基于双随机相位编码和干涉原理的图像加密技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机和网络技术的迅速发展,信息全球化已经成为当今世界的一个重要特征,如何保证重要信息的安全也日益突出地摆在了人们的面前。当前光学信息处理研究的一个热点便是光学信息加密技术的研究。光学信息处理是近四十多年来发展起来的一门新兴的前沿学科,而基于光学理论和方法的光学信息加密技术则是近些年逐步发展起来的新一代信息安全处理技术,它已经成为光学信息处理科学的一个重要组成部分。与传统的计算机密码技术相比,光学加密技术具有大容量、多维度及高速并行处理数据能力等优点。图像是信息载体的重要形式之一,具有直观生动的特点。在大量数据面临被窃取、非法复制和传播、甚至被篡改的今天,探索和开发光学图像加密技术具有很高的学术和应用价值。
     本论文围绕着光学图像安全处理这个主题,在基于双随机相位编码和干涉原理的基础上展开工作。首先简要介绍了光学图像加密系统研究的现状,并对国际上最近提出的基于切相傅立叶变换的“非对称”密码体制进行了攻击。通过实施二步迭代振幅恢复运算,有效地破解了基于切相傅立叶变换的加密系统。而通过在傅立叶变换频域上加入振幅板则可以实现输出面上的振幅调制,从而大大增强系统的安全性。事实上,基于傅立叶频域相位切割的加密体制仅仅实现了加密密钥和解密密钥的分离,但是加密过程与解密过程仍然一样。针对这一点,我们提出了一种非对称光学双图像加密方法,该方法能够抵抗特定攻击,并同样适用于单图像的加密。另外,针对基于干涉原理的图像加密方法中存在的“轮廓显现”问题,我们提出了一种更安全的解析加密方法,将图像加密成三块相位板。在相干原理的基础上,进一步给出了一种基于光学相干叠加原理和基本矢量运算的加密方法,其解密过程可以通过数字或者光学方式完成。在此基础上,结合相位恢复算法还实现了图像的隐藏。最后,结合数字全息和干涉理论,在保证系统的安全的前提下,实现了多图像的加密和解密。
     论文的主要内容如下安排:
     第1章中,我们阐述了光学信息安全处理的研究背景和重要意义,简要介绍了光学信息安全处理的研究现状,指出了当前研究中存在的主要问题,同时归纳了光学加密系统中常用的理论基础和方法。
     第2章中,我们从分析基于切相傅立叶变换的加密系统的特点出发,提出了一种基于两步迭代振幅恢复算法的特定攻击方法。从密码体制的角度来看,基于切相傅立叶变换的加密系统的提出具有非常重要的意义,对光学加密理论的发展有重要的推动作用。然而,当其作为公开密钥系统对不同的图像进行加密时,系统被置于一个更加暴露和更易遭受攻击的境地。攻击结果表明基于切相傅立叶变换的加密系统在该特定攻击下失效,解密密钥和明文的大部分信息将同时被破解。另外,我们介绍了一种抵抗特定攻击的方法,即通过在傅立叶变换频域上加入振幅板实现输出面上的振幅调制。
     第3章中,我们提出了一种基于非对称方法的双图像加密技术。在该加密系统中,加密过程与解密过程不同,加密密钥与解密密钥也并不相同。加密过程通过数字方式实现,而解密过程可以通过数字方式,也可以由光学方式完成。在非线性加密过程中,采用联合傅立叶变换域的相位切割使得两幅图像被加密成一幅噪声图。而解密过程则是利用经典的双随机相位加密技术,将振幅板作为输入图像,两块加密过程中生成的相位板则作为两个解密密钥。原图像可以通过在输出面上放置的强度探测器直接记录得到。
     第4章中,我们分析了当前国际上业已提出的基于光学干涉原理的图像加密方法的轮廓信息泄露问题,发现引起该问题的主要原因在于加密结果中包含的相位信息未经置乱。在此分析的基础上,我们提出了一种基于光学干涉原理和解析计算的图像加密方法。加密过程由数字计算完成,而解密过程则可以通过数字方式也可以通过光学方式实现。该方法将图像加密成三块纯相位板,同时没有对纯相位板进行诸如数值混沌加密或者迭代加密的后处理操作。早期的基于干涉原理的图像加密方法中存在的“轮廓显现”问题在新方法中得以解决。因此新的加密方法能有效抵抗暴力攻击,可以被直接运用到图像加密中。
     第5章中,我们介绍了一种基于光学相干叠加原理和基本矢量运算的加密方法。该方法非常简单有效,无需迭代运算便可将目标图像直接分解成两块相位板。其中一块是随机相位板,另外一块相位板的分布则是原图经过该随机相位板调制后的结果。在我们的方法中,随机相位板作为加密的结果,而另一块相位板则作为解密的密钥。加密过程通过数字方式实现,解密过程则可以通过数字或者光学方式完成。在此基础上,我们还提出了一种基于相位替换和相位恢复的图像隐藏方法。该方法首先将两幅待加密图像的其中一幅直接分解两个相位板,把分解得到的相位板作为加密密钥对另一幅图像进行加密。其次,利用相位恢复算法,上述加密图像被再次加密成一已知图像。解密过程与加密过程相似,但解密的密钥与加密密钥并不相同。
     第6章中,结合相干原理和数字全息技术,我们提出了一种图像纯相位加密方法。通过在加密过程中引入混沌函数,大大减小了密钥的信息长度。加密过程和解密过程均可采用纯数字的方式,也可以采用光电方式加以实现。加密系统的光路设计十分简单,位于物面上的随机相位板可用作公开密钥,而logistic映射的分岔参数、初始值、序列生成过程中去除的元素总数以及参考光参数都作为私有密钥加以保存。对于多图像加密的情形,每幅加密图像可采用不同的混沌随机相位和参考光参数,这就大大增加了系统的安全性。
     最后,总结已完成的工作和本论文的主要创新点,并指出值得思考的问题和进一步需要深入研究的领域。
With the rapid development of computer technology and the widespread application of Internet, the safety and secrecy of the information is more and more important. Optical information processing, which has been developing over forty years, is a very important part of information science. Recently, the information security techniques based on optical theory and methods have received increasing attention because of the potential for new technological applications in telecommunications. The optical technique has many advantages over the traditional information security technology, such as multi-dimension, large-capacity and the natural ability of parallel data processing, and so on. As the image, which is simple, lively characteristic, is one of the main carriers of information, how to prevent unauthorized user from modifying, copying, transmitting and printing images has become a very important issue. Thus, the exploration and development of optical image encryption technique has great academic and application values.
     The thesis focuses on optical information encoding techniques that are based on the double random phase encoding and optical interference and has accomplished several works:(1) A specific attack based on a two-step iterative amplitude retrieval approach is proposed to break the asymmetric cryptosystem that is based on the phase-truncated Fourier transforms (PTFTs);(2) An improvement over the asymmetric cryptosystem is made by adding an amplitude mask the Fourier plane of the encryption scheme;(3) A double-image encryption technique that based on an asymmetric algorithm is proposed;(4) A new method for image encryption based on optical interference and analytical algorithm is proposed. The target image is hidden into three POMs and the silhouette problem existed in the previously proposed method with two POMs, can be resolved;(5) A simple and effective method for image encoding based on optical coherent superposition and basic vector operations is proposed;(6) An optoelectronic encryption system based on coherent superposition principle and digital holography is designed for multiple-image encryption.
     The whole thesis is organized as follows:
     In Chapter1, a brief introduction to optical information processing including its research progress in optical encryption and image process is given. We also briefly introduce the research methods and basic theories used in optical image encoding.
     In Chapter2, we analyze the security of a recently proposed asymmetric cryptosystem that is based on the phase-truncated Fourier transforms. Since almost all reported optical encryption techniques belong to the category of symmetric cryptosystems, from the perspective of cryptology, the proposed PTFT-based asymmetric cryptosystem has great practical significance. However, if the encryption keys are used as two public keys and applied to encode different plaintexts, the cryptosystem will be placed into a more exposed and vulnerable position. We propose a specific attack method to break the cryptosystem in this chapter. This specific attack, which is based on a two-step iterative amplitude retrieval approach and works by using the public keys and ciphertexts, would allow an attacker to reveal the encrypted information and the decryption keys that generated in the encryption procedure. An improvement over the asymmetric cryptosystem may be taken by relocating the amplitude values in the output plane. In order to achieve this, an amplitude mask is added in the Fourier plane of the encryption scheme. Some numerical simulations are presented to prove the good performance of the proposed cryptosystems.
     In Chapter3, we propose a double-image encryption technique that is based on an asymmetric algorithm, in which the encryption process is different from the decryption and the encryption keys are also different from the decryption keys. The encryption process is performed digitally while the decryption process can be implemented optically. The main purpose of the nonlinear operations in the encryption is to achieve an asymmetry property and a high level of robustness against attacks while retaining the linearity of decryption scheme is to provide a convenient decryption for authorized users. By using the classical double random phase encoding system, the primary images can be collected by an intensity detector that located at the output plane. Additionally, it should be pointed out that the cryptography can also be safely applied in single-image encryption.
     In Chapter4, we analyze the earlier proposed interference-based encryption method, which is quite simple and does not need iterative encoding. The method with two phase-only masks (POMs) has been found recently that the encryption method has security problems and cannot be directly applied to image encryption due to the inherent silhouette problem. A new method for image encryption based on optical interference and analytical algorithm is proposed in this chapter, which can be directly used for image encryption. The information of target image is hidden into three POMs and the silhouette problem existed in the method with two POMs, can be resolved during the generation procedure of POMs based on interference principle. Simulation results are presented to verify the validity of the proposed approach.
     In Chapter5, we propose a simple and effective method for image encoding based on optical coherent superposition and basic vector operations. The original image can be directly separated into two phase masks. One is a random phase mask (RPM) and the other is a modulation of the RPM by the original image. The mathematical calculation for obtaining the two POMs is quite simple and direct resulting from the simple principle of optical coherent superposition. The arbitrarily selected RPM can be treated as the encrypted result while the POM can be taken as the key for decryption. With this technique, the same encrypted result can be obtained for images with the same size while the keys for decryption are different. Furthermore, a new method to realize double-image self-encoding and hidden is proposed. Two original images are self-encoded in the manner that one of the two images is directly separated into two POMs and used as keys for encryption. For the sake of linearity removal by phase truncation, high robustness could be achieved in this cryptosystem. In the decryption process, the image without a separation and the two POMs used as keys for encryption are all treated as encoded data. In this cryptosystem, the keys for encryption are different from those for decryption.
     In Chapter6, we propose an optoelectronic image encryption and decryption technique based on coherent superposition principle and digital holography. With the help of a chaotic random phase mask that is generated by using logistic map, a real-valued primary image is encoded into a phase-only version and then recorded as an encoded hologram. The bifurcation parameters, the initial values for the logistic maps, the numbers of the removed elements and the reference wave parameters are kept and transmitted as private keys. As for multiple-image encryption, only one digital hologram is to be transmitted as the encrypted result by using the multiplexing technique changing the reference wave angle. Both the encryption and decryption processes can be implemented in opto-digital manner or fully digital manner. Simulation results are given for testing the feasibility of the proposed approach.
     While in the last Chapter, we conclude our works and point out some existed problems in our studies, which should be improved in our future work.
引文
[1]余承杭,刘庆华,樊荣,余兴敏.信息安全技术.科学出版社(2005).
    [2]胡予濮,张玉清,肖国镇.对称密码学.机械工业出版社(2002).
    [3]杨波.现代密码学.清华大学出版社(2003).
    [4]胡向东,魏琴芳.应用密码学教程.电子工业出版社(2005).
    [5]章照止.现代密码学基础.北京邮电大学出版社(2004).
    [6]陈少真.密码学基础.科学出版社(2008).
    [7]钮心忻.信息隐藏与数字水印.北京邮电大学出版社(2004).
    [8]王育民,张彤,黄继武.信息隐藏—理论与技术.清华大学出版社(2006).
    [9]王炳锡,彭天强.信息隐藏技术.国防工业出版社(2007).
    [10]F. Petitcolas, R. Anderson, and M. Kuhn, Information hiding-A survey, Proc. IEEE, 87,1062-1078 (1999).
    [11]彭翔,位恒政,张鹏.光学信息安全导论.科学出版社(2008).
    [12]A. Alfalou and C. Brosseau, Optical image compression and encryption methods, Adv. Opt. Photon.,1,589-636 (2009).
    [13]P. Refregier and B. Javidi, Optical image encryption based on input plane and Fourier plane random encoding, Opt. Lett.,20,767-769 (1995).
    [14]B. Wang, C. Sun, W. Su, et al, Shift-tolerance property of an optical double-random phase-encoding encryption system, Appl. Opt.,39,4788-4793 (2000).
    [15]G Unnikrishnan, J. Joseph, and K. Singh, Optical encryption by double-random phase encoding in the fractional Fourier domain, Opt. Lett.,25,887-889 (2000).
    [16]N. K. Nishchal, G Unnikrishnan, J. Joseph et al, Optical encryption using a localized fractional Fourier transform, Opt. Eng.,42,3566-3671 (2003).
    [17]B. Hennelly and J. T. Sheridan, Optical image encryption by random shifting in fractional Fourier domains, Opt. Lett.,28,269-271 (2003).
    [18]B. Zhu, S. Liu, and Q. Ran, Optical image encryption based on multifractional Fourier transforms, Opt. Lett.,25,1159-1161 (2000).
    [19]S. Liu, L. Yu, and B. Zhu, Optical image encryption by cascaded fractional Fourier transforms with random phase filtering, Opt. Commun.,187,57-63 (2001).
    [20]S. Liu, Q. Mi, and B. Zhu, Optical image encryption with multistage and multichannel fractional Fourier-domain filtering, Opt. Lett.,26,1242-1244 (2001).
    [21]Z. Liu and S. Liu, Random fractional Fourier transform, Opt. Lett.,32,2088-2090 (2007).
    [22]R. Tao, Y. Xin, and Y. Wang, Double image encryption based on random phase encoding in the fractional Fourier domain, Opt. Express,15,16067-16079 (2007).
    [23]R. Tao, J. Lang, and Y. Wang, Optical image encryption based on the multiple-parameter fractional Fourier transform, Opt. lett.,33,581-583 (2008).
    [24]陶然,邓兵,王越.分数阶傅立叶变换及其应用.清华大学出版社(2009).
    [25]O. Matoba and B. Javidi, Encrypted optical memory system using three-dimensional keys in the Fresnel domain, Opt. Lett.,24,762-764 (1999).
    [26]G Situ and J. Zhang, Double random-phase encoding in the Fresnel domain, Opt. Lett., 29,1584-1586(2004).
    [27]L. Chen and D. Zhao, Optical image encryption with Hartley transforms, Opt. Lett.,31, 3438-3440 (2006).
    [28]L. Chen and D. Zhao, Optical image encryption based on fractional wavelet transform, Opt. Commun.,254,361-367 (2005).
    [29]L. Chen and D. Zhao, Image encryption with fractional wavelet packet method, Optik, 119,286-291 (2008).
    [30]L. Chen and D. Zhao, Optical color image encryption by wavelength multiplexing and lensless Fresnel transform holograms, Opt. Express,14,8552-8560 (2006).
    [31]L. Chen and D. Zhao, Color information processing (coding and synthesis) with fractional Fourier transforms and digital holography, Opt. Express,15,16080-16089 (2007).
    [32]M. Joshi, Chandrashakher, and K. Singh, Color image encryption and decryption using fractional Fourier transform, Opt. Comm.,279,35-42 (2007).
    [33]E. Tajahuerce, O. Matoba, S. Verrall, et al, Optoelectronic information encryption with phase-shifting interferometry, Appl Opt.,39,2313-2320 (2000).
    [34]B. Javidi and T. Nomura, Securing information by use of digital holography, Opt. Lett., 25,28-30 (2000).
    [35]E. Tajahuerce and B. Javidi, Encryption three-dimensional information with digital holography, Appl. Opt.,39,6595-6601 (2000).
    [36]L. Yu and L. Cai, Multidimensional data encryption with digital holography, Opt. Commun.,215,271-284 (2003).
    [37]N. K. Nishchal, J. Joseph, and K. Singh, Fully phase encryption using digital holography, Opt. Eng.,43,2959-2966 (2004).
    [38]N. K. Nishchal, J. Joseph, and K. Singh, Securing information using fractional Fourier transform in digital holography, Opt. Commun.,235,253-259 (2004).
    [39]X. Meng, L. Cai, X. Xu, et al, Two-step phase-shifting interferometry and its application in image encryption, Opt. Lett.,31,1414-1416 (2006).
    [40]X. Wang and D. Zhao, Image encryption based on anamorphic fractional Fourier transform and three-step phase-shifting interferometry, Opt. Commun.,268,240-244 (2006).
    [41]X. Meng, L. Cai, X. Xu, et al, Full-phase image encryption by two-step phase-shifting interferometry, Optik,119,434-440 (2008).
    [42]X. Wang and D. Zhao, Fully phase multiple-image encryption based on superposition principle and the digital holographic technique, Opt. Commun.,285,4280-4284 (2012).
    [43]N. Towghi, B, Javidi, and Z. Luo, Fully phase encrypted optical processor, J. Opt. Soc. Am. A,16,1915-1927(1999).
    [44]S. Yuan, X. Zhou, D. Li, et al, Simultaneous transmission for an encrypted image and a double random-phase encryption key, Appl. Opt.,46,3747-3753 (2007).
    [45]R. Wang, I. A. Watson, and C. Chatwin, Random phase encoding for optical security. Opt. Eng.,35,2464-2468 (1996).
    [46]H. Chang, W. Lu, and C. Kuo, Multiple-phase retrieval for optical security systems by use of random-phase encoding, Appl. Opt.,41,4825-4834 (2000).
    [47]G. Situ and J. Zhang, A cascaded iterative Fourier transform algorithm for optical security applications, Optik,114,473-477(2003).
    [48]G. Situ and J. Zhang, A lensless optical security system based on computer-generated phase only masks, Opt. Commun.,232,115-122 (2004).
    [49]司徒国海,张静娟,张艳,赵震声,级联相位恢复算法用于光学图像加密,光电子激光,14,341-343(2004).
    [50]H. Hwang, H. Chang, and W. Lie, Fast double-phase retrieval in Fresnel domain using modified Gerchberg-Saxton algorithm for lensless optical security systems, Opt. Express,17,13700-13710 (2009).
    [51]H. Hwang, H. Chang, and W. Lie, Multiple-image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain, Opt. Lett.,34,3917-3919 (2009).
    [52]Y. Xiao, X. Zhou, S. Yuan, et al, Multiple-image optical encryption:an improved encoding approach, Appl. Opt.,48,2686-2692 (2009).
    [53]A. Alfalou and A. Mansour, Double random phase encryption scheme to multiplex and simultaneous encode multiple images, Appl. Opt.,48,5933-5947 (2009).
    [54]Z. Liu, J. Dai, X. Sun, et al, Triple image encryption scheme in fractional Fourier transform domains, Opt. Commun.,282,518-522 (2009).
    [55]H. Chang, H. Hwang, C. Li, et al, Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in the Fresnel transform domain, Appl. Opt.,50, 710-716(2011).
    [56]X. Wang and D. Zhao, Double-image self-encoding and hiding based on phase-truncated Fourier transforms and phase retrieval, Opt. Commun.,284, 4441-4445(2011).
    [57]S. Kishk and B. Javidi, Information hiding technique with double phase encoding, Appl. Opt.,41,5462-5470(2002).
    [58]L. Cai, M. He, Q. Liu, et al, Digital image encryption and watermarking by phase-shifting interferometry, Appl. Opt.,43,3078-3084 (2004).
    [59]M. He, L. Cai, Q. Liu, et al, Phase-only encryption and watermarking based on phase-shifting interferometry, Appl Opt.,44,2600-2606 (2005).
    [60]M. He, L. Cai, Q. Liu, et al, Multiple image encryption and watermarking by random phase matching. Opt. Commun.,247,29-37 (2005).
    [61]X. Meng, L. Cai, M. He, et al, Cross-talk-free double image encryption and watermarking with amplitude-phase separate modulations, J Opt. A:Pure Appl. Opt,7, 624-632(2005).
    [62]Y. Shi, G. Situ, and J. Zhang, Multiple-image hiding in the Fresnel domain, Opt. Lett., 32,1914-1916 (2007).
    [63]史祎诗,司徒国海,张静娟,多图像光学隐藏的菲涅尔变换方法,光电子.激光,18,1371-1373(2007).
    [64]S. Yuan, X. Zhou, M. S. Alam et al, Information hiding based on double random-phase encoding and public-key cryptography, Opt. Express,17,3270-3284 (2009).
    [65]Y. Zhang and B. Wang, Optical image encryption based on interference, Opt. Lett.,33, 2443-2445 (2008).
    [66]B. Wang and Y. Zhang, Double images hiding based on optical interference, Opt. Commun.,282,3439-3443 (2009).
    [67]W. Chen, C. Quan, and C. J. Tay, Optical color image encryption based on Arnold transform and interference method, Opt. Commun.,282,3680-3685 (2009).
    [68]C. Tay, C. Quan, W. Chen, et al Color image encryption based on interference and virtual optics, Opt. Laser Technol.,42,409-415 (2010).
    [69]N. Zhu, Y. Wang, J. Liu, et al, Optical image encryption based on interference of polarized light, Opt. Express,17,13418-13428 (2009).
    [70]D. Weng, N. Zhu, Y. Wang, et al, Experimental verification of optical image encryption based on interference, Opt. Commun.,284,2485-2487 (2011).
    [71]C. Niu, X. Wang, N. Lv, et al, An encryption method with multiple encrypted keys based on interference principle, Opt. Express,18,7827-7834 (2010).
    [72]B. Chen and H. Wang, Optically-induced-potential-based image encryption, Opt. Express,19,22619-22627 (2011).
    [73]Y. Zhang, B. Wang, and Z. Dong, Enhancement of image hiding by exchanging two phase masks, J. Opt. A:Pure Appl. Opt.,11,125406 (2009).
    [74]P. Kumar, J. Joseph, and K. Singh, Optical image encryption based on interference under convergent random illumination, J. Opt.,12,095402 (2010).
    [75]P. Kumar, J. Joseph, and K. Singh, Optical image encryption using a jigsaw transform for silhouette removal in interference-based methods and decryption with a single spatial light modulator, Appl. Opt.,50,1805-1811 (2011).
    [76]X. Wang and D. Zhao, Optical image hiding with silhouette removal based on the optical interference principle, Appl. Opt.,51,686-691 (2012).
    [77]X. Wang and D. Zhao, Image encoding based on coherent superposition and basic
    vector operations, Opt. Commun.,284,945-951 (2011).
    [78]T. Nomura and B. Javidi, Optical encryption using a joint transform correlator architecture, Opt. Eng.,39,2031-2035 (2000).
    [79]Y. Li, K. Kreske, and J. Rosen, Security and encryption optical systems based on a correlator with significant output images, Appl. Opt.,39,5295-5301 (2000).
    [80]D. Seo, C. Shin, and S. Kim, Shift-Tolerance Property of Fully Phase Encryption that Uses a Joint Transform Correlator, Appl. Opt.,43,4011-4016 (2004).
    [81]C. L. Mela and C. Lemmi, Optical encryption using phase-shifting interferometry in a joint transform correlator, Opt. Lett.,31,2562-2564 (2006).
    [82]H. Chang and C. Chen, Fully-phase asymmetric-image verification system based on joint transform correlator, Opt. Express,14,1458-1467 (2006).
    [83]M. N. Islam and M. S. Alam, Optical security system employing shifted phase-encoded joint transform correlation, Opt. Commu.,281,248-254 (2008).
    [84]D. Amaya, M. Tebaldi, R. Torroba, et al, Multichanneled encryption via a joint transform correlator architecture, Appl. Opt.,475903-5907 (2008)
    [85]E. Rueda, J. F. Barrera, R. Henao, et al, Optical encryption with a reference wave in a joint transform correlator architecture, Opt. Commun.,282,3243-3249 (2009).
    [86]R. Henao, E. Rueda, J. F. Barrera, et al, Noise-free recovery of optodigital encrypted and multiplexed images, Opt. Lett.,35,333-335 (2010).
    [87]X. Shi and D. Zhao, Image hiding in Fourier domain by use of joint transform correlator architecture and holographic technique, Appl. Opt.,50,766-772 (2011).
    [88]E. G. Johnson and J. D. Brasher, Phase encryption of biometrics in diffractive optical elements, Opt. Lett,21,1271-1273 (1996)
    [89]S. Lai, Security holograms using an encoded reference wave, Opt. Eng.,35, 2470-2472(1996).
    [90]N. Yoshikawa, M. Itoh, and T. Yatagai, Binary computer-generated hologram for security application from a synthetic double-exposure method by electron-beam lithography, Opt. Lett.,23,1483-1485 (1998).
    [91]Y. Guo, Q. Huang, J. Du, et al, Decomposition storage of information base on computer-generated hologram interference and its application in image encryption, Appl. Opt.,40,2860-2863 (2001).
    [92]J. Davis, D. McNamara, D. Cottrell, et al, Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator, Appl. Opt.,39,1549-1554 (2000).
    [93]P. Mogensen and J. Gluckstad, A phase-based optical encryption system with polarization encoding, Opt. Commun.,173,177-183 (2000).
    [94]G. Unnikrishnan, M. Pohit, and K. Singh, A polarization encoded optical encryption system using ferroelectric spatial light modulator, Opt. Commun.,185,25-31 (2000).
    [95]X. Tan, O. Matoba, Y. Okada-Shudo, et al, Secure optical memory system with polarization encryption, Appl. Opt.,40,2310-2315 (2001).
    [96]R. Eriksen, P. Mogensen, and J. Gluckstad, Elliptical polarization encoding in two dimensions using phase-only spatial light modulators, Opt Commun.,187,325-336 (2001).
    [97]C. Cheng and M. Chen, Polarization encoding for optical encryption using twisted nematic liquid crystal spatial light modulators, Opt. Commun.,237,45-52(2004).
    [98]E. Tajahuerce, J. Lancis, B. Javidi et al, Optical security and encryption with totally incoherent light, Opt. Lett.,26,678-680 (2001).
    [99]C. Guo, X. Cheng, X. Ren, et al, Optical vortex phase-shifting digital holography, Opt. Express,12,5166-5171 (2004).
    [100]P. Mogensen and J. Gliickstad, Phase-only optical encryption, Opt Lett.,25,566-568 (2000).
    [101]P. Mogensen and J. Gluckstad, Phase-only optical encryption of a fixed mask, Appl. Opt.,40,1226-1235 (2001).
    [102]Y. Chang, H. Chang, and C. Kuo, Hybrid image cryptosystem based on dyadic phase displacement in the Fourier domain, Opt. Commun.,236,245-257 (2004).
    [103]J. Zhao, H. Lu, X. Song, et al, Optical image encryption based on multistage fractional Fourier transforms and pixel scrambling technique, Opt. Commun.,249, 493-499 (2005)
    [104]Z. Zhong, J. Chang, M. Shan, et al, Fractional Fourier-domain random encoding and pixel scrambling technique for double image encryption, Opt. Commun.,285,18-23 (2012).
    [105]Z. Zhong, J. Chang, M. Shan, et al, Double image encryption using double pixel scrambling and random phase encoding Opt. Commun.,285,584-588 (2012).
    [106]J. Munoz-Rodriguez and R. Rodringue-Vera, Image encryption based on moire pattern performed by computational algorithms, Opt. Commun.,236,295-301(2004).
    [107]B. Hennelly and J. T. Sheridan, Random phase and jigsaw encryption in the Fresnel domain, Opt. Eng.,43,2239-2249 (2004).
    [108]M. Singh, A. Kumar, and K. Singh, Optical security system using jigsaw transforms of the second random phase mask and the encrypted image in a double random phase encoding system, Opt. Laser. Eng.,46,763-768 (2008).
    [109]M. Joshi, C. Shakher, and K. Singh, Fractional Fourier plane image encryption technique using radial hilbert-, and Jigsaw transform, Opt. Laser. Eng.,48,754-759 (2010).
    [110]J. Barrera, R. Henao, and R. Torroba, Optical encryption method using toroidal zone plates, Opt. Commun.,248,35-40 (2005).
    [111]P. Clemente, V. Durdn, V. Torres-Company, et al, Optical encryption based on computational ghost imaging, Opt. Lett.,35,2391-2393 (2010).
    [112]W. Chen, X. Chen, and C. Sheppard, Optical image encryption based on diffractive imaging, Opt. Lett.,35,3817-3819 (2010).
    [113]H. Li and Y. Wang, Double-image encryption based on iterative gyrator transform, Opt. Commun.,281,5745-5749(2008).
    [114]Z. Liu, Q. Guo, L. Xu, et al, Double image encryption by using iterative random binary encoding in gyrator domains, Opt. Express,18,12033-12043 (2010).
    [115]Z. Liu, L. Xu, C. Lin et al, Image encryption by encoding with a nonuniform optical beam in gyrator transform domains, Appl. Opt.,49,5632-5637 (2010).
    [116]Z. Liu, L. Xu, Q. Lin, et al, Image watermarking by using phase retrieval algorithm in gyrator transform domain, Opt. Commun.,283,4923-4927(2010).
    [117]J. A. Rodrigo, H. Duadi, T. Alieva, et al, Multistage phase retrieval algorithm based upon the gyrator transform, Opt. Express,18,1510-1520 (2010).
    [118]M. R. Abuturab, Securing color information using Arnold transform in gyrator transform domain, Opt. Eng.,50,772-779 (2012).
    [119]M. R. Abuturab, Color information security system using discrete cosine transform in gyrator transform domain radial-Hilbert phase encoding, Opt. Laser. Eng.,50, 1209-1216 (2012).
    [120]M. R. Abuturab, Securing color image using discrete cosine transform in gyrator transform domain structured-phase encoding, Opt. Laser. Eng.,50,1383-1390 (2012).
    [121]M. R. Abuturab, Color information cryptosystem based on optical superposition principle and phase-truncated gyrator transform, Appl. Opt.,51,7994-8002 (2012).
    [122]Q. Guo, Z. Liu, and S. Liu, Color image encryption by using Arnold and discrete fractional random transforms in IHS space, Opt. Laser. Eng.,48,1174-1181 (2010).
    [123]Z. Liu, L. Xu, T. Liu, et al, Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains, Opt. Commun.,284, 123-128(2011).
    [124]X. Deng and D. Zhao, Color component 3D Arnold transform for polychromatic pattern recognition, Opt. Commun.,284,5623-5629 (2011).
    [125]X. Shi and D. Zhao, Color image hiding based on the phase retrieval technique and Arnold transform, Appl. Opt.,50,2134-2139 (2011).
    [126]X. Peng, Z. Cui, and T. Tan, Information encryption with virtual-optics imaging system, Opt. Commun.,212,235-245 (2002).
    [127]X. Peng, L. Yu, and L. Cai, Double-lock for image encryption with virtual optical wavelength, Opt. Express,10,41-45 (2002).
    [128]X. Peng, Z. Cui, L. Cai, et al, Digital audio signal encryption with a virtual optics scheme, Optik,114,69-75 (2003).
    [129]H. Kim, D. H. Kim, and Y. Lee, Encryption of digital hologram of 3-D object by virtual optics, Opt. Express,12,4912-4921 (2004).
    [130]A. Carnicer, M. Montes-Usategui, S. Arcos, et al, Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys, Opt. Lett., 30,1644-1646 (2005).
    [131]U. Gopinathan, D. S. Monaghan, T. J. Naughton, et al, A known-plaintext heuristic attack on the Fourier plane encryption algorithm, Opt. Express,14,3181-3186 (2006).
    [132]X. Peng, P. Zhang, H. Z. Wei, et al, Known-plaintext attack on optical encryption based on double random phase keys, Opt. Lett.,31,1044-1046 (2006).
    [133]X. Peng, H. Z. Wei, and P. Zhang, Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain, Opt. Lett.,31,3261-3263 (2006).
    [134]位恒政,彭翔,张鹏.双随机相位加密系统的选择明文攻击.光学学报,27,824-829(2007).
    [135]彭翔,汤红乔,田劲东.双随机相位编码光学加密系统的唯密文攻击.物理学报,56,2629-2936(2007).
    [136]Y. Frauel, A. Castro, T. Naughton, et al, Resistance of the double random phase encryption against various attacks, Opt. Express,15,10253-10265 (2007).
    [137]G. Situ, G Pedrini, and W. Osten, Strategy for cryptanalysis of optical encryption in the Fresnel domain, Appl. Opt.,49,457-462 (2010).
    [138]J. Barrera, C. Vargas, M. Tebaldi, et al, Known-plaintext attack on a joint transform correlator encrypting system, Opt. Lett.,35,3553-3555 (2010).
    [139]X. Cheng, L. Cai, Y. Wang, et al, Security enhancement of double-random phase encryption by amplitude modulation, Opt. Lett.,33,1575-1577 (2008).
    [140]P. Kumar, J. Joseph, and K. Singh, Impulse attack-free four random phase mask encryption based on a 4-f optical system, Appl. Opt.,48,2356-2363 (2009).
    [141]B. Chen and H. Wang, Optically-induced-potential-based image encryption, Opt. Express,19,22619-22627 (2011).
    [142]W. Qin and X. Peng, Asymmetric cryptosystem based on phase-truncated Fourier transforms, Opt. Lett.,35,118-120 (2010).
    [143]W. Chen and X. Chen, Optical asymmetric cryptography using a three-dimensional space-based model, J. Opt.,13,075404 (2011).
    [144]X. Wang and D. Zhao, A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms, Opt. Commun.,285,1078-1081 (2012).
    [145]X. Wang and D. Zhao, Security enhancement of a phase-truncation based image encryption algorithm, Appl. Opt.,50,6645-6651 (2011).
    [146]X. Wang and D. Zhao, Double images encryption method with resistance against the specific attack based on an asymmetric algorithm, Opt. Express,20,11994-12003 (2012).
    [147]宋菲君.近代光学信息处理.北京大学出版社(1998).
    [148]P. Duffieux, The Fourier transform and its application to optics, John Wiley & Sons Inc (1983).
    [149]Namias, The fractional order Fourier transform and its applications to quantum mechanics, J. Inst. Math. Appl.,25,241-265 (1980).
    [150]A. McBride and F. Kerr, On Namias's fractional Fourier transform, IMA J. Appl. Math.,39,159-175(1987).
    [151]D. Mendlovic and H. M. Ozaktas, Fractional Fourier transforms and their optical implementation:I, J. Opt. Soc. Am. A,10,1875-1881 (1993).
    [152]H. M. Ozaktas and D. Mendlovic, Fractional Fourier transforms and their optical implementation:II, J. Opt. Soc. Am. A,10,2522-2531(1993).
    [153]A. Lohmann, Image rotation, Wigner rotation, and the fractional Fourier transform, J. Opt. Soc. Am. A,10,2181-2186 (1993).
    [154]L. Almeida, The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Processing.,42,3084-3091 (1994).
    [155]H. M. Ozaktas and D. Mendlovic, Fractional Fourier transforms as a tool for analyzing beam propagation and spherical mirror resonators, Opt. Lett.,19, 1678-1680(1994).
    [156]J. W. Cooley and J. W. Turkey, An algorithm for the machine calculation of complex Fourier series, Math Comput.,19,297-301(1965).
    [1]P. Refregier and B. Javidi, Optical image encryption based on input plane and Fourier plane random encoding, Opt. Lett.,20,767-769 (1995).
    [2]G. Unnikrishnan, J. Joseph, and K. Singh, Optical encryption by double-random phase encoding in the fractional Fourier domain, Opt. Lett.,25,887-889 (2000).
    [3]S. Liu, L. Yu, and B. Zhu, Optical image encryption by cascaded fractional Fourier transforms with random phase filtering, Opt. Commun.,187,57-63 (2001).
    [4]G. Situ and J. Zhang, Double random-phase encoding in the Fresnel domain, Opt. Lett., 29,1584-1586(2004).
    [5]R. Tao, J. Lang, and Y. Wang, Optical image encryption based on the multiple-parameter fractional Fourier transform, Opt. lett.,33,581-583 (2008).
    [6]Z. Liu, L. Xu, C. Lin, et al, Image encryption by encoding with a nonuniform optical beam in gyrator transform domains, Appl. Opt.,49,5632-5637 (2010).
    [7]A. Carnicer, M. Montes-Usategui, S. Arcos, et al, Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys, Opt. Lett.,30, 1644-1646(2005).
    [8]X. Peng, P. Zhang, H. Wei, et al, Known-plaintext attack on optical encryption based on double random phase keys, Opt. Lett.,31,1044-1046 (2006).
    [9]X. Peng, H. Wei, and P. Zhang, Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain, Opt. Lett.,31,3261-3263 (2006).
    [10]U. Gopinathan, D. S. Monaghan, T. J. Naughton, et al, A known-plaintext heuristic attack on the Fourier plane encryption algorithm, Opt. Express,14,3181-3186 (2006).
    [11]Y. Frauel, A. Castro, T. J. Naughton, et al, Resistance of the double random phase encryption against various attacks, Opt. Express,15,10252-10265 (2007).
    [12]X. Cheng, L. Cai, Y. Wang, et al, Security enhancement of double-random phase encryption by amplitude modulation, Opt. Lett.,33,1575-1577 (2008).
    [13]P. Kumar, J. Joseph, and K. Singh, Impulse attack-free four random phase mask encryption based on a 4-f optical system, Appl. Opt.,48,2356-2363 (2009).
    [14]W.Qin and X. Peng, Asymmetric cryptosystem based on phase-truncated Fourier transforms, Opt. Lett.,35,118-120 (2010).
    [15]W. Chen and X. Chen, Optical asymmetric cryptography using a three-dimensional space-based model, J. Opt.,13,075404 (2011).
    [16]X. Wang and D. Zhao, A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms, Opt. Commun.,285,1078-1081 (2012).
    [17]X. Wang and D. Zhao, Security enhancement of a phase-truncation based image encryption algorithm, Appl. Opt.,50,6645-6651, (2011).
    [1]T. Nomura and B. Javidi, Optical encryption using a joint transform correlator architecture, Opt. Eng.,39,2031-2035 (2000).
    [2]H. Chang, W. Lu, and C. Kuo, Multiple-phase retrieval for optical security systems by use of random-phase encoding, Appl. Opt.,41,4825-4834 (2000).
    [3]J. F. Barrera, C. Vargas, M. Tebaldi, et al, Known-plaintext attack on a joint transform correlator encrypting system, Opt. Lett.,35 3553-3555 (2010).
    [4]A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys, Opt. Lett.,30, 1643-1646(2005).
    [5]X. Peng, P. Zhang, H. Wei, et al, Known-plaintext attack on optical encryption based on double random phase keys, Opt. Lett.,31,1043-1046 (2006).
    [6]W. Qin and X. Peng, Asymmetric cryptosystem based on phase-truncated Fourier transforms, Opt. Lett.,35,118-120 (2010).
    [7]W. Stallings, Cryptography and Network Security:Principles and Practice, Prentice Hall (2003).
    [8]X. Wang and D. Zhao, Public-key cryptography for multiple-image encryption based on phase-truncation in Fourier domain, Opt. Commun.,284,148-152 (2011).
    [9]W. Chen and X. Chen, Optical asymmetric cryptography using a three-dimensional space-based model, J. Opt.,13,075404 (2011).
    [10]W. Chen and X. Chen, Optical color image encryption based on an asymmetric cryptosystem in the Fresnel domain, Opt. Commun.,284,3913-3917 (2011).
    [11]X. Wang and D. Zhao, A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms, Opt. Commun.,285,1078-1081 (2012).
    [12]X. Wang and D. Zhao, Security enhancement of a phase-truncation based image encryption algorithm, Appl. Opt.,50,6645-6651 (2011).
    [1]A. Alfalou and C. Brosseau, Optical image compression and encryption methods, Adv. Opt. Photon.,1,589-636 (2009).
    [2]A. Alfalou and C. Brosseau, Exploiting root-mean-square time-frequency structure for multiple-image optical compression and encryption, Opt. Lett.,35,1914-1916 (2010).
    [3]B. Hennelly and J. Sheridan, Optical image encryption by random shifting in fractional Fourier domains, Opt. Lett.,28,269-271 (2003).
    [4]Z. Liu, Q. Li, J. Dai, X. Zhao, et al, Image encryption based on random scrambling of the amplitude and phase in the frequency domain, Opt. Eng.,48,087005 (2009).
    [5]W. Chen, X. Chen, and C. Sheppard, Optical image encryption based on diffractive imaging, Opt. Lett.,35,3817-3819 (2010)
    [6]G. Situ and J. Zhang, A lenseless optical security system based on computer-generated phase only masks, Opt.Commun.,232,114-122 (2004).
    [7]Y. Zhang and B. Wang, Optical image encryption based on interference, Opt. Lett.,33, 2443-2445 (2008).
    [8]B. Wang and Y. Zhang, Double images hiding based on optical interference, Opt. Commun.,282,3439-3443 (2009).
    [9]N. Zhu, Y. Wang, J. Liu, et al, Optical image encryption based on interference of polarized light, Opt. Express,17,13418-13428 (2009).
    [10]W. Chen, C. Quan, and C. Tay, Optical color image encryption based on Arnold transform and interference method, Opt. Commun.,282,3680-3685 (2009).
    [11]C. Niu, X. Wang, N. Lv, et al, An encryption method with multiple encrypted keys based on interference principle, Opt. Express,18,7827-7834 (2010).
    [12]N. Zhu, Y. Wang, J. Liu, et al, Holographic projection based on interference and analytical algorithm, Opt. Commun.,283,4969-4971 (2010).
    [13]D. Weng, N. Zhu, Y. Wang, et al, Experimental verification of optical image encryption based on interference, Opt. Commun.,284,2484-2487 (2011).
    [14]Y. Zhang, B. Wang, and Z. Dong, Enhancement of image hiding by exchanging two phase masks, J. Opt. A:Pure Appl. Opt.,11,125406 (2009).
    [15]P. Kumar, J. Joseph, and K. Singh, Optical image encryption using a jigsaw transform for silhouette removal in interference-based methods and decryption with a single spatial light modulator, Appl. Opt.,50,1804-1811 (2011).
    [16]X. Wang and D. Zhao, Optical image hiding with silhouette removal based on the optical interference principle, Appl. Opt.,51,686-691 (2012).
    [1]N. Bourbakis and C. Alexopoulos, Picture data encryption using scan patterns, Pattern Recogn.,25,567-581 (1992).
    [2]M. S. Baptista, Cryptography with chaos, Phys. Lett. A,240,50-54 (1998).
    [3]X. Liu, D. Yan, Z. Zhu, et al, Chaos picture scrambling algorithm based on sort transformation, J. Image Graph.,10,655-660 (2005).
    [4]T. Gao and Z. Chen, Image encryption based on a new total shuffling algorithm, Chaos, Soliton & Fract.,38,213-220 (2008).
    [5]F. Sun, Z. Lv, and S. Liu, A new cryptosystem based on spatial chaotic system, Opt. Commun.,283,2065-2073 (2010).
    [6]J. A. Munoz Rodriguez and R. Rodriguez-Vera, Image encryption based on phase encoding by means of a fringe pattern and computational algorithms, Revista Mexicana de Fisica,52,53-63 (2006).
    [7]H. Kim, D. H. Kim, and Y. H. Lee, Encryption of digital hologram of 3-D object by virtual optics, Opt. Express,20,4912-4921 (2004).
    [8]Y. Xiao, X. Zhou, S. Yuan, et al, Multiple-image optical encryption:an improved encoding approach, Appl. Opt.,48,2685-2692 (2009).
    [9]Y. Zhang and B. Wang, Optical image encryption based on interference, Opt. Lett.,33, 2443-2445 (2008).
    [10]W. Chen, C. Quan, and C. Tay, Optical color image encryption based on Arnold transform and interference method, Opt. Commun.,282,3680-3685 (2009).
    [11]C. Niu, X. Wang, N. Lv, et al, An encryption method with multiple encrypted keys based on interference principle, Opt. Express,18,7827-7834 (2010).
    [12]X. Wang and D. Zhao, Image encoding based on coherent superposition and basic vector operations, Opt. Commun.,284,945-951 (2011).
    [13]M. He, L. Cai, Q. Liu, et al, Multiple image encryption and watermarking by random phase matching, Opt. Commun.,247,29-37 (2005).
    [14]S. Yuan, X. Zhou, M. S. Alam, et al, Information hiding based on double random-phase encoding and public-key cryptography, Opt. Express,17,3270-3284 (2009).
    [15]J. Rosen and B. Javidi, Hidden images in halftone pictures, Appl. Opt.,40,3345-3353 (2001).
    [16]X. Wang and D. Zhao, Double-image self-encoding and hiding based on phase-truncated Fourier transforms and phase retrieval, Opt. Commun.,284, 4441-4445(2011).
    [1]A. Alfalou and C. Brosseau, Optical image compression and encryption methods, Adv. Opt. Photon.,1,589-636 (2009).
    [2]G. Situ and J. Zhang, Multiple-image encryption with wavelength multiplexing, Opt. Lett.,30,1306-1308(2005).
    [3]H. Chang, W. Lu, and C. Kuo, Multiple-phase retrieval for optical security systems by use of random-phase encoding, Appl. Opt.,41,4825-4834 (2000).
    [4]E. Rueda, J. F. Barrera, R. Henao, et al, Optical encryption with a reference wave in a joint transform correlator architecture, Opt. Commun.,282,3243-3249 (2009).
    [5]B. Javidi and T. Nomura, Securing information by use of digital holography, Opt. Lett., 25,28-30 (2000).
    [6]N. K. Nishchal, J. Joseph, and K. Singh, Securing information using fractional Fourier transform in digital holography, Opt. Commun.,235,253-259 (2004).
    [7]X. Meng, L. Cai, X. Xu, et al, Full-phase image encryption by two-step phase-shifting interferometry, Optik,119,434-440 (2008).
    [8]La Mela and C. Iemmi, Optical encryption using phase-shifting interferometry in a joint transform correlator, Opt. Lett.,31,2562-2564 (2006).
    [9]R. Henao, E. Rueda, J. F. Barrera, and R. Torroba, Noise-free recovery of optodigital encrypted and multiplexed images, Opt. Lett.,35,333-335 (2010).
    [10]X. Wang and D. Zhao, Image encoding based on coherent superposition and basic vector operations, Opt. Commun.,284,945-951 (2011).
    [11]J. F. Barrera, C. Vargas, M. Tebaldi, R. Torroba, and N. Bolognini, Known-plaintext attack on a joint transform correlator encrypting system, Opt. Lett.,35,3553-3555 (2010).
    [12]N. Singh and A. Sinha, Optical image encryption using fractional Fourier transform and chaos, Opt. Lasers. Eng.,46,117-123 (2008).
    [13]E. N. Leith and J. Upatineks, Reconstruction wavefront and communication theory, J. Opt. Soc. Am,52,1123-1130 (1962).
    [14]J. W.Goodman and R. W. Lawrence, Digital image formation from electronically detected holograms, Appl. Phys. Lett.,11,77-79 (1967).
    [15]U. Schnars and W. Juptner, Direct recording of holograms by a CCD target and numerical reconstruction, Appl. Opt.,33,179-181 (1994).
    [16]K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos:An Introduction to Dynamical Systems (Springer, New York,2001).