四种方案诱导人胎盘间充质干细胞向胰岛β样细胞分化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     从人胎盘中分离、培养和纯化间充质干细胞(Mesenchymal stem cells,MSCs),探索四种诱导方案使人胎盘间充质干细胞(Human placenta mesenchymalstem cells,hPL-MSCs)分化为胰岛β样细胞。方法:1.胎盘间充质干细胞的分离、培养和鉴定
     经胶原酶Ⅱ消化和贴壁培养法,从胎盘组织中获取MSCs。采用流式细胞仪检测细胞表面标志以及测定细胞周期。RT-PCR检测SSEA-4的表达。诱导细胞向脂肪细胞、成骨细胞分化,并以油红O染色、碱性磷酸酶染色和Von Kossa染色进行鉴定。2.诱导胎盘间充质干细胞向胰岛β样细胞分化
     方案1:①IMDM(含5%FBS)添加β-巯基乙醇(β-Me)诱导2d;②经消化后,以添加了激活素A、全反式维甲酸和2%B27的IMDM诱导2d;③用含100ng/mL表皮生长因子(EGF)、碱性成纤维生长因子(bFGF)和纤连蛋白(FN)的IMDM(含3%FBS)诱导5d;④在DMEM/F12(含3%~5%FBS)培养基中加入β细胞调节素(BTC)、胰高血糖素样肽1(GLP-1)和尼克酰胺(NIC)诱导7~9d。
     方案2:在方案1的基础上降低EGF用量(20ng/mL),不添加FN,未经过消化过程。
     方案3:前3步和方案1相同,但最后1步采用高糖(添加相同的细胞因子)诱导。
     方案4:构建含pdx-1基因的重组腺病毒载体,并于293细胞中包装出完整的腺病毒(pAdxsi-CMV-Pdxl)。以pAdxsi-CMV-Pdxl病毒感染hPL-MSCs,经消化后再以EGF、bFGF、肝细胞生长因子(HGF)、BTC、GLP和NIC进行诱导。
     经诱导后的细胞用化学发光免疫法检测培养上清中胰岛素和C肽的分泌量,并进行胰岛素释放实验;RT-PCR检测胰岛相关基因的表达;免疫细胞化学染色检测诱导后的细胞是否表达PDX-1,Insulin和C肽;Western blot检测细胞内是否含有PDX-1和Insulin。3.诱导后的细胞在1型糖尿病小鼠体内的作用
     采用链脲霉素一次性腹腔注射法制备1型糖尿病小鼠模型,将诱导后的细胞注射到小鼠右侧肾被膜下,观察小鼠血糖变化;移植术后第24d,摘除其右肾以观察血糖是否反弹,最后取小鼠的肾脏和胰腺进行免疫组化检测。结果:1.胎盘间充质干细胞的分离、培养和鉴定
     胎盘MSCs表达CD44、CD29,不表达CD34、CD45、CDl06、CDl4、CD40和HLA-DR。细胞周期分析显示92.6%的细胞处在G0/G1期。向脂肪细胞诱导10d后,油红O染色为阳性。向成骨诱导3w,碱性磷酸酶染色和Von Kossa染色也均为阳性。而且hPL-MSCs能表达SSEA-4。2.胰岛β样细胞分化的鉴定
     经过诱导后的细胞聚集形成胰岛样细胞团。RT-PCR显示诱导后的细胞表达胰岛相关基因。免疫细胞化学染色表明诱导后的细胞表达PDX-1,胰岛素和C肽。Western blot也证实诱导后的细胞含有PDX-1和胰岛素。
     经方案1诱导后的细胞分泌胰岛素的浓度为(222.00±584.97)mU/L,与方案2(72.00:±27.75)mU/L、方案4(722.00±51 79.36)mU/L、MSC组(0.08±50.03)mU/L和空载体组(1.40±0.57)mU/L相比,差异有统计学意义(P<0.05);方案3(226.00:±73.35)mU/L与MSC组(0.08±0.03)mU/L相比,差异也有统计学意义(P<0.05)。方案1、方案2、方案3、方案4诱导的细胞以5.5mmol/L和25mmmol/L葡萄糖分别刺激1h后,刺激指数分别为4.69±2.18,2.40±1.04,3.49±1.70,4.91±1.80。
     而经方案4诱导后的细胞分泌的C肽为(3.380±52.3lO)ng/mL,与方案1(0.447±0.381)ng/mL、MSC组(0ng/mL)和空载体组(0ng/mL)相比,差异有统计学意义(P<0.05)。3.诱导后的细胞在1型糖尿病小鼠体内的作用
     诱导后的细胞注射到1型糖尿病小鼠肾被膜后,血糖逐渐下降,但是在下降过程中,部分小鼠的血糖会出现波动。直到实验结束,实验组小鼠的血糖降至6-8mmol/L(方案4转基因组)或10mmol/L(方案1细胞因子组)。而对照组的小鼠血糖则持续处于高水平。实验组的小鼠被摘除右肾后,血糖迅速反弹。
     胰岛素免疫组织化学染色显示,注射诱导细胞的小鼠肾被膜下有大量染成棕色的胰岛素阳性细胞;同时取出的小鼠胰腺显示胰岛数量仍然明显减少,胰岛内胰岛素阳性细胞极少。结论:1.胎盘中能分离出MSCs,而且能在体外扩增培养;胎盘MSCs表达CD44、CD29,不表达CD34、CD45、CDl06、CDl4、CD40和HLA-DR;还能表达胚胎干细胞特异性标志之一的SSEA-4。2.胎盘MSCs在体外能向脂肪细胞、成骨细胞分化。3.四种诱导方案都能诱导胎盘间充质干细胞向胰岛β样细胞分化;其中以pAdxsi-CMV-Pdxl联合细胞因子诱导的方案最佳,能提高分化效率,稳定分泌胰岛素,并使糖尿病小鼠血糖降至正常水平。
Objectives:
     To isolate mesenchymal stem cells from human placenta and induce them to differentiate into isletβ-like cells by four protocols. Methods:1. Isolation, culture and identification of human placenta mesenchymal stem cells.
     Mesenchymal stem cells were isolated from human placenta by digestion of collagenaseⅡand adhesive screening method. Cell cycle and the expressions of cell surface antigens were detected by flow cytometry. RT-PCR detected the expression of SSEA-4. The cells were cultured in an adipogenic medium or in an osteogenic medium. After induction, the cells were observed by oil red O staining, alkaline phosphatase staining and Von Kossa staining.2. Differentiation of placenta mesenchymal stem cells into islet P-like cells.
     Protocol 1: MSCs from placenta were cultured in IMDM medium supplemented with p-mercaptoethanol (β-Me) and 5%FBS for 2 days. After digestion, cells were cultured in IMDM medium supplemented with Activin A, ATRA and 2%B27 for 2 days. Then cells were switch to IMDM medium supplemented with EGF, bFGF, FN and 3%FBS for 5 days. Finally, cells were cultured in DMEM/F12 medium supplemented with BTC、GLP-1, NIC and 3%-5%FBS for 7-9 days.
     Protocol 2: The procedures were similar to Protocol 1 .But Protocol 2 reduced the dose of EGF, and without FN and digestion.
     Protocol 3: The procedures were similar to Protocol 1.But Protocol 3 applied IMDM medium not DMEM/F12 medium in the final procedure.
     Protocol 4: Recombinant adenovirus vector carrying pdx-1 gene was constructed and transfected into 293 cell line to generate recombinant adenovirus (pAdxsi-CMV-Pdx1). Then hPL-MSCs were infected with pAdxsi-CMV-Pdx1.After digestion, cells were induced by EGF, bFGF, hepatocyte growth factor (HGF), BTC, GLP and NIC.
     After induction, the levels of insulin secretion, C peptide secretion and glucose-simulated insulin release test were examined by chemiluminescence immunoassay. The genes' expression related to isletβcells were detected by RT-PCR. PDX-1, insulin and C peptide in the treated cells were examined by immunocytochemistry and immumofluorescence method. The expressions of PDX-1 and insulin were examined by Western blot. 3. The effect of induced cells in type 1 diabetic mice.
     Type 1 diabetic mice were made by intraperitoneal injection of streptozocin. The induced cells were implanted into the right renal subcapsular space of diabetic mice. Blood glucose levels were monitored every 3 days. The right kidneys were removed at the 24th day after implantation and blood glucose levels were still monitored. At last, the pancreata and the grafts in the right kidneys were detected for immunohi stochemi stry. Results:1. Isolation, culture and identification of human placenta mesenchymal stem cells.
     Human placenta mesenchymal stem cells expressed CD44 and CD29, but didn't express CD34, CD45, CD106, CD14, CD40 and HLA-DR. 92.6% of cells was in G0/G1 phase. After induction, the cells were positive for oil red O staining, alkaline phosphatase staining and Von Kossa staining. And hPL-MSCs could express SSEA-4.2. Identification of islet (3-like cells.
     After induction, islet-like cell clusters formed. The genes' expression related to isletβcells were found by RT-PCR. The differentiated cells expressed PDX-1, insulin and C peptide, which were confirmed by immunocytochemistry, immumofluorescence method and Western blot.
     The chemiluminescence immunoassay demonstrated that the cells induced by Protocol 1 secreted much more insulin than that of Protocol 2 group (222.00±84.97mU/L vs. 72.00±27.75mU/L, P<0.05) , pAdxsi-CMV-EGFP group (222.00±84.97mU/L vs. 1.40±0.57mU/L, ,P<0.05) and MSC group (222.00±84.97mU/L vs. 0.08±3.03mU/L, P<0.05) . And protocol 3 secreted much more insulin than that of MSC group (226.00±73.35mU/L vs. 0.08±3.03mU/L, P<0.05) . The clusters induced by Protocol 4 secreted much more insulin than that of Protocol 1 group (722.00±179.36mU/L vs. 222.00±84.97mU/L, P<0.05) . The isletβ-like cells aquired by the four protocols stimulated index under 5.5mmol/L and 25mmol/L glucose for one hour was 4.69±2.18, 2.40±1.04, 3.49±1.70, 4.91±1.80, respectively.
     The clusters induced by Protocol 4 secreted much more C peptide than that of Protocol 1 group ( 3.380±2.310ng/mL vs. 0.447±0.381ng/mL, P < 0.05 ) , pAdxsi-CMV-EGFP group (0ng/mL, P<0.05) and MSC group (Ong/mL, P<0.05). 3. The effect of induced cells in type 1 diabetic mice.
     After differentiated cells transplantation, the blood glucose levels began to decrease. At the end of the experiment, the blood glucose levels reached to 6-8 mmol/L (Protocol 4 group) or 10mmol/L (Protocol 1 group). But the blood glucose levels of some mice emerged undulation during the declining course. The control groups remained hyperglycemia. When the kidneys that contain the differentiated cells were removed, the hyperglycemia reappeared. Immunohistochemistry showed the differentiated cells were positive for insulin. Conclusions:1. Mesenchymal stem cells can be isolated from human placenta. Human placenta MSCs express CD29 and CD44, but no CD34, CD45, CD106, CD14, CD40 and HLA-DR. Moreover, hPL-MSCs express SSEA-4, which is one of the specific markers of embryonic stem cells.2. They have the ability to differentiate into adipocyte and osteoblast in vitro.3. Four protocols all can induce hPL-MSCs to differentiate into isletβ-like cells. The protocol that pAdxsi-CMV-Pdxl combined with cytokines is more effective than other protocols. The differentiated cells induced by this protocol express insulin stably, and normalize the blood levels of diabetic mice.
引文
[1]Watt FM,Hogan BL.Out of Eden:stem cells and their niches [J].Science,2000,287(5457):1427-1430.
    [2]Thomson JA,itskovitz-Eldor J.Shapiro SS,Waknitz MA,et al.Embryonic stem cell lines derived from human blastocysis [J].Science,1998,282(5391):1145-1147.
    [3]Shamblott MJ,Axelman J,Wang S,et al.Derivation of pluripotent stem cells from cultured human primordial germ cells [J].Proc Natl Acad Sci USA,1998,95(23):13726-13731.
    [4]Kim D,Gu Y,Ishii M,et al.In vivo functioning and transplantable mature pancreatic islet-like cell clusters differentiated from embryonic stem cell [J].Pancreas,2003,27(2):e34-41.
    [5]Reubinoff BE,Pera MF,Fong CY,et al.Embryonic stem cell lines from human blastocysts:somatic differentiation in vitro [J].Nat Biotechnol,2000,18(4):399-404.
    [6]Woodbury D,Schwarz EJ,Prockop DJ,et al.Adult rat and human bone marrow stromal cells differentiate into neurons [J].J Neurosci Res,2000,61 (4):364-370.
    [7]Schwartz RE,Reyes M,Koodie L,et al.Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells [J].J Clin Invest,2002,109(10):1291-1302.
    [8]Friedenstein AJ,Chailakhyan RK,Gerasimov UV.Bone marrow osteogenic stem cells:in vitro cultivation and transplantation in diffusion chambers [J].Cell Tissue Kinet,1987,20(3):263-272.
    [9]Caplan Al.Mesenchymal stem cells [J].J Orthop Res,1991,9(5):641-650.
    [10]Romanov YA,Svintsitskaya VA,Smirnov VN.Searching for alternative sources of postnatal human mesenchymdal stem cells:candidate MSC-like cells from umbilical cord [J].Stem Cells,2003,21(1):105-110.
    [11] DenUgarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA. Comparison of multi-lineage cells from human adipose tissue and bone marrow [J]. Cells Tissues Organs, 2003, 174(3): 101-109.
    [12] Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow [J]. Blood, 2001, 98(8): 2396-2402.
    [13] In't Anker PS, Scherjon SA, Kleijburgvan der Keur C, De Groot-Swings GM, Class FH, Fibbe WE. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta [J]. Stem cells, 2004, 22(7): 1338-1345.
    [14] Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord [J]. Stem cells, 2004, 22(7): 1330-1337.
    [15] 王跃春,张洹,谭广销.人胎肾间充质样干细胞分离鉴定及其向脂肪和成骨细胞的分化[J].中国临床康复,2006,10(25):17—20.
    [16] Bruder SP, Kurth AA, Shea M, et al. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells [J]. J Orthop Res, 1998, 16(2):155-162.
    [17] Kadiyala S, Young RG, Thiede MA, et al. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro [J]. Cell Transplant, 1997, 6(2):125-134.
    [18] Dennis JE, Merriam A, Awadallah A, et al. A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse [J]. J Bone Miner Res, 1999, 14(5):700-709.
    [19] Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors [J]. Science, 1998,279(5356):1528-1530.
    [20] Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation [J]. Transplantation, 2003, 75(3):389-397.
    [21] Klyushnenkova E, Mosca JD, Zernetkina V, et al. T cell responses to allogeneic human mesenchymal stem cells:immunogenicity,tolerance,and suppression [J].J Biomed Sci,2005,12(l):47-57.
    [22]Di Nicola M,Carlo-Stella C,Magni M,et al.Human bone marrow stromal cells suppress T lymphocyte proliferation induced by cellular or nonspecificmitogenic stimuli [J].Blood,2002,99(10):3838-3843.
    [23]Aggarwal S,Pittenger MR Human mesenchymal stem cells modulate allogeneic immune cell responses [J].Blood,2005,105(4):1815-1822.
    [24]Maccario R,Podesta M,Moretta A,et al.Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+T-cell subsets expressing a regulatory/suppressive phenotype [J].Haematologica,2005,90(4):516-525.
    [25]Corcione A,Benvenuto F,Ferretti E,et al.Human mesenchymal stem cells modulate B-cell functions [J].Blood,2006,107(l):367-372.
    [26]Sotiropoulou PA,Perez SA,Gritzapis AD,et al.Interactions between human mesenchymal stem cells and natural killer cells [J].Stem Cells,2006,24(l):74-85.
    [27]Krampera M,Cosmi L,Angeli R,et al.Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells [J].Stem Cells,2006,24(2):386-398.
    [28]Shapiro AM,Lakey JR,Ryan EA,et al.Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen [J].N Engl J Med,2000,343(4):230-238.
    [29]Lumelsky N,Blondel O,Laeng P,et al.Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets [J].Science,2001,292(5520):1389-1394.
    [30]Blyszczuk P,Czyz J,Kania G,Wagner M,Roll U,St-Onge L,Wobus AM.Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells [J].Proc Natl Acad Sci USA,2003,100(3):998-1003.
    [31]Leon-quinto T,Jones J,Skoudy A,Burcin M,Soria B.In-vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells [J].Diabetologia,2004,47(8):1442-1451.
    [32]Lester LB,Kuo HC,Andrews L,Nauert B,Wolf DP.Directed differentiation of rhesus monkey ES cells into pancreatic cell phenotypes [J].Reprod Biol Endocrinol,2004,2:42-45.
    [33]Shi Y,Hou L,Tang F,et al.Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid [J].Stem Cells,2005,3(5):656-662.
    [34]D'Amour KA,Bang AG,Eliazer S,et al.Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells [J].Nat Biotechnol,2006,24(11):1392-1401.
    [35]Dor Y,Brown J,Martinez OI,Melton DA.Adult pancreatic P-cells are formed by self-duplication rather than stem-cell differentiation [J].Nature,2004,429(6987):41-46.
    [36]Bonner-Weir S,Taneja M,Weir GC,Tatarkiewicz K,Song KH,Sharma A,O'Neil JJ.In vitro cultivation of human islets from expanded ductal tissue [J].Proc Natl Acad Sci USA,2000,97(14):7999-8004.
    [37]Zulewski H,Abraham EJ,Gerlach MJ,Daniel PB,Moritz W,Muller B,Vallejo M,Thomas MK,Habener JF.Multipotential nestin-positive stem cell isolated from adult pancreatic islet differentiate ex vivo into pancreatic endocrine,exocrine,and hepatic phenotypes [J].Diabetes,2001,50(3):521-533.
    [38]Borel-Rinkes IH,Bijma AM,Kappers WA,Sinaasappel M,Hoek FJ,Jansen PL,Valerio D,Terpstra OT.Evidence of metabolic activity of adult and fetal rat hepatocytes transplanted into solid supports [J].Transplantation,1992,54(2):210-214.
    [39]Yang L,Li S,Hatch H,Ahrens K,Cornelius JG,Petersen BE,Peck AB.In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells [J].Proc Natl Acad Sci USA,2002,99(12):8078-8083.
    [40]Zalzman M,Anker-Kitai L,Efrat S.Differentiation of human liver-derived, insulin-producing cells toward the p-cell phenotype [J].Diabetes,2005,54(9):2568-2575.
    [41]Zhang L,Hong TP,Hu J,Liu YN,Wu YH,Li LS.Nestin-positive progenitor cells isolated from human fetal pancreas have phenotypic markers identical to mesenchymal stem cells [J].World J Gastroenterol,2005,11(19):2906-2911.
    [42]Lin HT,Chiou SH,Kao CL,et al.Characterization of pancreatic stem cells derived from adult human pancreas ducts by fluorescence activated cell sorting [J].World J Gastroenterol,2006,2(28):4529-4535.
    [43]Seeberger KL,Dufour JM,Shapiro AM,et al.Expansion of mesenchymal stem cells from human pancreatic ductal epithelium [J].Lab Invest,2006,86(2):141-153.
    [44]Baertschiger RM,Bosco D,Morel P,et al.Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development [J].Pancreas,2008,37(1):75-84.
    [45]Eberhardt M,Salmon P,von Mach MA,Hengstler JG,et al.Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets [J].Biochem Biophys Res Commun,2006,345(3):1167-1176.
    [46]Ianus A,Holz GG,Theise ND,Hussain MA.In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion [J].J Clin Invest,2003,111(6):799-801.
    [47]Kojima H,Fujimiya M,Matsumura K,Nakahara T,Hara M,Chan L.Extrapancreatic insulin-producing cells in multiple organs in diabetes [J].Proc Natl Acad Sci USA,2004,101(8):2458-2463.
    [48]Chang C,Wang X,Niu D,et al.Mesenchymal stem cells adopt beta-cell fate upon diabetic pancreatic microenvironment [J].Pancreas,2009,38(3):275-281.
    [49]Chang C,Niu D,Zhou H,et al.Mesenchymal stroma cells improve hyperglycemia and insulin deficiency in the diabetic porcine pancreatic microenvironment [J].Cytotherapy,2008,10(8):796-805.
    [50]Hess D,Li L,Martin M,Sakano S,Hill D,Strutt B,Thyssen S,Gray DA,Bhatia M.Bone marrow-derived stem cells initiate pancreatic regeneration [J]. Nat Biotechnol, 2003, 21(7): 763-770.
    [5]] Lee RH, Seo MJ, Reger RL, et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice [J]. Proc Natl Acad Sci USA, 2006, 103(46):17438-17443.
    [52] Lechner A, Yang YG, Blacken RA, et al. No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo [J].Diabetes, 2004, 53(3): 616-623.
    [53] Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, Yang LJ. In vivo and in vitro characterization of Insulin-producing cells obtained from murine bone marrow [J]. Diabetes, 2004, 53(7): 1721-1732.
    [54] Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N, Karasik A. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia [J]. Nat Med, 2000, 6(5): 568-572.
    [55] Hisanaga E, Park KY, Yamada S, et al. A simple method to induce differentiation of murine bone marrow mesenchymal cells to insulin-producing cells using conophylline and betacellulin-delta4 [J]. Endocr J, 2008,55(3):535-543.
    [56] Wu XH, Liu CP, Xu KF, et al. Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells [J]. World J Gastroenterol, 2007, 13(24):3342-3349.
    [57] 贾延劼,钟乐,宋建辉,等.体外诱导大鼠骨髓间充质干细胞分化为胰岛素分泌细胞.中国当代儿科杂志[J],2003,5(5):393-397.
    [58] Choi KS, Shin JS, Lee JJ, et al. In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract [J]. Biochem Biophys Res Commun, 2005, 330(4):1299-12305.
    [59] 李艳华,白慈贤,谢超,等.成人骨髓间充质干细胞体外定向诱导分化为胰岛样细胞团的研究[J].自然科学进展,2003,13(6):593-597.
    [60] Sun Y, Chen L, Hou XG, et al. Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro [J]. Chin Med J (Engl), 2007, 120(9):771-776.
    [61] 跃春.人胎儿来源骨髓和肝脏MSCs的生物学特性及其向胰岛β样细胞分化的研究[D].广州:暨南大学医学院,2008.
    [62] Rao MS, Mattson MR Stem cells and aging: expanding the possibilities [J]. Mech Aging Dev, 2001, 122 (7): 713-734.
    [63] Ende N, Chen R, Reddi AS. Transplantation of human umbilical cord blood cells improves glycemia and glomerular hypertrophy in type 2 diabetic mice [J]. Biochem Biophys Res Commun, 2004, 321 (1): 168-171.
    [64] Ende N, Chen R, Reddi AS. Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice [J]. Biochem Biophys Res Commun, 2004, 325(3): 665-669.
    [65] Gao F, Wu DQ, Hu YH, et al. In vitro cultivation of islet-like cell clusters from human umbilical cord blood-derived mesenchymal stem cells [J]. Transl Res,2008, 151(6): 293-302.
    [66] 迟作华,陆琰,张洹.人脐血间充质干细胞向胰岛素产生细胞分化的研究[J].中华血液学杂志,2008,29(10):679—683.
    [67] Timper K, Seboek D, Eberhardt M, et al. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells [J]. Biochem Biophys Res Commun, 2006, 341(4):1135-1140.
    [68] Chao KC, Chao KF, Fu YS, et al. Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes [J]. PLoS ONE, 2008, 3(l):el451-1456.
    [69] Wu LF, Wang NN, Liu YS, et al. Differentiation of Wharton's Jelly Primitive Stromal Cells into Insulin-Producing Cells in Comparison with Bone Marrow Mesenchymal Stem Cells [J]. Tissue Eng Part A, 2009, [Epub ahead of print].
    [70] Trivedi HL, Vanikar AV, Thakker U, et al. Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantation synthesize insulin [J]. Transplant Proc, 2008, 40(4): 1135-1139.
    [71] Solari MG, Srinivasan S, Boumaza I, et al. Marginal mass islet transplantation with autologous mesenchymal stem cells promotes long-term islet allograft survival and sustained normoglycemia [J].J Autoimmun,2009,32(2):116-124.
    [72]Boumaza I,Srinivasan S,Witt WT,et al.Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets,alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia [J].J Autoimmun,2009,32(l):33-42.
    [73]Urban VS,Kiss J,Kovacs J,et al.Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes [J].Stem Cells,2008,26(l):244-253.
    [74]Fukuchi Y,Nakajima H,Sugiyama D,et al.Human Placenta-Derived Cells Have Mesenchymal Stem/Progenitor Cell Potential [J].Stem Cells,2004,22(5):649-658.
    [75]Yen BL,Huang HI,Chien CC,et al.Isolation of Multipotent Cells from Human Term Placenta [J].Stem Cells 2005,23(1):3-9.
    [76]Bailo M,Soncini M,Vertua E,et al.Engraftment potential of human amnion and chorion cells derived from term placenta [J].Transplantation,2004,78(10):1439-1448.
    [77]Zhang X,Nakaoka T,Nishishita T,et al.Efficient adeno-associated virus-mediated gene expression in human placenta-derived mesenchymal cells[J].Microbiol Immunol,2003,47(1):109-116.
    [78]Zhao P,Ise H,Hongo M,et al.Human amniotic mesenchymal cells have some characteristics of cardiomyocytes [J].Transplantation,2005,79(5):528-535.
    [79]Huang HI.Isolation of human placenta-derived multipotent cells and in vitro differentiation into hepatocyte-like cells [J].Curr Protoc Stem Cell Biol,2007,Chapter 1:Unit IE.1.
    [80]Zalzman M,Gupta S,Giri RK,et al.Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells [J].Proc Natl Acad Sci USA,2003,100(12):7253-258.
    [81]Tateishi K,He J,Taranova O,Liang G,et al.Generation of insulin-secreting islet-like clusters from human skin fibroblasts [J].J Biol Chem,2008,283(46):31601-31607.
    [82] Dominguez-Bendala J, Klein D, Ribeiro M, et al. TAT-mediated neurogenin 3 protein transduction stimulates pancreatic endocrine differentiation in vitro [J]. Diabetes, 2005, 54(3):720-726.
    [83] Portmann-Lanz CB, Schoeberlein A, Huber A, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration [J]. Am J Obstet Gynecol, 2006, 194(3):664-673.
    [84] 薛群,张学光,苗宗宁,等.胎盘间充质干细胞样细胞的培养及生物学特性的实验研究[J].苏州大学学报(医学版),2005,25(2):188-192.
    [85] Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues [J]. Science, 1997, 276(5309):71-74.
    [86] Alvarez-Silva M, Belo-Diabangouaya P, Salaun J, et al. Mouse placenta is a major hematopoietic organ [J]. Development, 2003, 130(22): 5437-5444.
    [87] Peister A, Mellad JA, Larson BL, et al. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential [J]. Blood, 2004, 103(5):1662-1668.
    [88] Pasquinelli G, Tazzari P, Ricci F, et al. Ultrastructural characteristics of human mesenchymal stromal (stem) cells derived from bone marrow and term placenta [J]. Ultrastruct Pathol, 2007, 31(1): 23-31.
    [89] hang CJ, Yen ML, Chen YC, et al. placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma [J]. Stem Cells, 2006, 24(11): 2466-2477.
    [90] ailo M, Soncini M, Vertua E, et al. Engraftment potential of human amnion and chorion cells derived term placenta [J]. Transplantation, 2004, 78(10):1439-1448.
    [91] essina A, Eletti B, Croera C, et al. Pancreas developing markers expressed on human mononucleated umbilical cord blood cells [J]. Biochem Biophys Res Commun, 2004, 323(1): 315-322.
    [92] emans Y, Van De Casteele M, in't Veld P, et al. Recapitulation of embryonic neuroendocrin differentiation in adult human pancreatic duct cells expressing neurogenin 3 [J].J Cell Biol,2002,159(2):303-12.
    [93]Fallahi-Sichani M,Soleimani M,Najafi SM,et al.In vitro differentiation of cord blood unrestricted somatic stem cells expressing dopamineassociated genes into neuron-like cells [J].Cell Biol Int,2007,31(3):299-303.
    [94]Demeterco C,Beattie G M,Dib S A,et al.A role for activin A and betacellulin in human fetal pancreatic cell differentiation and growth [J].J Clin Endocrinol Metab,2000,85(10):3892-3897.
    [95]Stafford D,Prince VE.Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development [J].Curr Biol,2002,12(14):1215-12120.
    [96]Cras-Meneur C,Elghazi L,Czernichow P,et al.Epidermal growth factor increases undifferentiated pancreatic embryonic cells in vitro:a balance between proliferation and differentiation [J].Diabetes,2001,50(7):1571-1579.
    [97]Chang CF,Hsu KH,Chiou SH,et al.Fibronectin and pellet suspension culture promote differentiation of human mesenchymal stem cells into insulin producing cells [J].J Biomed Mater Res A,2008,86(4):1097-1105.
    [98]Ohgawara H,Kawamura M,Honda M,et al.Reversal of glucose insensitivity of pancreatic B-cells due to prolonged exposure to high glucose in culture:effect of nicotinamide on pancreatic B-cells [J].Tohoku J Exp Med,1993,169(2):159-166.
    [99]Brubaker P L,Drucker D J.Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas,gut and central nervous system [J].Endocrinology,2004,145(6):2653-2659.
    [100]Brun T,Franklin I,St-Onge L,et al.The diabetes-linked transcription factor PAX4 promotes {beta}-cell proliferation and survival in rat and human islets[J].J Cell Biol,2004,20(6):1123-1135.
    [101]Rorsman P,Renstrom E.Insulin granule dynamics in pancreatic beta cells [J].Diabetologia,2003,46(8):1029-1045.
    [102]Segev H,Fishman B,Ziskind A,et al.Differentiation of human embryonic stem cells into insulin-producing clusters [J].Stem Cells,2004,22(3):265-274.
    [103]Davani B,Ikonomou L,Raaka BM,et al.Human islet-derived precursor cells are mesenchymal stromal cells that differentiate and mature to hormone-expressing cells in vivo [J].Stem Cells,2007,25(12):3215-3222.
    [104]Chao KC,Chao KF,Chen CF,et al.A novel human stem cell coculture system that maintains the survival and function of culture islet-like cell clusters [J].Cell Transplant,2008,17(6):657-664.
    [105]Jensen J.Gene regulatory factors in pancreatic development [J].Dev Dyn,2004,229(1):176-200.
    [106]Melloul D.Transcription factors in islet development and physiology:role of PDX-1 in beta-cell function [J].NY Acad Sci,2004,1014(1):28-37.
    [107]Sharma A,Zangen DH,Reitz P,et al.The homeodomain protein PDX1 increases after an early burst of proliferation during pancreatic regeneration [J].Diabetes,1999,48(3):507-513.
    [108]Johnson JD,Ahmed NT,Luciani DS,et al.Increased islet apoptosis in PDX1 +/-mice [J].J Clin Invest,2003,111(8):1147-1160.
    [109]Kawamori D,KajimotoY,Kaneto H,et al.Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX1 through activation of c-Jun NH(2)-terminal kinase [J].Diabetes,2003,52(12):2896-2904.
    [110]Abraham EJ,Kodama S,Lin JC,et al.Human pancreatic islet-derived progenitor cell engraftment in immunocompetent mice [J].Am J Pathol,2004,164(3):817-830.
    [111]Liechty KW,MacKenzie TC,Shaaban AF,et al.Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep [J].Nat Med,2000,6(11):1282-1286.
    [112]Mellgren A,Schnell Landstrom AH,Petersson B,et al.The renal subcapsular site offers better growth conditions for transplanted mouse pancreatic islet cells than the liver or spleen [J].Diabetologia,1986,29(9):670-672.