture and rain Mong a line transect in arid rangeland.[J] Soil Science,1991, (152):189-198.
    [153]Nour el-Din M. M., King I. P. TanjiK.K. A salinity management Model. Irri. And Drain. [J] 1987,113(4):440-468.
    [154]OsmanA, Al Tahiretal. Effects of water quality and frequency of irrigation on growth and yield of barley. [J] Agricultural Water Management,1997,34:17-24.
    [155]Minhas P S, Naresk R K, Chauhan C P S and Gupta R K. Field detemined hydraulic properties of a sand bam soil irrigated with various Salinity and SAR waters. [J] Agricultural Water Management,1993, (25):97-108.
    [156]Patela R. M., S. o. Prashera., D. Donnellyb, R. B. Bonnella, R. S. Broughtona. Sub-irrigation with brackish water for vegetable production in arid regions. [J] Bioresource Technology, 1999, (70):33-37.
    [157]Philip J R. Teady infiltration from line source buried discs and other sources. [J] Water Resources Research,1986,28(1):46-52.
    [158]Minhas P S, Naresk R K, Chauhan C P S and Gupta R K. Field detemined hydraulic properties of a sand bam soil irrigated with various Salinity and SAR waters. [J] Agricultural Water Management,1993, (25):97-108.
    [159]Rhoades J.D.咸水灌溉的研究[J].国外农学“灌溉排水”,1987,(1):14-17.
    [160]Rhoades, J.D. Chanduvi F, Lesch S. Soil salinity assessment. [J]. FAO Irrigation and Drainage Papers,1999, (57):3-7.
    [161]Rhoades J.D, Manteghi N A, P J shouse, etal. Soil electrical conductivity and soil salinity:New formulation and calibrations. [J] Soil sci Am J.1989, (53):433-439
    [162]Shainberg L. and Singer M. J. Effect of electrolytic concentration on the hydraulic properties of depositional crust. [J] Soil Sci. Soc. Am. J.1985, (49):1260-1263.
    [163]Shuqin Wana, Yaohu Kang, Dan Wanga. Effect of drip irrigation with saline water on tomato(Lycopersicon esculentum Mill) yield and water use in semi-humid area. [J] Agricultural Water Management,2007,90:63-74.
    [164]Southgate R I, Master P. Precipitation and biomass changes in the Namib Desert dune ecosystem. [J] Journal of arid environment,1996, (33):267-280.
    [165]Tan K K, Kielen N C. Agricultural drainage water management in arid and semi-arid area. [M] Food and agriculture organization of the united nation Rome,2002:101-103.
    [166]US Salinity Laboratory Staff. Diagnosis and improvement of saline and alkali soils. [M] USDA. Handbook,1954:60.
    [167]WangD, Shannon MC, Grieve CM, et al. Ion partitioning among soil and plant components under drip, furrow, and sprinkler irrigation regimes:field and modeling assessments. [J] Environ Quality,2002,31(5):1684-1693.
    [168]Wooding, R.A, "Steady infiltration from a shallow circular pond". [J] Water Resour. Res.,1968, (4):1259-1273.
    [169]Wu L, Guo X, Harivandi A. Salt tolerance and salt accumulation of landscape plants irrigated by sprinkler and drip irrigation systems. [J] Plant Nutr,2001,24(9): 1473-1490.
    [170]Xiao Zhenhua, Prendergast B and Rengasamy P. Effect of irrigation water quality on soil hydraulic conductivity. [J] Pedosphere,1992:2 (3):237-244.