高频诱导无极光源的发射光谱学诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文围绕两个主要问题开展研究:1.射频诱导低气压无极光源的等离子体放电模式特性;2.微波诱导金属卤化物分子的辐射机理。通过对这两种实用高频诱导无极光源等离子体进行发射光谱学诊断,获得对其放电特性更深层次的物理认识。
     论文使用射频信号发射器和功率放大器提供可调制的射频功率输出,通过电感诱导的方式激发低气压Hg-Ar放电和Hg-Ke放电。通过改变射频功率或射频频率可观察到等离子体存在两种放电模式:静电放电模式(E放电)和感应放电模式(H放电)。E放电和H放电的启动条件是频率的函数,启动电场强度随频率的升高而降低。实验观察到H放电的启动电场要远高于其维持电场,即所谓的放电模式转变的滞后现象。
     通过启动过程的瞬态分析可知,工作在H放电的射频诱导无极光源启动必须经历E放电阶段。在E放电中,电子浓度逐渐增大,到达临界值时实现E放电向H放电的转变。启动过程中E放电持续时间和H放电达到稳定的时间随电路启动电压的增加而减少。
     通过对比Kr811.3nm和Hg435.8nm谱线以及Hg 365.0nm和Hg546.1nm谱线的相对强度变化,借助3电子温度电子能量概率分布函数(EEPF)模型可知:E放电向H放电转变时,随着电子浓度的提高,高能电子比例增加,中能电子和低能电子相对比例减少,EEPF逐渐逼近Maxwellian分布。通过对比Hg546.1nm与Hg435.8nm谱线相对强度的变化可知:在E放电中,原子亚稳态浓度随放电电流的增加而增加,而在H放电中趋势则相反。E放电向H放电转变过程中,方位角方向的感应电流明显增强,趋肤效应使得放电重新在H放电下达到平衡。实验表明:电子能量概率分布函数的改变、通过亚稳态的逐级电离、逐级激发和方位角方向的感应电场是射频诱导无极光源等离子体放电模式转变和滞后现象产生的重要原因。
     论文使用Abel转换和Boltzmann Plot方法确定微波诱导NaI等离子体的温度轮廓分布。在70W微波功率下,NaI等离子体中心温度为3609K,温度轮廓为典型的管壁稳定性分布。微波诱导NaI光谱中钠D线占主导地位,在300nm到600nm范围内可观察到NaI分子的连续光谱,但强度远远低于Na原子线。Na元素与泡壳材料的强烈化学反应决定了NaI分子不能单独的作为微波光源的填充物质。
     论文使用Barrels方法诊断了不同微波能量输入条件下,InI、InBr以及SnI_2泡壳的等离子体温度轮廓。实验表明:随着微波功率的上升,等离子体的温度先整体提升,到达某一功率时,泡壳中心温度降低而周边温度升高,温度轮廓变得更加平滑。在96W微波功率输入下,1号InI泡壳等离子体中心温度为4450K。误差分析表明,使用Bartels方法测量InI等离子体温度轮廓的误差为8.4%。
     微波诱导InI分子的连续光谱覆盖了整个可见光区域,光源的显色指数超过90,相对色温随微波功率的升高而下降,107W微波功率下1号InI泡壳的相对色温为6805K。维持放电区域的高温高压是实现微波光源高效光辐射的必要条件,在我们的实验条件下InI分子辐射效率随气压的增大而增大。InBr和GaI分子的辐射特性与InI分子类似,而AlI_3和InI_3分子由于受热离解而形成过量的碘分子,造成自由电子被吸收而使启动变得困难。SnI_2分子辐射连续光谱也覆盖了整个可见区域,连续谱强度最大值出现在660nm附近,74W微波功率时等离子体中心温度为4419K,光源相对色温为3274K。
     论文使用Morse势能曲线模拟InI分子各能级的结构,通过分子能级跃迁的选择规律和Franck-Condon原理对InI分子在微波诱导条件下的发射光谱的形成机理进行了物理解释。分析表明InI分子八个高能Rydberg态向低能级排斥态C态的跃迁是产生实验连续光谱的主要原因,其中InI分子的~1Σ_(0+)~+(Ⅲ)—~1Π_1跃迁在265nm到411nm间产生连续光谱,而InI分子~3Π_(0-)(Ⅲ)—~1Π_1跃迁形成410nm到667nm之间的连续辐射。
This thesis focuses on two main topics:1.the discharge modes of the RF induced low pressure electrodeless lamp;2.molecular radiation in microwave induced metal halide discharge.In order to get deeper physical understanding to these two practical electrodeless light sources,emission spectroscopic diagnostics is used in the experiments.
     By modulating the frequency and power of the RF signal,two discharge modes in the RF induced electrodeless lamp are observed:electrostatic discharge mode(so called E mode) and electromagnetic discharge mode(so called H mode).The ignition conditions of E mode discharge and H mode discharge are functions of the frequency: the higher the frequency,the easier the ignition.
     The temporary study to the ignition process shows that the E mode discharge is a necessary precondition to ignite the H mode discharge.The duration of the E mode discharge and the stable time of the H mode discharge decrease as the ignition voltage increases.
     By comparing the spectral intensity ratios:Kr811.3nm/Hg436.8nm and Hg 365.0nm/ Hg546.1nm,we can know:during the transiton from E mode discharge to H mode discharge,the proportion of high energy electron is increased due to the frequent electron-electron collisions,which compensate the loss of high energy electrons in the inelastic collisions.The electron energy distribution function approaches the Maxwellian distribution.By comparing the spectral intensity ratio of Hg546.1nm line and Hg435.8nm line,it is observed that the density of metastable atom is increased as the current in the E mode discharge.The trend is opposite in H mode discharge. During the transition,the induced azimuthal current is enhanced greatly.The discharge returns to stable in the H mode due to skin effect.
     The temperature profile of microwave induced NaI plasma is determined by emission spectroscopy with Abel inversion and the Boltzmann Plot.The central temperature is determined to be 3609K at 70W microwave input.The temperature profile is a typical wall-stable type.The spectra of microwave induced NaI molecule are dominated by the renowned Na D lines,which locate at 589.0nm and 589.6nm.The continuous radiation between 300nm and 600nm is believed to be the molecular radiation of NaI, though very week.The chemical reaction between Na and the bulb material makes it impossible to fill NaI into a practical microwave lamp alone.
     Barrels method is employed to determine the temperature profile of microwave induced InI,InBr and SnI_2 plasma.As the increase of microwave power,the temperture profile becomes more even due to the slightly cooling down in the center and warming up in the outer of the plasma.The central temperature of InI plasma is 4450K at 96W microwave input.The error is less than 8.4%.
     The continuous radiation of microwave induced InI discharge covers the whole visible range,which makes the color rendering index more than 90.The corrected color temperature is 6805K at 107W microwave input.The spectra of InBr and GaI are quite similar to that of InI due to similar molecular structure.The ignitions of AlI_3 and InI_3 are more difficult than InI,because of the dissociation of metal trihalide into metal monohalide and halogen.Halogen is believed to quench the discharge by absorbing free electrons.The spectra of SnI_2 also cover the whole visible range,with the intensity peak at 660nm,resulting in lower color temperature than InI.The central plasma temperature is 4419K at 74W microwave input,while the corrected color temperature is 3274K.
     By simulating the Morse potential curve and using Franck-Condon principle,it is believed that the continuous radiation of microwave induced InI discharge originates from the transitions of 8 Rydberg states to the lower repulsive state:C state of InI molecule.The ~1∑_(0+)~+(Ⅲ)-~1∏_1 transition of InI molecule contributes to the continuous radiation between 265nm and 411nm,while the ~3∏_(0-)(Ⅲ)-~1∏_1 transition results in the continuous radiation between 410nm and 667nm.
引文
[1]G.G.Lister,J E Lawler,W P Lapatovich and V A Godyak.The physics of discharge lamps[J].Reviews of Modern Physics,2004,76(2):541-598.
    [2]周太明.光源原理与设计[M].上海:复旦大学出版社,1993:66-86
    [3]P.Flesch.Light and Light Sources[M].Berlin:Springer-Verlag Heidelberg,2006:51-96.
    [4]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1995:87-198.
    [5]O Langenscheidt,S Lichtenberg,L Dabringhausen,M Redwitz,P Awakowicz and J Mentel.he boundary layers of at-arcs at HID-electrodes:phase resolved electrical measurements and optical observations[J].Journal of Physics D-Applied Physics:Appl.Phys,2007,40(2):415-431.
    [6]Tae Il Lee,Ki Wan Park,Hyeon Seok Hwang,Jai Hyuk Choi and Hong Koo Baik.A study on double hollow electrode discharge and the enhanced performance for electric discharge lamps[J].Plasma Sources Sci.Teehnol,2006,15(3):458-464.
    [7]M Redwitz,L Dabringhausen,S Lichtenberg,O Langenscheidt,J Heberlein and J Mentel.Arc attachment at HID anodes:measurements and interpretation[J].Journal of Physics D-Applied Physics:Appl.Phys,2006,39(10):2160-2179.
    [8]P Flesch and M Neiger.Investigations on the influence of pressure,current and electrode gap in high-pressure mercury lamps[J].Journal of Physics D-Applied Physics:Appl.Phys,2005,38(20):3792-3803.
    [9]A Lamouri,A Naruka,J Sulcs,C V Varanasi and T R Brumleve.Influence of electrode,buffer gas and control gear on metal halide lamp performance[J].Journal of Physics D-Applied Physics:Appl.Phys,2005,38(17):3028-3032.
    [10]G M J F Luijks,S Nijdam and H v Esveld.Electrode diagnostics and modelling for ceramic metal halide lamps[J].Journal of Physics D-Applied Physics:Appl.Phys,2005,38(17):3163-3169.
    [11]S Hadrath,J Ehlbeck,G Lieder and F Sigeneger.Determination of absolute population densities of eroded tungsten in hollow cathode lamps and fluorescent lamps by laser-induced fluorescence[J].Journal of Physics D-Applied Physics:Appl.Phys,2005,38(17):3285-3295.
    [12]P Flesch and M Neiger.Understanding anode and cathode behaviour in high-pressure discharge lamps[J].Journal of Physics D-Applied Physics:Appl.Phys,2005,38(17):3098-3111.
    [13]P Flesch and M Neiger.Ac modelling of D2 automotive HID lamps including plasma and electrodes[J].Journal of Physics D-Applied Physics:Appl.Phys,2004,37(20):2848-2862.
    [15]S Lichtenberg,D Nandelstadt,L Dabringhausen,M Redwitz,J Luhmann and J Mentel.Observation of different modes of cathodic arc attachment to HID electrodes in a model lamp [J]. Journal of Physics D-Applied Physics: Appl. Phys, 2002,35 (14): 1648-1656.
    [16] L Dabringhausen, D Nandelstadt, J Luhmann and J Mentel. Determination of HID electrode falls in a model lamp I: Pyrometric measurements [J]. Journal of Physics D-Applied Physics: Appl. Phys, 2002,35 (21): 1621-1630.
    [17] J Luhmann, S Lichtenberg, O Langenscheidt, M S Benilov and J Mentel. Determination of HID electrode falls in a model lamp II: Langmuir-probe measurements [J]. Journal of Physics D-Applied Physics: Appl. Phys, 2002, 35 (14): 1631-1638.
    [18] D Nandelstadt, M Redwitz, L Dabringhausen, J Luhmann, S Lichtenberg and J Mentel. Determination of HID electrode falls in a model lamp III: Results and comparison with theory [J]. Journal of Physics D-Applied Physics: Appl. Phys, 2002, 35(14): 1639-1647.
    [19] A Hilscher. Determination of the cathode fall voltage in fluorescent lamps by measurement of the operating voltage [J]. Journal of Physics D-Applied Physics: Appl. Phys, 2002,35 (14): 1707-1715.
    [20] Long Q, Chen DH. Spectroscopic studies of the sulfur lamps space [J]. Institute of Physics Conference Series, 2004,182: 309-310.
    [21] Vanderheijden H. Semiclassical and quantum-mechanical descriptions of S-2 molecular radiation [J]. Journal of Physics B-Atomic Molecular and Optical Physics, 2001,34:4183.
    [22] Vanderheijden H. Radiative transfer of a molecular S-2 B-X spectrum using semiclassical and quantum-mechanical radiation coefficients [J]. Journal of Physics B-Atomic Molecular and Optical Physics, 2002,35: 3633.
    [23] Johnston CW, Hartgers B, van der Heijden H, et al. Sulfur lamp - LTE modelling and experiments [J]. High Temperature Material Processes, 2005,9 (4): 545-555.
    [24] Guttsait EM. On determination of microwave radiation from sulfur-lamp lighting installations [J]. Journal of Communications Technology and Electronics, 2000,45 (8): 901-904.
    [25] Johnston CW, Hartgers B, van der Heijden H, et al. Sulfur lamp - LTE modelling and experiments [J]. High Temperature Material Processes, 2005,9 (4): 545-555.
    [26] Johnston CW, Jonkers J, van der Mullen JJAM. Operational trends in the temperature of a high-pressure microwave powered sulfur lamp [J]. Journal Of Physics D-Applied Physics, 2002,35 (20): 2578-2585.
    [27] Johnston CW, van der Heijden HWP, Janssen GM, et al. A self-consistent LTE model of a microwave-driven, high-pressure sulfur lamp [J]. Journal Of Physics D-Applied Physics, 2002,35 (4): 342-351.
    [28] Popov OA. Efficient light source based on an inductive ferrite-free discharge at frequencies of 300-3000 kHz[J].Technical Physics,2007,52(6):751-758.
    [29]Statnic E,Tanach V.Investigation of the electrical discharge parameters in electrodeless inductive lamps with a re-entrant coupler and magnetic core[J].Plasma Sources Science & Technology,2006,15(3):465-473.
    [30]Long Q,Chen YM,Chen DH.Hysteresis and mode transitions in inductively coupled Ar-Hg plasma in the electrodeless induction lamp[J].Journal Of Physics D-Applied Physics,2006,39(15):3310-3316.
    [31]Yeon JE,Cho KM,Kim HJ,et al.A new dimming algorithm for the electrodeless fluorescent lamps[J].IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences,2006,E89A(6):1540-1546.
    [32]Statnic E,Tanach V.A new approach to the evaluation of the discharge parameters of the electrodeless fluorescent lamps[J].Plasma Sources Science &Technology,2004,13(3):515-521.
    [33]Statnic E.Dimming high power electrodeless fluorescent lamps[J].Journal of The Illuminating Engineering Society,2002,31(1):158.
    [34]Lester JN,Alexandrovich BM.Ballasting electrodeless fluorescent lamps[J].Journal of The Illuminating Engineering Society,2000,29(2):89.
    [35]Popov O,Maya J.Characteristics of electrodeless ferrite-free fluorescent lamp operated at frequencies of 1-15 MHz[J].Plasma Sources Science & Technology,2000,9(2):227-237.
    [36]Shaffer JW,Godyak VA.The development of low frequency,high output electrodeless fluorescent lamps[J].Journal of The Illuminating Engineering Society,1999,28(1):142.
    [37]Shinomiya M,Kobayashi K,Higashikawa M,et al.Development of The Electrodeless Fluorescent Lamp[J].Journal of The Illuminating Engineering Society,1991,20(1):44-49.
    [38]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1995:268-307.
    [39]Wharmby D O.Electrodeless lamps for lighting-a review[J].IEE Proceedings A Science Measurement And Technology,1993,140 465-73.
    [40]Ren YP,Long JD,Xu S.Transition radiation energy loss in inductively coupled argon plasma[J].Physics of Plasmas,2007,14(7):073301.
    [41]Tsakadze ZL,Ostrikov K,Tsakadze EL,et al.Discharge mode transitions in low-frequency inductively coupled plasmas with internal oscillating current sheets[J].Journal Of Vacuum Science & Technology A,2005,23(3):440-447.
    [42]Tsakadze EL,Ostrikov K,Tsakadze ZL,et al.Magnetic fields and uniformity of radio frequency power deposition in low-frequency inductively coupled plasmas with crossed internal oscillating currents[J].Physics of Plasmas,2004,11(8):3915-3924.
    [43]Ostrikov KN,Xu S,Azam ABMS.Optical emission characteristics and mode transitions in low-frequency inductively coupled plasmas [J]. Journal Of Vacuum Science & Technology A, 2002,20 (1): 251-264.
    [44] Tsakadze EL, Ostrikov KN, Xu S, et al. Turning points, power transfer, and frequency response of mode transitions in RF plasmas [J], Physica Scripta, 2001, 64 (4): 360-365.
    [45] Xu S, Ostrikov KN, Li Y, et al. Low-frequency, high-density, inductively coupled plasma sources: Operation and applications [J]. Physics of Plasmas, 2001,8 (5): 2549-2557.
    [46] EI-Fayoumi I M and Jones I R. Measurement of the induced plasma current in a planar coil, low-frequency, RF induction plasma source [J]. Plasma Sources Science & Technology, 1997, 6 201-12.
    [47] Edamura M and Benck E C. Effects of voltage distribution along an induction coil and discharge frequency in inductively coupled plasmas [J]. Journal of Vacuum Science & Technology A-Vacuum Surfaces And Films, 2004,22 293-301.
    [48] Czerwiec T and Graves DB. Mode transition in low pressure rare gas cylindrical ICP discharge studied by optical emission spectroscopy [J]. Journal Of Physics D-Applied Physics, 2004,37:2827-2840.
    [49] Daltrini AM, et al. Mode transition and hysteresis in inductively coupled plasma [J]. Journal Of Applied Physics, 2007,101: 073309.
    [50] Chen Yu, et al. Spatially resolved optical emission spectroscopy investigation of E and H modes in cylindrical inductively coupled plasma [J]. Journal Of Physics D-Applied Physics, 2007,40: 5112-5116.
    [51] Razzak M A, Kondo K, Uesugi Y, Ohno N and Takamura S. Transition from electrostatic-to-electromagnetic mode in a radio-frequency Ar inductively coupled plasma in atmospheric pressure [J]. Journal of Applied Physics, 2004,95 427-33.
    [52] Razzak M A, Takamura S and Uesugi Y. Effects of radio-frequency driving power, gas pressure, and nitrogen seeding on the transition dynamics in argon inductively coupled plasmas [J]. Journal of Applied Physics, 2004,96 4771-6.
    [53] V A Godyak, et al. Electrical characteristics and electron heating mechanism of an inductively coupled argon discharge. [J]. Plasma Sources Science & Technology, 1993,3:169-176.
    [54] Suzuki K, Nakamura K, Ohkubo H, et al. Power transfer efficiency and mode jump in an inductive RF discharge [J]. Plasma Sources Science & Technology, 1997, 7: 13-20.
    [55] Yoon NS, Hwang SM. A theoretical formula for the transition power of E- and H-discharges based on a transformer-circuit model in a transformer-coupled plasma discharge [J]. Journal of the Korean Physical Society, 1997, 30(3): 657-660.
    [56] Yoon NS, Kim BC, Yang JG, et al. A theoretical formula of E-H discharge transition power in a transformer-coupled discharge[J].IEEE Transactions on Plasma Science,1998,26(2):190-197
    [57].Kortshagen U,Gibson ND,Lawler JE.[J].On the E-H mode transition in RF inductive discharges[J].Journal of Physics D:Applied Physics,1996,29 1224-1236.
    [58]Turner M M and Lieberman.Hysteresis and the E-to-H transition in radiofrequency inductive discharges[J].Plasma Sources Science & Technology,1999,8 313-324.
    [59]Cunge G,Crowley B,Vender D,et al.Characterization of the E to H transition in a pulsed inductively coupled plasma discharge with internal coil geometry:bi-stability and hysteresis[J].Plasma Sources Science & Technology,1999,8(4) 576-586.
    [60]龙奇 陈大华.微波光源发光原理及其应用前景[J].中国照明电器,2004,4:1-7.
    [61]Dolan JT,Ury MG and Wood CH.A novel high efficiency microwave powered light source[A]In:6~(th) Int.Symp.In the Science and Technology of light Source,Budapest University of Technology,1992.201-202
    [62]Lapatovich Walter and Doell Gerhard.Electrodless hid lamp with microwave power coupler[P].United States Patent:5070277,December 3,1991.
    [63]Lapatovich Walter and Doell Gerhard.Electrodeless HID lamp with lamp capsule[P].United States Patent:5113121,May 12,1992.
    [64]Shigeaki Wada,et al.High intensity discharge lamp device[P].United States Patent:5256940,October 26,1993.
    [65]Dolan James,et al.Visible lamp including selenium or sulfur[P].United States Patent:5606220,February 25,1997.
    [66]Doell Gerhard and Lapatovich Walter.High intensity electrodeless discharge lamp with particular metal halide fill[P].United States Patent:5889368,March 30,1999.
    [67]Leng Youngzhang,et al.Lamp with improved color trndering[P].United States Patent:6469444,Octerber 2,2000.
    [68]Kim Han Seok,et al.Electrodeless lamp using SnI2[P].United States Patent:6633111,October 14,2003.
    [69]Mimasu Mutsumi.Microwave-excited discharge lamp[P].United States Patent:6249078,July 28,1998.
    [70]Katase Koichi,Ichibakase Tsuyoshi and Seki;Katsushi.Electrodeless discharge lamp[P].United States Patent:6670759,May 24,2000.
    [71]Hochi A,Horii S,Takeda M,Matsuoka T.Electrodeless HID lamp and electrodeless hid lamp system using the same[P].United States Patent:5864210,January 26,1999.
    [72]Hochi A.Electrodeless discharge lamp[P].United States Patent:6670759, December 30,2003.
    [73] Katase K et al. Electrodeless discharge lamp and apparatus to prevent devitrification [P]. United States Patent: 6362565, March 26,2002.
    
    [74] Lapatovich W et al. Blue light electrodeless high intensity discharge lamp system [P]. United States Patent: 6,157,141, December 5,2000.
    [75] Leng Youngzhang, et al. Sulfur lamp with CaBr_2 additive for enhanced plant growth [J] NASA Tech Briefs, 2000.
    [76] Kim Jin Joong, et al. Broadband white light generated by microwave discharges of a diatomic molecular vapor(InBr) [A]. In: IEEE international conference on plasma science, 2003,452
    [77] Hochi Akira, et al. Application of vane- type resonator to microwave powered electrodeless HID lamp [A]. In: IEEE international conference on plasma science, 2003,452
    [78] Chen YM, Chen DH. Continuum visible spectra from InBr discharge excited in a microwave resonant cavity [J]. Applied Physics Letters, 2007,91(16): 161501.
    [79] Wilken L, Hoffmann V, Wetzig K. Electrical measurements at radio frequency glow discharges for spectroscopy [J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2007, 62 (10): 1085-1122.
    [80] Gorbachev AM, Muchnikov AB, Vikharev AL, et al. Hydrocarbon plasma chemistry in a continuous microwave discharge [J]. Plasma Physics Reports, 2007, 33 (10): 871-879.
    [81] Qayyum A, Zeb S, Naveed MA, et al. Optical emission spectroscopy of Ar-N-2 mixture plasma [J]. Journal Of Quantitative Spectroscopy & Radiative Transfer, 2007, 107 (3): 361-371.
    [82] Qayyum A, Ikram M, Zakaullah M, et al. Characterization of argon plasma by use of optical emission spectroscopy and Langmuir probe measurements [J]. International Journal Of Modem Physics B, 2003,17 (14): 2749-2759.
    [83] Czerwiec T and Graves DB. Mode transition in low pressure rare gas cylindrical ICP discharge studied by optical emission spectroscopy [J]. Journal Of Physics D-Applied Physics, 2004,37: 2827-2840.
    [84] Chen Yu, et al. Spatially resolved optical emission spectroscopy investigation of E and H modes in cylindrical inductively coupled plasma [J]. Journal Of Physics D-Applied Physics, 2007,40: 5112-5116.
    [85] Daltrini AM, et al. Mode transition and hysteresis in inductively coupled plasma [J]. Journal Of Applied Physics, 2007,101: 073309.
    [86] Dzierzega K, Volz U, Nave G, et al. Accurate transition rates for the 5p-5s transitions in KrI [J]. Physical Review A, 2000, 62 (2): 022505.
    [87] Dzierzega K, Volz U, Nave G, et al. Spectroscopic determination of oxygen DC glow-discharge temperature:Radial profile of gas temperature[J].Czechoslovak Journal of Physics,2003,53(3):219-227.
    [88]Apruzese,JP;Thornhill,JW;Whitney,KG,et al.Spectroscopic diagnosis of the temperature profile of an Al:Mg Z-pinch[J].IEEE Transactions On Plasma Science,1998,26(4):1185-1191.
    [89]Kettlitz,M;Wendt,M;Schneidenbach,H,et al.Plasma diagnostics in Hg-free short-arc lamps for automotive lighting[J].Journal Of Physics D-Applied Physics,2007,40(13):3829-3835.
    [90]Kozakov,R;Kettlitz,M;Weltmann,KD,et al.Temperature profiles of an ablation controlled arc in PTFE:I.Spectroscopic measurements[J].Journal Of Physics D-Applied Physics,2007,40(8):2499-2506.
    [91]Botticher,R;Kettlitz,M.Dynamic mode changes of cathodic arc attachment in vertical mercury discharges[J].Journal Of Physics D-Applied Physics,2006,39(19):2715-2723.
    [92]Schneidenbach H,Uhrlandt D,St Franke,et al.Temperature profiles of an ablation controlled arc in PTFE:Ⅱ.Simulation of side-on radiances[J].Journal Of Physics D-Applied Physics,2007,40(23):7402-7411.
    [93]Lochte-Holtgreven W.Evaluation of Plasma Parameters[A].In:Lochte-Holtgreven M.Plasma Diognostics[M].New York:American Institute of Physics,1995:135-213.
    [1]Lieberman M A and Lichtenberg A J.Principles of Plasma Discharges and Materials Processing[M].New York:Wiley,1994.
    [2]Keller J H,Forster J C and Barnes M S.Novel radiofrequency induction plasma processing techniques[J].Journal of Vacuum Science & Technology A-Vacuum Surfaces And Films,1993,11 2487-91.
    [3]Carter J B,Holland J P,Peltzer E,Richardson B,Nguyen H T,Melaku Y,Gates D and Ben-Dor M.Transformer coupled plasma etch technology for the fabrication of subhalf micron structures[J].Journal of Vacuum Science & Technology A-Vacuum Surfaces And Films,1993,11 1301-06.
    [4]Gabriel C T and Melaku Y.Gate oxide damage in a high-density inductively-coupled plasma[J].Journal of Vacuum Science & Technology B,1994,12 454-60.
    [5]Keller J H.Inductive plasmas for plasma processing[J].Plasma Sources Science & Technology,1996,5 166-72.
    [6]Keller J H.New and possible future trends in inductively coupled plasmas(icps)for semiconductor processing[J].Plasma Physics And Controlled Fusion,1997,39437-43.
    [7]Ostrikov K,Tsakadze E,Ning J,Tsakadze Z,Long J D,Storer R,Xu S Y.Dynamics of mode transitions in inductively-coupled plasmas[J].IEEE Transactions on Plasma Science,2002,30 128-9.
    [8]Razzak M A,Kondo K,Uesugi Y,Ohno N and Takamura S.Transition from electrostatic-to-electromagnetic mode in a radio-frequency Ar inductively coupled plasma in atmospheric pressure[J].Journal of Applied Physics,2004,95 427-33.
    [9]Kang D H,Lee D K,Kim K B,Lee J J and Joo J.Ion energy distribution change at the transition of power-coupling modes in an immersed-coil-type inductively coupled Ar discharge[J].Applied Physics Letters,2004,84 3283-5.
    [10]Czerwiec T and Graves D B.Mode transitions in low pressure rare gas cylindrical ICP discharge studied by optical emission spectroscopy[J].Journal of Physics D-Applied Physics,2004,37 2827-40.
    [11]Razzak M A,Takamura S and Uesugi Y.Dynamics of E-H mode transition in high-pressure RF inductively coupled plasmas[J].IEEE Transactions on Plasma Science,2005,33 284-5.
    [12]Ding Z F,Sun J C and Wang Y N.Influence of discharge parameters on tuned substrate self-bias in an radio-frequency inductively coupled plasma[J].Plasma Science & Technology,2005,7 3117-21
    [13]Xu S,Ostrikov K N,Luo W and Lee S.Hysteresis and mode transitions in a low-frequency inductively coupled plasma[J].Journal of Vacuum Science &Technology A-Vacuum Surfaces And Films,2000,18 2185-97.
    [14]Cunge G,Crowley B,Vender D Turner M M.Characterization of the E to H transition in a pulsed inductively coupled plasma discharge with internal coil geometry:bi-stability and hysteresis[J].Plasma Sources Science & Technology,1999,8 576-86.
    [15]Kortshagen U,Gibson N D and Lawler J E.On the E-H mode transition in RF inductive discharges[J].Journal of Physics D:Applied Physics,1996,29 1224-36.
    [16]EI-Fayoumi I M and Jones I R.Measurement of the induced plasma current in a planar coil,low-frequency,RF induction plasma source[J].Plasma Sources Science & Technology,1997,6 201-12.
    [17]Turner M M and Lieberman.Hysteresis and the E-to-H transition in radiofrequency inductive discharges[J].Plasma Sources Science & Technology,1999,8 313-24.
    [18]Edamura M and Benck E C.Effects of voltage distribution along an induction coil and discharge frequency in inductively coupled plasmas[J].Journal of Vacuum Science & Technology A-Vacuum Surfaces And Films,2004,22 293-301.
    [19]Tsakadze Z,Ostrikov K,Tsakadze E and Xu S.Discharge mode transitions in low-frequency inductively coupled plasmas with internal oscillating current sheets[J].Journal of Vacuum Science & Technology A-Vacuum Surfaces And Films,2005,23440-7.
    [20]Razzak M A,Takamura S and Uesugi Y.Effects of radio-frequency driving power,gas pressure,and nitrogen seeding on the transition dynamics in argon inductively coupled plasmas[J].Journal of Applied Physics,2004,96 4771-6.
    [21]Wharmby D O.Electrodeless lamps for lighting-a review[J].IEE Proceedings-A-Science Measurement And Technology,1993,140 465-73.
    [22]Shaffer J W and Godyak V A.The development of low frequency,high output electrodeless fluorescent lamps[J].Journal of The Illuminating Engineering Society,1999,28 142-8.
    [23]Popov O and Maya J.Characteristics of electrodeless ferrite-free fluorescent lamp operated at frequencies of 1-15 MHz[J].Plasma Sources Science & Technology, 2000,9 227-37.
    [24]Lester J N and Alexandrovich B M.Ballasting electrodeless fluorescent lamps[J].Journal of The Illuminating Engineering Society,2000,29 89-99.
    [25]Statnic E.Dimming high power electrodeless fluorescent lamps[J].Journal of The Illuminating Engineering Society,2002,31 158-68.
    [26]Kitajima T,Takeo Y,Nakano N and Makabe T.Effects of frequency on the two-dimensional structure of capacitively coupled plasma in Ar[J].Journal of Applied Physics,1998,84 5928-36.
    [27]Kitamura T,Nakano N,Makabe T and Yamaguchi Y.Plasma Sources Science &Technology,1993,2 40-5.
    [28]http://physics.nist.gov/PhysRefData/Handbook/Tables/argontable3.htm
    [1]Wilken L,Hoffmann V,Wetzig K.Electrical measurements at radio frequency glow discharges for spectroscopy[J].Spectrochimica Acta Part B-Atomic Spectroscopy,2007,62(10):1085-1122.
    [2]Gorbachev AM,Muchnikov AB,Vikharev AL,et al.Hydrocarbon plasma chemistry in a continuous microwave discharge[J].Plasma Physics Reports,2007,33(10):871-879.
    [3]Qayyum A,Zeb S,Naveed MA,et al.Optical emission spectroscopy of Ar-N-2mixture plasma[J].Journal Of Quantitative Spectroscopy & Radiative Transfer,2007,107(3):361-371.
    [4]Qayyum A,Ikram M,Zakaullah M,et al.Characterization of argon plasma by use of optical emission spectroscopy and Langmuir probe measurements[J].International Journal Of Modern Physics B,2003,17(14):2749-2759.
    [5]Lieberman M A and Lichtenberg A J.Principles of Plasma Discharges and Materials Processing[M].New York:Wiley 1994.
    [6]U Kortshagen,N D Gibson and J E Lawler.On the E-H mode transition in RF inductive discharges[J].J.Phys.D:Appl.Phys,1996,29:1224-1236.
    [7]K Suzuki,K Nakamura,H Ohkubo and H Sugai.Power transfer efficiency and mode jump in an inductive RF discharge[J].Plasma Sources Sci.Technol,1998,7:13-20.
    [8]I M El-Fayoumi,I R Jones and M M Turner.Hysteresis in the E-to H-mode transition in a planar coil,inductively coupled rf argon discharge[J]J.Phys.D:Appl.Phys,1998,31:3082-3094.
    [9]Xu S.Low-frequency,high-density,inductively coupled plasma sources:Operation and applications[J].PHYSICS OF PLASMAS,2001,8:2549-2557.
    [10]YOON NS.A theoretical formula of E-H discharge transition power in a transformer-coupled discharge[J].IEEE Transactions On Plasma Science,1998,26:190.
    [11]Turner M and Lieberman M.Hysteresis and the E-to-H transition in radiofrequency inductive discharges[J].Plasma Sources Sci.Technol,1999,8:313-324.
    [12]Razzak MA,Kondo K,Uesugi Y,Ohno N,Takamura S.Transition from electrostatic-to-electromagnetic mode in a radio-frequency Ar inductively coupled plasma in atmospheric pressure[J].Journal Of Applied Physics,2004,95(2): 427-433.
    [13]Czerwiec T and Graves DB.Mode transition in low pressure rare gas cylindrical ICP discharge studied by optical emission spectroscopy[J].J.Phys.D:Appl.Phys,2004,37:2827-2840.
    [14]Chen Yu,et al.Spatially resolved optical emission spectroscopy investigation of E and H modes in cylindrical inductively coupled plasma[J].J.Phys.D:Appl.Phys,2007,40:5112-5116.
    [15]Daltrini AM,et al.Mode transition and hysteresis in inductively coupled plasma [J].Journal Of Applied Physics,2007,101:073309.
    [16]Winkler RB,Wilhelm J.Kinetics of the Ar-Hg plasma of fluorescent lamp discharges[J]Ann Phys,1983,40(2/3):1490-1495.
    [17]Koedam M and Kruithof A.Transmission of the visible mercury triplet by the low pressure mercury-argon discharge;concentration of the 6~3P state[J].Physica,1962,28:80-100.
    [18]Dzierzega K,Volz U,Nave G,et al.Accurate transition rates for the 5p-5s transitions in KrI[J].Physical Review A,2000,62(2):022505.
    [19]Bi53In47Hg2.5汞齐汞气压和与冷端温度关系,上海宏源照明有限公司技术资料
    [20]Lee MH,Jang SH and Chung CW.On the multistep ionizations in an argon inductively coupled plasma[J].Physics of plasma,2006,13:053502.
    [21]Ralchenko,Yu.,Jou,F.-C.,Kelleher,D.E.,Kramida,A.E.,Musgrove,A.,Reader,J.,Wiese,W.L.,and Olsen,K.(2007).NIST Atomic Spectra Database (version 3.1.3),[Online].Available:http://physics.nist.gov/asd3[2007,November 19].National Institute of Standards and Technology,Galthersburg,MD.
    [22]A Hartgers and J A M van der Mullen.Modelling an Ar-Hg fluorescent lamp plasma using a 3 electron-temperature approximation[J].J.Phys.D:Appl.Phys,2001,34:1907-1913.
    [23]Vriens L.2-Electron and 3-Electron Group Models for Low-Pressure Gas Discharges[J].Journal Of Applied Physics,1974,45:1191.
    [24]Wani K.Evaluation of The Electron-Energy Distribution in A Low-Pressure Hg-Ar Discharge with a 2-Temperature Approximation[J].Journal of Applied Physics,1998,63:5683.
    [25]Lee MH and Chung CW.Self-consistent global model with multi-step ionizations in inductively coupled plasmas[J].Physics of Plasma,2005,12:073501.
    [26]Lee MH,Lee KH,Hyun DS,et al.On the hysteresis in E to H and H to E transitions and the multistep ionization in inductively coupled plasma[J].Applied Physics Letters,2007,90:191502.
    [27]Lee MH,Chung CW.On the E to H and H to E transition mechanisms in inductively coupled plasma[J].Physics of Plasma,2006,13:063510.
    [28]Lee MH,Chung CW.Effect of multistep ionizations on the electron temperature in an argon inductively coupled plasma[J].Applied Physics Letters,2007,87:131502.
    [29]Chen FF,Torreblanca H.Density jump in helicon discharges[J].Plasma Sources Science & Technology,2007,16:593-596.
    [30]Kortshagen U.On the E-H mode transition in RF inductive discharges[J].Journal of Physics D-Applied Physics,1996,29:1224.
    [31]Smolyakov AI,Godyak VA and Tyshetskiy YO.Nonlinear effects in inductively coupled plasmas[J].Physics of Plasma,2003,10:2108-2116.
    [32]Godyak VA,Piejak RB,Alexandrovich BM,et al.Hot plasma and nonlinear effects in inductive discharges[J].Physics of Plasma,2003,6:1804-1812.
    [1]Johnston CW,Hartgers B,van der Heijden H,et al.Sulfur lamp-LTE modelling and experiments[J].High Temperature Material Processes,2005,9(4):545-555.
    [2]Johnston CW,Jonkers J,van der Mullen JJAM.Operational trends in the temperature of a high-pressure microwave powered sulfur lamp[J].Journal Of Physics D-Applied Physics,2002,35(20):2578-2585.
    [3]Johnston CW,van der Heijden HWP,Janssen GM,et al.A self-consistent LTE model of a microwave-driven,high-pressure sulfur lamp[J].Journal Of Physics D-Applied Physics,2002,35(4):342-351.
    [4]Guttsait EM.On determination of microwave radiation from sulfur-lamp lighting installations[J].Journal of Communications Technology And Electronics,2000,45(8):901-904.
    [5]Nakao S,Sugai H.Multi-hollow plasma production,along dielectric plate in microwave discharge[J].Japanese Journal of Applied Physics Part 2-Letters &Express Letters,2007,46(41-44):1039-1041.
    [6]Kukielka S,Gulbinski W,Pauleau Y,et al.Nickel/hydrogenated amorphous carbon composite films deposited in acetylene/argon microwave plasma discharge[J].Reviews on Advanced Materials Science,2007,15(2):127-133.
    [7]Gorbachev AM,Muchnikov AB,Vikharev AL,et al.Hydrocarbon plasma chemistry in a continuous microwave discharge[J].Plasma Physics Reports,2007,33(10):871-879.
    [8]Jauberteau JL,Jauberteau I,Aubreton J.Mass spectrometer analysis of plasma containing easily dissociated species:Absolute concentrations of the main free radicals Si(CH3)1,2,3 and H2Si(CH3)produeed in a microwave discharge sustained in an Ar-Si(CH3)(4) gas mixture[J].International Journal of Mass Spectrometry,2007,266(1-3):15-24.
    [9]Ishijima T,Hotta H,Sugai H,et al..Multibubble plasma production and solvent decomposition in water by slot-excited microwave discharge[J].Applied Physics Letters,2007,91(12):121501.
    [10]Amicangelo JC,Collier JR,Dine CT,et al..Equipment and Methods for Waveguide Power Measurement in Microwave Heating Applications[J].Molecular Physics,2007,105(8):989-1002.
    [11]顾继慧.微波技术[M].北京:科学出版社,2004:234-285.
    [12]Fundamentals of RF and Microwave Power Measurements[DB]. Hewlett-Packard Application Note,1997,64-1 A.
    [13]C.G.Montgomery.Technique of Microwave Measurement[J].MIT Radiation Laboratory Series,1947,Vol.11.
    [14]Tom Crowley.Microwave Power Measurements[R].Broadway:NIST/ARFTG Measurements Short Course.
    [15]Agilent Fundamentals of RF and Microwave Power Measurements(Part 2):Power Sensors and Instrumentation[DB].Agilent Application Note,Literature number:5988-9214EN.
    [16]威谋斯(Waymouth JF).放电灯[M].北京:轻工业出版社,1983:168-169.
    [17]周太明.光源原理与设计[M].上海:复旦大学出版社,1993:259.
    [18]Ralchenko,Yu.,Jou,F.-C.,Kelleher,D.E.,Kramida,A.E.,Musgrove,A.,Reader,J.,Wiese,W.L.,and Olsen,K.(2007).NIST Atomic Spectra Database (version 3.1.3),[Online].Available:http://physies.nist.gov/asd3[2007,November 19].National Institute of Standards and Technology,Gaithersburg,MD.
    [19]Richter J.Radiation of Hot gases[A].In:Lochte-Holtgreven M.Plasma Diognostics[M].New York:American Institute of Physics,1995:45-49.
    [20]Franke St.Private communication.Institute of Low Temperature Plasma Physics,Greifswald,Germany.2006.12
    [21]H.Bartels.Uber Linienemission Aus Inhomogener Schicht.1.[J].Zeitschrift Fur Physik,1949,125:597-614.
    [22]H.Bartels.Uber Linienemission Aus Inhomogener Schicht.2.[J].Zeitschrift Fur Physik,1949,126:108-140.
    [23]Franke St.and Schneidenbach H.Temperature Determination From Self-Reversed Spectral Lines[A].In:M.Q.Liu and R.Devonshire.Proceedings of the 11th International Symposium on the Science and Technology of Light Sources[C].Sheffield:FAST-LS Ltd,2007:23-31.
    [24]Doell Gerhard and Lapatovich Walter.High intensity electrodeless discharge lamp with particular metal halide fill[P].United States Patent:5889368,August 11,1997.
    [25]Mimasu Mutsumi.Microwave-excited discharge lamp[P].United States Patent:6249078,July 28,1998.
    [26]Katase Koichi,Ichibakase Tsuyoshi and Seki;Katsushi.Electrodeless discharge lamp[P].United States Patent:6670759,May 24,2000.
    [27]P.Flesch.Light and Light Sources[M].Berlin:Springer-Verlag Heidelberg, 2006:167.
    [28]G.Hartel,H.Schoepp.Determination of the radial temperature profile in a high-pressure mercury discharge using the electrical conductivity[J].J.Phys.D:Appl.Phys,1996,29:2881-2884.
    [29]G.Hartel,H.Schoepp et al.Radiation from an alternating current high-pressure mercury discharge:A comparison between experiment and model calculation[J].J.Appl.Phys.1999,85(10):7076-7088.
    [30]Brok WJM,Nimalasuriya T,Hartgers A,et al.Color segregation in metal-halide lamps:Experimental and numerical investigations[J].High Temperature Material Processes,2007,11(3):443-454.
    [31]Beks ML,van Dijk J,Hartgers B,et al.A study on the effects of geometry on demixing in metal-halide lamps[J].IEEE Transactions on Plasma Science,2007,35(5):1335-1340.
    [32]Nimalasuriya T,Thube GM,Flikweert AJ,et al.Axial segregation in metal-halide lamps under gravity conditions ranging from 1g to 10g[J].Journal of Physics D-Applied Physics,2007,40(9):2839-2846.
    [33]Brok WJM,Nimalasuriya T,Hartgers A,et al.Colour segregation in metal-halide lamps:experimental and numerical investigations[J].High Temperature Material Processes,2006,10(4):571-582.
    [34]Beks ML,Hartgers A,van der Mullen JJAM.Demixing in a metal halide lamp,results from modelling[J].Journal of Physics D-Applied Physics,2006,39(20):4407-4416.
    [1]Mark Winter.WebElements~(TM),The Periodic Table on the WWW[DB/OL].:www.webelements.com.
    [2]Beks ML,Hartgers A,van der Mullen J JAM.Demixing in a metal halide lamp,results from modelling[J].Journal of Physics D-Applied Physics,2006,39(20):4407-4416.
    [3]Nimalasuriya T,Thube GM,Flikweert AJ,et al.Axial segregation in metal-halide lamps under gravity conditions ranging from 1g to 10g[J].Journal of Physics D-Applied Physics,2007,40(9):2839-2846.
    [4]Richter J.Radiation of Hot gases[A].In:Lochte-Holtgreven M.Plasma Diognostics[M].New York:American Institute of Physics,1995:45-49.
    [5]Ambrose D.Vapour pressures from 0.2 to 101.325 kPa[DB/OL].:http://www.kayelaby.npl.co.uk/chemistry/3_4/3_4_4.html.
    [6]周太明.光源原理与设计[M].上海:复旦大学出版社,1993:201-275.
    [7]威谋斯(Waymouth JF).放电灯[M].北京:轻工业出版社,1983:205.
    [8]赫兹堡(Gerhard Herzberg).[M].北京:科学出版社,1983:307-354.
    [9]St Franke,R Methling,H Hess,H Schneidenbach,H Schoepp,L Hitzschke,M Kaning and B Schalk.Mercury-free high-intensity discharge with high luminous efficacy and good colour rendering index[J].Journal of Physics D-Applied Physics,2007,40(13):3836-3841.
    [10]Doell Gerhard and Lapatovich Walter.High intensity electrodeless discharge lamp with particular metal halide fill[P].United States Patent:5889368,August 11,1997.
    [11]Mimasu Mutsumi.Microwave-excited discharge lamp[P].United States Patent:6249078,July 28,1998.
    [12]Katase Koichi,Ichibakase Tsuyoshi and Seki;Katsushi.Electrodeless discharge lamp[P].United States Patent:6670759,May 24,2000.
    [13]Zou WL,Lin MR,Yang XZ,et al.Ab initio calculations on the ground and low-lying excited states of InI[J].Molecular Physics 101(19):2963-2968.
    [14]方道腴,蔡祖泉.电光源工艺[M].上海:复旦大学出版社,1991:34.
    [15]M.Kettlitz,M.Wendt,S.Peters,H.Schneidenbach and A.Kloss.Studying Dimming Characteristics of HID Model Lamps[A].In:M.Q.Liu and R.Devonshire.Proceedings of the 11th International Symposium on the Science and Technology of Light Sources[C].Sheffield:FAST-LS Ltd,2007:23-31.
    [16] Johnston CW, van der Heijden HWP, Janssen GM, et al. A self-consistent LTE model of a microwave-driven, high-pressure sulfur lamp [J]. Journal of Physics D-Applied Physics, 2002,35 (4): 342-351.
    [17] Waymouth JF. Applications of microwave discharge to high-power light sources [A]. In: Ferreira CM, Moisan M. Microwave discharge: fundamentals and applications [M]. New York: Plenum Press, 1993:427-443.
    [18] http://en.wikipedia.org/wiki/Electronaffinity.
    [19] J Michael Hollas. Modern Spectroscopy [M]. New York: John Wiley & Sons, Inc., 2004: 137-150.
    [20] Onodera T, Hitomi K, Shoji T. Fabrication of indium iodide X- and gamma-ray detectors [J]. IEEE Transactions On Nuclear Science, 2006, 53 (5): 3055-3059.
    [21] Wu CZ, Li TW, Lei LY et al. Indium nitride from indium iodide at low temperatures: synthesis and their optical properties [J]. NEW JOURNAL OF CHEMISTRY, 2005,29 (12): 1610-1615.
    [22] Mishra, SK; Yadav, RKS; Singh, VB, et al. Spectroscopic studies of diatomic indium halides [J]. Journal of Physical and Chemical Reference Data, 2004, 35 (22): 453-470.
    [23] Mishra, SK; Yadav, RKS; Rai, SB, et al. Potential energy curves and dissociation energies of diatomic indium halides [J]. Indian Journal of Physics and Proceedings of The Indian Association For The Cultivation Of Science-Part B, 2003, 77B (2): 229-232.
    [24] Burnham R. Atomic Indium Photodissociation Laser at 451 nm [J]. Applied Physics Letters, 1977 ,30 (132): 132-134.
    [25] Bruchhausen M. Resonant coherent anti-stokes Raman scattering applied to vapor phase InI [J]. Journal of Molecular Spectroscopy, 2000,201 (70): 132-134.
    [26] Hochi A, Horii S, Takeda M, Matsuoka T. Electrodeless hid lamp and electrodeless hid lamp system using the same [P]. United States Patent: 5864210, January 26, 1999.
    [27] Hochi A. Electrodeless discharge lamp [P]. United States Patent: 6670759, December 30, 2003.
    [28] Katase K et al. Electrodeless discharge lamp and apparatus to prevent devitrification [P]. United States Patent: 6362565, March 26,2002.
    [29] Lapatovich W et al. Blue light electrodeless high intensity discharge lamp system [P]. United States Patent: 6,157,141, December 5,2000.
    [30] Zou WL, Lin MR, Yang XZ, Zhang BZ. Ab initio calculations on the ground and low-lying excited states of InI [J]. Molecular Physics, 2003, 101 (19): 2963-2968.
    [31] KING KK. Laser excitation and photoionization spectroscopy of the AO(+) and B1 states of indium monoiodide: Ground state dissociation energy and photodissociation yield of In(6s S-2(1/2)) [J]. Journal of Chemical Physics, 1999, 111 (933): 931-937.
    [32] Yuming Chen, Dahua Chen. Continuum visible spectra from InBr discharge excited in a microwave resonant cavity [J]. Applied Physics Letter, 2007,91: 161501.
    [33] M Singh, GS Ghodgaonkar and MD Saksena. A new emission spectrum of indium bromide at 5200A [J]. J. Quant. Spectrosc.Radiat, 1991,46(6): 583-586.
    [34] J Michael Hollas. Modern Spectroscopy(Fourth Edition) [M]. England Chichester,: John Wiley & Sons, Ltd. 2004:236.