太阳辐射减弱对冬小麦生理生化及产量的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,太阳辐射减弱所引起环境效应受到了人们的广泛关注。近年来,中国地区大气气溶胶的浓度、大气浑浊度及灰霾日数增加导致到达地表的太阳辐射呈现降低趋势,其中长江三角洲地区的降低较明显。本研究通过大田试验及模型模拟方法系统研究了太阳辐射减弱对冬小麦生长发育、光合生理特性、干物质累积及分配、产量的影响,建立、修订光合作用及干物质生产模型。通过作物模式分析了辐射减弱条件下农作物干物质的累积和分配特征,提出了模式的改进措施,为全面准确评估气候变化对我国主要粮食作物产量的影响提供依据。主要结果如下:
     (1)在太阳辐射减弱条件下,冬小麦叶绿素(Ch1)、类胡萝卜素(Car.)和叶黄素(Xanthophy)的含量明显上升,增强了作物对光能的吸收和利用能力。从拔节期至成熟期,60%-40%自然光处理降低了叶片净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、水分利用率(WUE)和气孔导度限制值(Ls),增加了胞间二氧化碳浓度(Ls)。在同样的辐射减弱条件下,上述变量对光强的敏感度明显受到抑制。太阳辐射减弱条件下,冬小麦叶片光合系统未发生光抑制或光破坏,因此其最大量子效率和初始荧光上升。辐射减弱显著抑制光合系统Ⅱ(PSII)反应中心的吸收与利用光能的能力、光化学猝灭系数(qP)及叶片的电子递体(PQ)的活性,增加了PSII吸收的光能向热耗散途径分配的比例。60%-40%自然光处理显著增强冬小麦叶片的过氧化物酶(POD)、超氧化歧化酶(SOD)活性,提高丙二醛(MDA)和电导率(EC)的含量,有效清除了自由基对质膜系统的伤害。太阳辐射减弱降低叶片可溶性糖、可溶性蛋白质的含量,但促进总游离氨基酸的累积。
     (2)60%-20%自然光条件下,冬小麦增加株高(PH)和叶面积(LA),降低单位叶重(LMA)、根干物质比(RMR)、茎干物质比(SMR)和根冠比(LCR),提高叶干物质比(LMR)、叶重分数(LMF)、叶面积比(LAR)和叶面积-根干物重比(LARMR)。上述调整一定程度上提高了光能的获取和利用能力,但不足以弥补光能不足所带来的影响,因此总生物量(TB)净同化率(NAR)和相对生长率(RGR)持续下降。
     (3)修订的WheatGrow(WG)模型能较好地反映太阳辐射减弱条件下冬小麦光合作用和干物质生产的变化。在水肥充足条件下60%、40%自然光处理的冬小麦光合作用和总干物质质量分别下降了23%、31%,35%、41%,籽粒产量下降了34.08%和47.91%。在极端情况下,20%和15%自然光处理的冬小麦光合速率、总干物重及籽粒产量分别下降了46%和48%,56%和57%,88.31和87.40%。
     (4)CERES-Wheat模型一定程度上能反映太阳辐射减弱对冬小麦干物质的累积的影响,但未能反映干物质在不同器官中的分配特征。60%-15%自然光条件下,冬小麦总生物量下降了37.61%-71.69,根、茎和叶生物量分别下降了46.49%-57.30%、21.7-76.76%和51.8%-66.2%。
The solar irradiance and its environmental impacts are growing concerns worldwide. In the recent years, the aerosol loading, atmospheric turbidity and haze day over china area increase considerably, resulting in decrease in the surface shortwave radiation and the reduction in Yangtze delta is more obvious. On this study, the reduced solar irradiance on the growth, photosynthetic characteristics, biomass production and yield of winter wheat were investigated via field experiments and model simulation. Further more, the dry matter accumulation and distribution characteristics of this cultivar were elucidated by means of CERES-Wheat model. Results are as follows:
     (1) Under reduced solar irradiance condition, the contents of chlorophyll (Chla, Chlb, Chl(a+b)), carotenoid and xanthophyll in winter wheat leaves increase significantly, which can improve the plant's ability for light absorption and utilization. Irradiance of 60%-20% incident solar light significantly decreased the net photosynthetic rate(Pn), stomata conductance(Gs), transpiration rate(Tr), water use efficience(WUE) and stomatal limitation(Ls), but increased the intercellular CO2 concentration(Ci), and the sensitivity to light of the above parameters was also restrained. Photoinhibition or photo-damage to the PSII didn't occur when the plants were subjected to 60%-20% incident solar irradiance, thus the maximum quantum yield of PSII(Fv/Fm) and the initial fluorescence(Fo) increased substantially. The effective quantum yield of PSII(Yield), maximum photosynthesis(Pm) and photochemical quenching(qP) were restricted under reduced solar irradiance condition, while the non-photochemical quenching(NPQ) increased significantly, demonstrating that more excess of light energy in PSII was dissipated through heat dissipation. The contents of peroxidase(POD), superoxide dismutase (SOD), malonaldehyde(MDA) and electrolyte leakage(EC) increased pronouncedly in response to 60%-20%incident solar irradiance treatments, thus the plants could effectively eliminate the attack of active oxygen species (AOS) to cell membrane, preventing peroxidation damage caused by reduced solar light. The solar irradiance intensity lower than 60% incident solar light significantly decreased the contents of soluble sugar and soluble protein, while increased the total free amino acid content in leaves of winter wheat.
     (2)Under long term negative effects of 60%-20% incident solar light, the plant height(PH), leaf area(LA), leaf mass ratio(LMR),leaf mass fraction(LMF),leaf area ratio(LAR) and leaf area-root mass ratio(LARMR) of winter wheat increased significantly, on the contrary, the leaf mass per unit area(LMA), root mass ratio(RMR), stem mass ratio(SMR) and root crown ratio(RCR) presented a trend of increase. This strategy of biomass distribution could enhance the ability of light capture and light use efficiency to a certain extern, but could not off set the negative impact of insurfficient light, thus the total biomass(TB), net simulation rate(NAR) and relative growth rate(RGR) decreased substantially.
     (3) The revised WheatGrow(WG) model has good preferment on predicting photosynthesis and biomass assimilation of winter wheat. Solar irradiance of 60% and 40% incident solar light could respectively resulted in significant reduction of 23% and 31% in photosynthetic rate of winter wheat,35% and 41% for total biomass and 34.08% and 47.91% in grain yield. When the solar irradiance decreased to 20% and 15% incident solar light, thepho to synthetic rate declined by 46% and 48%, total biomass decreased by 56% and 57%, and reduction of grain yield was 88.31% and 87.40%, respectively.
     (4) The CERES-Wheat has certain of ability to assess the biomass accumulation of winter wheat, but can not well simulate the distribution of biomass among organs under reduced solar irradiance condition..When solar irradiance decreased to 60%-15% of incident solar light, the total biomass decreased by 37.61%-71.69%, and the root, stem and leaf biomass declined by 46.49%-57.30%,21.7%-76.76% and 51.8%-66.2%,respectively.
引文
[1]Abraha M G, Savage M J. Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations[J].Agricultural and Forest Metrorology, 2008,148:401-416.
    [2]Adriano S, Bartolomeo D, Giuseppe M, et al. Shade effect on photosynthesis and photoinhibition in olive during drought and rewatering[J]. Agricultural Water Management, 2009,96(8):1201-1206.
    [3]Adriano S, Dichio B. Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree[J]. Plant Science,2004,166, 293-302.
    [4]Auffhammer M, Ramanathan V, Vincent J R. Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India[J]. Proc. Nat. Acad. Sci.,2006,103:19668-19672.
    [5]Blokhina O B, Fagerstedt K V. Relationship between lipid peroxidation and anoxia tolerance in a range of species during post-anoxia reaeration[J]. Physilolgica plantarum,1999, 105:625-632.
    [6]Black C, Ong C. Utilisation of light and water in tropical agriculture[]. Agric. For. Meteorol. 2000,104,25-47.
    [7]Beauchamp C, Fridovich I. Superoxide dismutase:improved assays and an assay applicable to acrylamide gel. Anal. Biochem.,1971,44(1),276-287.
    [8]Berry J A, Downton W J S. Environmental regulation of photosynthesis. In:Govindjee NY(ed), Photosynthesis Vol.Ⅱ. Academic Press, New York,1982, PP.263-343.
    [9]Bierhuizen J F, Slatyer R O. Effect of atmospheric concentration of water vapor and CO2 in determing transpiration of cotton leaves[J], Agric.Meteorol,1965,2:259-270.
    [10]Becana M, Moran J F, Iturbe-Ormaetxe I. Iron-dependent oxygen free radical generation in plants subjected to environmental stress:toxicity and antioxidant protection[J]. Plant Soil, 1998,201:137-47.
    [11]Boardman N K. Photosynthesis on sun and shading plant[C].Winslow R B. Annu. Rev. Plant Physiology. Californias:Annal Reviews Inc,1977,28:355-371.
    [12]Calatayud A. and Barreno E. Chlorophyll fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response toozone and benomyl[J].Environmental Pollution,2001,115,283-289.
    [13]Calatayud A, Iglesias D J, Talon M, et al. Effects of long-term ozone exposure on citrus: chlorophyll a fulorescence and gas exchange[J].photosynthe,2006,44(4):548-554
    [14]Cavagnaro J B, Trione S O. Physiological, morphological and biochemical responses to shade of Trichloris crinita, a forage grass from the arid zone of Argentina. Journal of Arid Environments,2007,68(3):337-347.
    [15]Cardillo E and Bernal C J. Morphological response and growth of cork oak (Quercus suber L.) seedlings at different shade levels[J]. Forest Ecology and Management,2006,222(1-3): 296-301.
    [16]Casano L M, Gomez L D, Lascano H R, et al. Inactivation and degradation of CuZn-SOD by active oxygen species in wheat chloroplasts exposed to photooxidative stress[J]. Plant Cell Physiol.,1997,38:433-440.
    [17]Chang X, Alderson P G, Wright C J. Solar irradiance level alters the growth of basil (Ocimum basilicum L.) and its content of volatile oils[J]. Environ. Exp. Bot.,2008; 63:216-223.
    [18]Chameides W L, Yu H, Liu S C, et al. Case study of the effects of atmospheric aerosols and regional haze on agriculture:An opportunity to enhance crop yields in China through emission controls?[J]. PNAS,1999,96(24),13626-13633
    [19]Che H Z, Shi GY, Zhang XY. Analysis of sky conditions using 40 year records of solar radiation data in China[J]. Theoretical and Applied Climatology,2007,89,83-93.
    [20]Chen H Z, Shi GY, Zhang XY, et al. Analysis of 40 years of solar radiation data from China, 1961-2000[J]. Geo-phys. Res. Lett.,2005,32, L06803, doi:10.1029/2004GL022322.
    [21]Chow W S, Andesron J M. Light regulation of Photosystem II and Photosysetm I reaction cenetrs of Plnat thylkaoid membrane[M]. Dodrercht:Kluwer academic Publisher, 1996:325-336.
    [22]Cohen S, Raveh E, Li Y, et al. Physiological responses of leaves, tree growth and fruit yield of grapefruit trees under reflective shade screens[J]. Scientia Horticulturae,2005,107(1): 25-35.
    [23]Collier C J, Lavery P S, Ralph P J, et al. Shade-induced response and recovery of the seagrass Posidonia sinuosa[J].Journal of Experimental Marine Biology and Ecology,2009, 370:89-103.
    [24]Cowan I R. Stomatal behavior and environment[J]. Advances of Botamy Reaearch,1977,4, 117-228.
    [25]Crookston P K, Treharne K J, Ludgord P, et al. Response ofbeans to shading[J]. Crop Science,1975,15:412-416.
    [26]Dai Y Z. Shen Z G, Liu Y et al. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg[J]. Environmental and Experimental Botany.2009,65(2-3):177-182.
    [27]Demmig-Adams B, Adams III WW, Logan B A, et al. Xantophyll cycle dependent energy dissipation and flexible photosystem II efficiency in plants acclimated to light stress[J]. Aust. J. Plant Physiol.1995,22,249-260.
    [28]Demmig-Adams, B. and Adams W W III. Photoprotection and other responses of plants to high light stress[J]. Annual Review of Plant Physiology and PlantMolecular Biology,1992,43: 599-626.
    [29]Demmig B and BjOrkman O. Camparision of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of evolution in leaves of higher plants[J]. Planta,1987, 171:171-184.
    [30]Demmig-Adams B. Carotenoids and photoprotection in plants:A role for the xanthophyll zeaxanthin [J]. Biochimica BiophysicaActa,1990:1-24.
    [31]Dias M A, Costa M M. Effect of low salt concentrations on nitrate reductase and peroxidase of sugar beet leaves[J]. J. Exp. Bot.,1983,34:537-543.
    [32]Evans J R, Poorter H. Photosynthetic acclimation of plants to growth irradiance:the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain[J]. Plant Cell Environ.,2001,24,755-767.
    [33]Evans L T. Crop evolution, adaption and yield[M]. Cambridge University Press, Cambridge, 1993, pp.146-152.
    [34]Farage P K & Long S P. The occurrence of photoinhibition in an over wintering crop of oilseed rape(Brassica napusL.)and its correlation with changes in crop growth[J]. Planta,1991, 185:279-286.
    [35]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Reviw of Plant physiology and Plant Molecular Biology,1982,333,317-345.
    [36]Favaretto V F, Martinez CA, Soriani H H, et al. Differential responses of antioxidant enzymes in pioneer and late-successional tropical tree species grown under sun and shade conditions[J]. Environ. Exp. Bot.,2011,70:20-28.
    [37]Feijo N M, Mielke M S, Gomes F P, et al.Growth and photosynthetic responses of Growth and photosynthetic responses of Gallesia integrifolia (Spreng.) Harms and Schinus terebinthifolius Raddi seedlings in dense shade[J]. Agroforestry Systems,2009,77(1):49-58.
    [38]Feng Y J, Wang,J F, Sang W G. Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels[J]. Acta Oecologica, 2007,31(1):40-47.
    [39]Feierabend J, Schaan C, Hertwig B. Photoinactivation of catalase occurs under both high-and low-temperature stress conditions and accompanies photoinhibition of photosystem Ⅱ[J]. Plant Physiol.,1992,100:1554-1561.
    [40]Garcia-Plazaola J I, Becerril J M, Hernandez A, et al. Acclimation of antioxidant pools to the light environment in a natural forest canopy[J]. New Phytol.,2004; 163:87-97.
    [41]Galmes J, Medrano H, Flexas J. Photosynthesis and photoinhibition in response to drought in a pubescent (var.minor) and a glabrous (var. palaui) variety of Digitalis minor[J]. Environ. Exp. Bot.,2007,60,105-111.
    [42]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta,1989,990:87-92.
    [43]Genty B, Harinson J, Cailly A L, et al. Fate of excitation at PSII in leaves:the non-photochemical side[J].Presented at The Third BBSRC Robert Hill Symposium on Photosynthesis, Mar 31 to April 3,1996,University of Sheffield, Department of Molecular Biology and Biotechnology, western Bank, Sheffield, UK, Abstract no.:28.
    [44]Ghosh P K, Ajay, Bandyopadhyay K K, Manna M C, et al. Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics. Ⅱ.Dry matter yield, nodulation, chlorophyll content and enzyme activity[J]. Bioresour. Technol.,2004,95,85-93.
    [45]Greenwald R, Bergin M H, Jin X, et al., The influence of aerosols on crop production:A study using the CERES crop model[J]. Agricultural Systems,2006,89(2-3):390-413.
    [46]Haywood J M, Roberts D L, Slingo A, et al. General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol. J. Climate,1997, 10,1562-1577.
    [47]Heath R L, Packer L. Photoperoxidarion in isolated chloroplasts. Ⅰ. Kinetics and stoichiometry of fatty acid peroxidation[J], Arch.Biochem. Biophys.,125,1968,189-198.
    [48]Hendrickson L, Furbank R T, Chow W S. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence [J]. Photosynthesis Research,2004,82: 73-81
    [49]Herman M J L, Deuze C, devaux P, et al. Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements[J]. J.Geophys. Res.,1997,102,17039-17049
    [50]Hidema J, Makino A, Mae T, et al. Photosynthetic characteristics of rice leaves aged under different irradiances from full expansion through to senescence[J]. Plant physiology, 1991,97(4),1287-1293.
    [51]Huang W D, Wu L K, Zhan J C. Effect of Weak Light on the peroxidation of membrane lipid of Cherry Leaves[J]. Acta batanica sinica,2002,44(88):920-924.
    [52]Hoogenboom G, Jones J W. Contribution of agrometeorology to the simulation of crop production and its applications[J].Agric. For. Meteorol.,2000,103(1/2):137-157.
    [53]Horton P, Ruban A V, Walters R G. Regulation of light harvesting in green plants: indication by nonphotochemical quenching of chlorophyll fluorescence[J]. Plant Physiology, 1994,106:415-420.
    [54]Hunt R, Causton D R, Shipley B, et al. A modern tool for classical plant growth analysis[J]. Ann Bot,2002,90:485-488. doi:10.1093/aob/mcf214.
    [55]Hunt R, Basic growth analysis. Unwin Hyman,1990, London.
    [56]Iglesias A. Use of DSSAT models for climate change impact assessment:Calibration and validation of CERES-Wheat and CERES-Maize in Spain(D).2006.
    [57]IPCC. Climate Change 2001:The Scientific Basis. Contribution of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change,Solomon S, Qin D, Manning M, et al.,(eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,2007.
    [58]Jiang G M, Temperature and determine of plant[J]. Plants,1998, (1):30-31
    [59]Jethva H, Satheesh S K, Srinivasan J. Assessment of second-generation MODIS aerosol retrieval (Collection 005) at Kanpur, India[J]. Geophysical Research Letters,2007,34(19).
    [60]Joesting H M, McCarthy B C, Brown K J, et al. Determining the shade tolerance of American chestnut using morphological and physiological leaf parameters. Forest Ecology and Management,2009,257(1):280-286.
    [61]Jones J W, Porter C H, Boote K J et al.(Eds.). DSSAT v4. Cropping System Simulation Model(R).2003.
    [62]Jones R H, Mcleod K W. Growth and photosynthetic responses to a range of light environments in Chinese tallow tree and Carolina ash seedlings[J]. For. Sci.,1990,36, 851-862.
    [63]Kaufman Y J, Tanre D. Algorithm for remote sensing of tropospheric aerosol from MODIS [J]. Algorithm Theoretical Basis Documents (ATBD-MOD-02),1998,85.
    [64]Kevin B, Davis P, Lynch P, et al. Long-term trends in solar irradiance in Ireland and their potential effects on gross primary productivity[J]. Agricultural and Forest Meteorology, 2006,141:118-132.
    [65]Kitajima M, Butler W L.Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone[J]. Biochimica et Biophysica Acta, 1975,376(1):105-115.
    [66]Klughammer C, Schreiber U. Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method[J]. PAM Application Notes,2008,1:27-35.
    [67]Knapp A K, Smith W K. Stomatal and photosynthetic responses to variable sunlight[J]. Physiol. Plant,1990,78:160-165.
    [68]Kramer D M, Johnson G, Kiirats O, et al. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes[J]. Photosynthesis Research, 2004,79:209-218
    [69]Kura-Hotta R, Satoh K, Kato S. Chlorophyll concentration and its changes in leaves of spinach raised under different light levels[J]. Plant Cell Physiol.,1987,87,12-19.
    [70]Krause G H, Weise E. Chlorophyll fluorescence and photosynthesis:the basis[J].Annual review of plant physiology and plant molecular biology,1991,42:313-349.
    [71]Kuang T Y, Lu C M, Li L B. Photosynthetic Efficiency of Crops and its Regulations[M]. Jinan:Shandong Scientific & Technical Publishers,2004:90-115
    [72]Kuhbauch W, Thome U. Nonstructural carbohydrates of wheat stems as influenced by sink-source manipulation[J]. Journal of Plant Physiology,1989,134:243-250
    [73]Landau S, Mitchell R A C, Barnett V, et al. Testing winter wheat simulation models' predictions against observed UK grain yields. Agric. For. Meteorol.,1998,89,85-99.
    [74]Lee K H, Li Z, Wong M S,et al. Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements[J]. J. Geophys. Res.,2007, 112(D22):1-17.
    [75]Levy R C, Remer L A, Dubovik O. Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land[J]. J. Geophys. Res.,2007,112(D13):1-15.
    [76]Lei T T, Tabuchi R, Kitao M, Koike T. The functional relationship between chlorophyll content, leaf reflectance, and light capturing efficiency of Japanese forest species under natural shade and open light regimes[J]. Physiol. Planta.,1996,96,411-418.
    [77]Li H W, Jiang D, Wollenweber B, et al. Effects of shading on morphology, physiology and grain yield of winter wheat[J].2010, Eur. J. Agron. doi:10.1016/j.eja.2010.07.002.
    [78]Li Z, Niu F, Lee K H, et al. Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China[J]. J. Geophys. Res.,2007,112(D22):1-16.
    [79]Liang F, Xia X. Long-term trends in solar radiation and the associated climatic factors over China for 1961-2000[J]. Annales Geophysicae,2005,23,2425-2432.
    [80]Liepert B G. Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990[J]. Geophys. Res. Lett.,2002,29(10),1421, doi:10.1029/ 2002GL014910.Loach K. Shade tolerance in tree seedlings. Ⅱ.Growth analysis of plants raised under artificial shade[J]. New Phytol.,1970,69,273-286.
    [81]Long S P, Humphries S, Folkowski P G.. Photoinhibition of photosynthesis in nature[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1994,45:633-662.
    [82]Mao L Z, Lu H F, Wang Q, et al. Comparative photosynthesis characteristics of Calycanthus chinensis and Chimonanthus praecox[J]. Photosynthetica,2007,45 (4),601-605.
    [83]Matos F S, Wolfgramm R, Goncalves F V, et al.Phenotypic plasticity in response to light in the coffee tree[J]. Environmental and Experimental Botany,2009Y,67(2):421-427.
    [84]Maxwell K, Johnson GN. Chlorophyll fluorescence-a practical guide[J]. J, Exp, Bot,, 2000;51:659-668.
    [85]Mccaig T N, Clarke J M. Seasonal changes in nonstructural carbohydrate levels of wheat and oats grown in asemiarid environment.Crop Science,1982,22:963-970.
    [86]Meng Q W, Engelbert W, Zou Q. Photoinhibition and photoprotection inGinkgo bilobaleaves:Influence of temperature, CO2 and O2[J].Acta Bot.Sin.,1999,41:398-404.
    [87]Meinzer F C, Andrade J L, Goldstein G, et al. Control of transpiration from the upper canopy of a tropical forest:the role of stomata, boundary layer and hydraulic architecture components[J]. Plant Cell and Environment,1997, (20):1242-1252.
    [88]Miguel R A, Maria M R, Rosa C,et al. Sucrolytic activities in cherry tomato fruits in relation to temperature and solar radiation. Scientia Horticulturae,2007,113(3):244-249.
    [89]Monteith J L. Climatic variation and the growth of crops[J]. Quart. J. Roy. Met. Soc. 1981,107,749-774.
    [90]Moran R. Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformammide[J]. Plant Physiol,,982;69:1376-1381.
    [91]Mott K A, Woodrow I E. Modelling the role of Rubisco activase in limiting non-steady-state photosynthesis[J].J. Exp.Bot.,2000,51:343-352.
    [92]Mu H, Jiang D, Wollenweber B, et al. Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat[J]. J. Agron. Crop Sci.,2010,196,38-47.
    [93]Naidu R A, Krishnan M, Nayudu MV, et al. Studies on peanut green mosaic virus infected peanut (Arachis hypogaea L.) leaves. Ⅱ. Chlorophyll-protein complexes and polypeptide composition of thylakoid membranes[J]. Physiol. Plant Pathol.,1984,25,191-198.
    [94]Nakano, Y., Asada, K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol.,1981,22,867-880.
    [95]Qian Y, Wang W, Leung L R, et al.2007. Variability of solar radiation under cloud-free skies in China:the role of aerosols. Geophys. Res. Lett.,34, L12804, doi:10.1029/ 2006GL028800
    [96]Ohmura A, Lang H. Secular variation of global radiation over Europe, in current problems in atmospheric radiation[M], edited by Lenoble J and. Geleyn J F, pp.98-301, A. Deepak, Hampton, Va.1989.
    [97]Oshio I, Shinsuke M. Estimating spatialdistribution of plant growth in a soybean field based on remotely sensed spectral imagery measured with aballoon system[J].Japan. Jour. Crop Science,1995,64(1):156-158.
    [98]Osuji G O.& Cuezo R G. N-carboxymethyl chitosan enhancement of the storage protein contents of maize seeds[J]. Food Biotechnology,1992,6 (2):105-126.
    [99]Pinker R Zhan T B, Dutton E G. Can satellites observe trends in surface solar radiation?, Science,2005,308,850-854.
    [100]Poorter H. Interspecific variation in relative growth rate:on ecological causes and physiological consequences[M]. In:Lambers H, Cambridge M L, Konings H,et al. eds.Causes and consequences of variation in growth rate and productivity of higher plants, Netherlands: Academic Publishing.1989.45-68.
    [101]Poorter L. Growth responses of 15 rain-forest tree species to a light gradient:the relative importance of morphological and physiological traits[J]. Functional Ecology,1999,13, 396-400.
    [102]Ramanathan V, Feng Y. Air pollution, greenhouse gases and climate change:global and regional perspectives. Atmos. Environ.,2009,43,37-50.
    [103]Remer L A, Kaufman Y J, Tanre D,et al. The MODIS Aerosol Algorithm, Products, and Validation[J]. Journal of the Atmospheric Sciences,2005,62(4):947-973.
    [104]Rena A B, Barros R S, Maestri M S, et al. In:Schaffer, B., Andersen, P.C.(Eds.), Handbook of Environmental Physiology of Fruit Crops, vol.11. Sub-Tropical and Tropical Crops,1994, CRC Press, Boca Raton., pp.101-122.
    [105]Ricardo J H, Maria E O, Daniel J C, et al. Environmental effects on seed yield determination of irrigated peanut crops:Links with radiation use efficiency and crop growth rate[J]. Field Crops Research,2007,103:217-228.
    [106]Ricchiazzi P, Yang S, Gautier C. SBDART:A research and teaching software tool for plane-parallel radiative transfer in the earth s atmosphere [J]. Bulletin of the American Meteorological Society,1998,79:2101-2114.
    [107]Ritehie J T.CERES-Wheat, Miehigan State University,1988.
    [108]Ritehie J T and Otter S. Deseription and performance of CERES-Wheat:A user-oriented wheat yield model. In:ARS wheat projeet,1985.
    [109]Robinson N. Solar Radiation[M]. Amsterdam:Elscrier Publishing Company,1966:100, 123-123.
    [110]Rout N P, Shaw B P. Salt tolerance in aquatic macrophytes:ionic relation and interaction[J]. Biol. Plant.,44:95-99,2001.
    [111]Salvucci M E, Portis A R, Ogren W L, Light and CO2 response of ribulose-1, 5-bisphosphate carboxylase/oxygenase activation in arabidopsis leaves. Plant Physiology, 1986,80:655-659
    [112]Sauer T J, Singer J W, Prueger J H, et al. Hat field, radiation balance and evaporation partitioning in a narrow-row soybean canopy[J]. Agricultural and Forest Meteology,2007, 145:206-214
    [113]Schreiber U, Bilger W, Neubauer G. In:Ecophysiology of Photosynthesis.(eds Schulze, E-D and Caldwell, MM.), Springer-Verlag, Berlin,1994.
    [114]Schiefthaler U, Russell A W, Bolhar-Nordenkampf H R, et al. Photoregulation and photodamage in Schefflera arboricola leaves adapted to different light environments[J]. Aust. J. Plant Physiol.,1997,26,485-494.
    [115]Sestak Z. Liminations for finding linear relationship between chlorophyll content and photosynthetic activity[J]. Biol. Plant,1996,8,336-346.
    [116]Shaver J M,Oldenburg D J, Bendich A J. The structure of chloroplast DNA molecules and the effects of light on the amount of chloroplast DNA during development in Medicago truncatula. Plant Physio,2008,146,1064-1074.
    [117]Shen W Y, Nada A K, Tachibana S. Effect of cold treatment on nonenzymic antioxidant activities in leaves of chilling-tolerant and chilling-sensitive cucumber cultivar [J]. Jap. Soc. Hort. Sci.,1999,68(5):967-973.
    [118]Shi, G Y, Hayasaka T, Ohmura A et al. Data quality assessment and the long-term trend of ground solar radiation in China[J]. Journal of applied meteorology and climatology,2008,47, 1006-1016.
    [119]Smirnov A, Holben B N, Eck T F, et al. Cloud screening and quality control algorithms for the AERONET database[J].Rem.Sens.Env.,2000,73:337-349.
    [120]Souza R P, Valio I F M. Seedling growth of fifteen Brazilian tropical tree species differing in successional status[J].Rev. Bras. Bot.,2003,26:35-47.
    [121]Stanhill and Cohen. Global dimming:a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences[J]. Agricultural and Forest Meteorology,2001,107(4):255-278.
    [122]Sui Y, Wang F,Gao X.. Crop growth model and its application in crop production[J]. Farming and Planting,2006,5:17-19.
    [123]Syvertsen J P, Smith M L. Light acclimation in citrus leaves. l. Changes in physical characteristics, chlorophyll, and nitrogen content[J]. J Amer SocHor Sci,1984,109(6): 812-817.
    [124]Tarhanen S, Metsarinne S, Holopainen T,et al. Membrane permeability response of lichen Bryoria fuscescens to wet deposited heavy metals and acid rain[J]. Environ. Pollut., 1999;104:121-9.
    [125]Thayer S S, Bjorkman O. Leaf xanthophyll content and composition in sun and shading determined by HPLC[J]. Photosynthesis Research,1990,23:331-343.
    [126]Tippett L H C. On the effect of sunshine on wheat yields at Rothamsted[J]. Agric. Sci.,1926, 16,159-165.
    [127]UNEP Assessment Report:The Asian Brown Cloud:Climate and other Environmental Impacts, Part Ⅱ:Climate and Environmental Impacts.2002.
    [128]UNEP. Regional Resource Centre for Asia and the Pacific (RRC.AP). Project Atmospheric Brown Clouds (ABC),2006:1-35.
    [129]Weston E, Thorogood K, Vinti G, er al. Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild type and blue-light-perception mutants[J]. Planta, 2000,211:807-815.
    [130]Wild M.Global dimming and brightening:A review[J].J. Geophys. Res.,2009,114(21): D00D16.1-D00D16.31.
    [131]Wild M., Gilgen H., Roesch A, et al. From dimming to brightening:Decadal changes in solar radiation at Earth's surface[J]. Science,2005,308,847-850.
    [132]Wittmann C, Aschan G, Pfanz H. Leaf and twig photosynthesis of young beech (Fagus sylvatica) and aspen (Populus tremula) trees grown under different light regime[J]. Basic Appl. Ecol.,2001,2,145-154.
    [133]Xia X, Li Z. Holben B. et al. Aerosol optical properties and radiative effects in the Yangtze Delta region of China[J]. J. Geophys. Res.,2007,112:D22S12,
    [134]Xie Y, Kiniry J R, Williams J R. The ALMANAC'S model sensitivity to input variables[J]. Agric. Syst.,2003,78,1-16.
    [135]Yao, Wang R, Wand Y. Research advance about growth simulation models of wheat crops in China [J].Journal of Arid Meteorology,2009,27(1):66-71
    [136]Zhang Y L, Qin B Q, Chen W M. Analysis of 40 years records of solar radiation data in Shanghai, Nanjing and Hangzhou in Eastern China[J].Theoretical and Applied Climatology, 2004,78:217-227.
    [137]艾希珍,郭延全,马兴庄,等.弱光条件下日光温室黄瓜需光特性及叶绿体超微结构[J].中国农业科学,2004,37(2):268-273.
    [138]采利尼克尔(苏)著.木本植物耐阴性的生物学原理[M],王世绩译.北京:科学出版社,1986,22-25.
    [139]蔡子颖,郑有飞,刘建军,等.长江三角洲地面太阳辐射变化和相关因素分析[J].气象科学,2009,29(4):447-453.
    [140]曹锡清.脂质过氧化对细胞与机体的作用[J].生物化学与生物物理学进展,1986,(2):17-23.
    [141]陈根云,缪有刚,李立.光和蛋白质抑制剂对水稻Rubisco大、小亚基和Rubisco亚基结合蛋白基因表达的影响[J].植物生理学报,1993,19:243-249.
    [142]陈德兴,王天铎.叶片叶肉结构对环境光强的适应及对光合作用的影响[J].应用生态学报,1990,1(2):142-148.
    [143]陈贵,胡文玉,谢甫涕,等.提取植物体内MpA的溶剂及MDA作为衰老指标的探讨[J].植物生理学通讯,991,27(1):44-46.
    [144]迟伟,王荣富,张成林.遮荫条件下草莓的光合特性变化[J].应用生态学报,2001,12(4):566-568.
    [145]丛振涛,王舒展,倪广恒.气候变化对冬小麦潜在产量影响的模型模拟分析[J].清华大学学报(自然科学版),2008,48(9):1426-1430.
    [146]刁明,戴剑锋,罗卫红.温室甜椒叶面积指数形成模拟模型[J].应用生态学报,2008,19(10):2277-2283.
    [147]董自鹏.长江三角洲地区气溶胶光学特性及其辐射强迫(D).南京信息工程大学硕士论文,2010.
    [148]裴保华,贾渝彬,王文全,等.杨农间作田的光强和土壤水分状况及其对农作物的影响[J].河南农业大学学报,1998,21(2):28-33.
    [149]冯颖竹,谢振文,贺立红.光强因子对甜糯玉米光合作用和产量构成的影响[J].华南农业学报,2007,22(3):132-136.
    [150]冯玉龙,曹坤芳,冯志立,等.四种热带雨林树种幼苗比叶重,光合特性和暗呼吸对生长光环境的适应[J].生态学报,2002,22(6):901-910.
    [151]郭翠花,高志强,苗果园.花后遮阴对小麦旗叶光合特性及籽粒产量和品质的影响[J].作物学报,2010,36(4):673-679.
    [152]郭峰.不同光照条件对超高产小麦叶片光合特性的影响[D].山东农业大学硕士论文,2008.
    [153]郭建平,高素华.CO2浓度和辐射强度变化对沙柳光合作用速率影响的模拟研究[J].生态学报,2004,24(2):181-185.
    [154]关义新,林葆,凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响.作物学报[J].2000.26(6):806-812.
    [155]郭峰,曲妍妍,信长朋,等.弱光下生长的高产小麦品系PH01-35旗叶光合机构对不同光强的响应[J].作物学报,2009,35(1):179-184.
    [156]贺明荣,王振林,高淑萍.不同小麦品种千粒重对灌浆期弱光的适应性分析[J].作物学报,2001,27(5):640-644.
    [157]何维明,钟章成.外界支持物对绞股蓝种群觅养行为和繁殖对策的影响[J].生态学报,2001,21(1):47-50.
    [158]黄耀,杨兆芳,于永强,等.稻麦作物净初级生产力模型研究:模型的建立[J].环境科学,2005,26(2):11-15.
    [159]蒋明义.水分胁迫下植物体内·OH的产生与细胞的氧化损伤[J].植物学报,1999,41(3):229-234.
    [160]贾士芳,董树亭,王空军,等.玉米花粒期不同阶段遮光对籽粒品质的影响[J].作物学报,2007a,33(12):1960-1967.
    [161]贾士芳,董树亭,王空军,等.弱光胁迫对玉米产量及光合特性的影响[J].应用生态学报,2007b.18(11):2456-2461.
    [162]江敏,金之庆,葛道阔,等CERES-wheat模型在我国冬小麦主产区的适用性及订正[J].江苏农学院学报,1998,19(3):64-67.
    [163]孔云,王绍辉,马承伟,等.轻度遮光对温室油桃结果枝光合碳同化物积累和分配的影响[J].农业工程学报,2007,23(3):169-173.
    [164]李潮海,栾丽敏,尹飞,等.弱光胁迫对不同基因型玉米生长发育和产量的影响[J].生态学报,2005,25(4):824-830.
    [165]李浩,孙学金,陈峰,等.双波段大气向下红外辐射云遥感数值模拟[J].气象科技,2010,38(2):222-225.
    [166]李合生.现代植物生理学[M].北京:高等教育出版社,2002.
    [167]李合生.苯酚法测定可溶性糖[M].见:李合生主编.植物生理生化实验原理和技术,2000a.199-200.
    [168]李合生.菲林试剂比色法测定还原糖[M].见:李合生主编.植物生理生化实验原理和技术,2000b.201-202.
    [169]李合生.植物组织中游离氨基酸总量的测定[M].见:李合生主编.植物生理生化实验原理和技术,2000c.192-194.
    [170]李合生.植物组织中可溶性蛋白质含量的测定[M].见:李合生主编.植物生理生化实 验原理和技术,2000d.184-225.
    [171]李林,张更生.阴害影响水稻产量的机制及其调控技术Ⅱ.灌浆期模拟阴害影响水稻产量的机制[J].中国农业气象,1994,15(3):5-9.
    [172]李美茹,王以柔,刘鸿先,等.光照强度调控4种亚热带森林植物叶片的抗氧化能力[J].植物生态学报,2001,25(4):460-464.
    [173]李向阳;冬小麦冠层温度与产量和品质关系的研究[D];河南农业大学;2004.
    [174]李晓文,李维亮,周秀骥.中国近30年太阳辐射状况研究[J].应用气象学报,1998,9(1):24-31.
    [175]李文阳.花后弱光对小麦产量、淀粉品质及其形成的影响.[D],2007.
    [176]李友军,熊瑛,吕强,等.不同类型专用小麦叶、茎、粒可溶性糖变化与淀粉含量的关系[J].中国农业科学,2005,38(11):2219-2226.
    [177]李永庚,于振文,梁晓芳,等.小麦产量和品质对灌浆期不同阶段低光照强度的响应[J].植物生态学报,2005,29(5)807-813.
    [178]林忠辉,莫兴国,项月琴.作物生长模型研究综述[J].作物学报,2003,29(5):750-758.
    [179]刘国顺,赵献章,韦凤杰,等.旺长期遮光及光照转换对不同烟草品种光合效率的影响[J].中国农业科学2007,40(10):2368-2375.
    [180]刘鹏,康华靖,张志详,等.香果树(Emmenopterys henryi)幼苗生长特性和叶绿素荧光对不同光强的响应[J].生态学报,2008,28(11):5656-5664.
    [181]刘昌明,刘小莽,郑红星等.海河流域太阳辐射变化及其原因分析[J].地理学报,2009,64(11):1283-1291.
    [182]刘建栋,王馥棠,于强,等.华北地区冬小麦叶片光合作用模型在农业干旱预测中的应用研究[J].应用气象学报.2003,14(4):469-478.
    [183]刘奇华,李天,蔡建,等.不同生育期遮光对水稻籽粒直链淀粉及蛋白质含量的影响[J].农艺科学,2006,22(8):234-237.
    [184]刘生,邱新法,王潇宇.起伏地形下我国太阳散射辐射分布式模拟[J].南京气象学院学报,2007,30(3):371-376.
    [185]刘铁梅.小麦光合生产与物质分配的模拟模型(D).南京农业火学博士论文,2000.
    [186]刘文海,高东升,束怀瑞.不同光强处理对设施桃树光合及荧光特性的影响[J].中国农业科学2006,39(10):2069-2075.
    [187]刘霞,尹燕枰,姜春明,等.花后不同时期弱光和高温胁迫对小麦旗叶荧光特性及籽粒灌浆进程的影响[J].应用生态学报,2005,16(11):2117-2121.
    [188]刘贤赵,康绍忠.不同生长阶段遮荫对番茄光合作用、干物质分配与叶N、P、K的影响[J].生态学报,2002,22(12):2261-2271.
    [189]刘艳阳.低温胁迫对小麦叶片细胞膜脂质过氧化产物及相关酶活性的影响[J],麦类作物 学报,2006,26(4):70-73.
    [190]刘悦秋,孙向阳,王勇,等.遮荫对异株荨麻光合特性和荧光参数的影响[J].生态学报,2007,27(8):3457-3464.
    [191]马鲁沂,孙小玲,郝俊,等.遮荫对高羊茅和沿阶草生活力及抗氧化酶体系的影响[J].草地学报,2009,17(2):187-192.
    [192]马晓娣,王丽,等.不同耐热性小麦品种在热锻炼和热胁迫下叶片相对电导率及超微结构的差异[J].中国农业大学学报,2003,8(5):4-8.
    [193]孟祥海,张跃进,皮莉,等.遮荫对半夏叶片光合色素与保护酶活性的影响[J].西北植物学报,2007,27(6):1167-1171.
    [194]牟会荣,姜东,戴廷波,等.遮荫对小麦旗叶光合及叶绿素荧光特性的影响[J].中国农业科学,2008,41(2):599-606.
    [195]牟会荣,姜东,戴廷波,等.遮光对小麦籽粒淀粉品质和花前贮存非结构碳水化合物转运的影响[J].应用生态学报,2009,20(4):805-810.
    [196]彭尽晖,唐前瑞,于晓英,等.遮荫对四季桂光合特性的影响[J].湖南农业大学学报(自然科学版),2002,28(3):218-219.
    [197]乔新荣,刘国顺,郭桥燕,等.光照强度对烤烟生长发育、光合特性及品质的影响[J].河南农业大学,2007.
    [198]祁红彦,周广胜,许振柱.北方玉米冠层光合有效辐射垂直分布及影响因子分析[J].气象与环境学报,2008,24(1):22-24.
    [199]任万军,杨文钰,徐精文,等.始穗后弱光对不同基因型 水稻叶片特性的影响[J].四川农业大学学报,2002,20(3):205-208,278.
    [200]任万军,杨文钰,徐精文,等..弱光对水稻籽粒生长及品质的影响[J].作物学报,2003,29(5):785-790.
    [201]邵庆勤,杨文钰,樊高琼.不同氮肥水平下烯效唑对小麦可溶性糖和淀粉含量的影响[J].安徽科技学院学报,2006,20(4):12-15.
    [202]申彦波,赵东,祝昌汉,等.近50年来鄂尔多斯地面太阳辐射的变化及与相关气象要素的联系[J].高原气象,2009,28(4):786-794.
    [203]沈蕙聪,江宁.甘蓝型油菜种子主要脂肪酸气象生态效应及数学模型的研究[J].浙江农业大学学报,1990,16(1):69-76.
    [204]施红,徐建明,李成才.华南地区太阳辐射状况及其转折特征分析[J].热带气象学报,2009,25(2):209-215.
    [205]施晓晖,徐祥德,谢立安.暖季中国东部气溶胶“影响显著区”的气候变化特征[J].中国科学D辑:地球科学,2008,38(4):519-528
    [206]史忠良,马爱萍,仇松英,等.光照强度对小麦不同品种结实率及千粒重的影响[J].山西农 业科学,1998,26(4):16-18.
    [207]宋艳霞.套作遮荫及复光对不同火豆品种光合、氮代谢及产量、品质的影响[J].四川农业大学,2009.
    [208]睦晓蕾,张振贤,张宝玺,等.不同基因型辣椒光合及生长特性对弱光的响应.应用生态学报,2006,17(10):1877-1882.
    [209]睦晓蕾,张振贤,张宝玺,等.不同品种辣椒幼苗光合与呼吸对弱光的响应[J].中国生态农业学报,2007,15(2):88-91.
    [210]孙国琴,蔡葆.甜菜糖分积累期遮光灌水对植株形态及生理指标影响的研究[J].中国甜菜糖科,1990(4):17-23.
    [211]许大全.气孔的不均匀关闭与光合作用的非气孔限制[J].植物生理学通讯,1995,31(4):246-252.
    [212]王建林,于贵瑞,王伯伦,等.北方粳稻光合速率、气孔导度对光强和CO:浓度的响应[J].植物生态学报,2005,29(1):16-25.
    [213]王精明,柴素芬.遮光处理对金叶假连翘生长的影响[J].仲恺农业技术学院学报,2002,15(2):20-23.
    [214]王俊峰,冯玉龙.光强对两种入侵植物生物量分配、叶片形态和相对生长速率的影响[J].植物生态学报,2004,28(6)781-786.
    [215]汪凯,叶红,陈峰,等.中国东南部太阳辐射变化特征、影响因素及其对区域气候的影响[J].生态环境学报2010,19(5):1119-1124.
    [216]王惠哲,庞金安,李淑菊,等.弱光对春季温室黄瓜生长发育的影响[J].华北农学报,2005,20(1):55-58.
    [217]王利,解孝水,李世伟.遮荫对小麦影响的研究进展[J].安徽农学通报.2010,16(21):53-54.
    [218]王莉莉,辛金元,王跃思,等Cshnet观测网评估Modis气溶胶产品在中国区域的适用性[J].科学通报,2007,(04):477-486.
    [219]王术,王伯伦,黄元财,等.不同水稻品种生育后期光合特性的比较[J].沈阳农业大学学报,2003-02,34(1):1-3.
    [220]
    [221]王雅婕,黄耀,张稳.1961-2003年中国大陆地表太阳总辐射变化趋势[J].气候与环境研究,2009,14(4):405-413.
    [222]王艳君,姜彤,许崇育.长江流域蒸发皿蒸发量及影响因素变化趋势[J].自然资源学报,2005,20(6):864-870.
    [223]王之杰,郭天财,朱云集,等.超高产小麦冠层光辐射特征的研究[J].西北植物学报2003,23(10):1657-1662.
    [224]王志敏,王树安,苏宝林.小麦穗粒数的调节开花前遮光对穗碳水化合物代谢和内源 激素水平的影响[J].华北农学报,1997,12(4):42-47.
    [225]王志新.环境因素对大豆化学品质及产量影响研究遮光对大豆化学品质及产量的影响[J].大豆科学,2004,23(1):41-44.
    [226]魏爱丽,王志敏.高等植物PSⅡ的光抑制与光破坏研究进展[J].西北植物学报,2004,24(7):1342-1347.
    [227]文小航,尚可政,王式功,等.1961-2000年中国太阳辐射区域特征的初步研究[J].中国沙漠,2008,28(3):554-561.
    [228]夏叔芳,于新建,张振清.叶片光合产物输出的抑制与淀粉和蔗糖的积累[J].植物生理学报,1981,(7):135-142.
    [229]熊伟,居辉.许吟隆,等.气候变化下我国小麦产量变化区域模拟研究[J].中国生态农业学报,2006,14(2):164-167.
    [230]许大全.光合作用效率[M].上海:上海科学技术出版社.2002,57-61.
    [231]杨羡敏,曾燕,邱新法,等.1960-2000年黄河流域太阳辐射气候变化规律研究[J].应用气象学报,2005,16(2):243-248.
    [232]杨兴洪,邹琦,赵世杰.遮荫和全光下生长的棉花光叶绿素荧光特征[J].植物生态学报2005,29(1):8-15.
    [233]姚芳芳,王效科,欧阳志云,等.臭氧胁迫下冬小麦物质生产与分配的数值模拟[J].应用生态学报,2007,18(11):2586-2593.
    [234]姚金保,朱耕如.遮光整枝对油菜籽粒形成的影响[J].中国油料,1990,(1):22-23.
    [235]尹丽.遮阴度对黄连生理生化特性的影响研究[D],西南农业大学.2005.
    [236]尹青,张华、何金海.近48年华东地区地面太阳总辐射变化特征和影响因子分析[J].大气与环境光学学报,2011,6(1):37-46.
    [237]郁继华,张国斌,冯致,等.低温弱光对辣椒幼苗抗氧化酶活性与质膜透性的影响[J].西北植物学报,2005,25(12):2478-2483.
    [238]于强,王天铎,刘建栋,等.玉米株型与冠层光合作用的数学模拟研究Ⅰ.模型与验证[J].作物学报,1998a,24(1):7-15.
    [239]于强,王天铎,刘建栋,等.玉米株型与冠层光合作用的数学模拟研究Ⅱ.模型与验证[J].作物学报,1998b,24(3):272-279.
    [240]翟薇.大气气溶胶辐射效应对长江三角洲地区主要作物生产的影响(D).中国气象科学研究院硕士论文,2007.
    [241]战吉宬,黄卫东,王利军.植物弱光逆境生理研究综述[J].植物学通报,2003,20(1):43-50.
    [242]战吉宬,黄卫东,王秀芹,等.弱光下生长的葡萄叶片蒸腾速率和气孔结构的变化.植物生态学报2005,29(1)26-31.
    [243]张智顺,张庆费,夏檑,等.遮阴对几种绿化植物光合特性和生长的影响[J].东北林 业大学学报,2010,38(3):47-72.
    [244]张继澍.植物生理学[M].北京:高等教育出版社,2006:120-125.
    [245]周继泽,柳德钧,程国强.小麦灌浆期遮光生理效应研究[J].河南职技师院学报,1995,23(3):12-15.
    [246]张明生,彭忠华,谢波,等.甘薯离体叶片失水速率及渗透调节物质与品种抗旱性的关系[J].中国农业科学,2004,37(1):152-156.
    [247]赵东,罗勇,高歌,等.1961年至2007年中国日照的演变及其关键气候特征[J].资源科学,2010,32(4):701-711.
    [248]朱肖锋.遮光对马蹄金生物量分配和形态特征的影响[J],生态学杂志,2009,28(7):1419-1422.
    [249]朱肖锋,周守标,杨集辉,等.不同光照强度对马蹄金叶的特征及总黄酮含量的影响[J].激光生物学报.2009,18(1):62-66.
    [250]周忆堂,马红群,梁丽娇,等.不同光照条件下长春花的光合作用和叶绿素荧光动力学特征[J].中国农业科学2008,41(11):3589-3595.
    [251]周治国.苗期遮荫对棉花功能叶光合特性和光合产物代谢的影响[J].作物学报,2001,27(6):967-973.
    [252]朱萍,杨世民,马均,等.遮光对杂交水稻组合生育后期光合特性和产量的影响[J].2008,34(11):2003-2009.
    [253]周晓红,王国祥,冯冰冰.光照对菹草(Potamogeton cripus)幼苗生长发育和光合荧光特性的影响[J].生态环境,2008,17(4):1342-1347.
    [254]周艳虹,喻景权,钱琼秋,等.低温弱光对黄瓜幼苗生长及抗氧化酶活性的影响[J].应用生态学报,2003,14(6):921-924.
    [255]中国气象局.气象辐射观测方法[M].北京:气象出版社,1996:1-164.