激光诱导击穿光谱数据处理方法及在煤分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,简称LIBS)是近几十年兴起的一种新型原子发射光谱分析技术,因可远距离检测、多元素分析、原位测量等技术优势,使其在社会工业与生活的诸多领域体现了应用潜力。国内外相关研究机构也对其开发研究保持了浓厚的兴趣,并取得了一定的成果。近几年来,通过光谱的数据处理优化提高该技术应用的可靠性与稳定性已成为该技术发展的一个瓶颈问题与主要研究方向,论文选择LIBS光谱的数据处理优化研究为研究主题,通过建立针对性的数据处理模型与新方法、新模型的开发,提高激光诱导击穿光谱煤质测量及其他分析应用中的可行性与可靠性。论文结合光谱分析基础理论与实验验证分析,针对LIBS光谱数据的处理及其在燃煤检测中的应用开展了如下研究:
     构建了系列实用有效的LIBS光谱数据预处理方法与模型。通过“跳跃度”评价方法对异常光谱数据进行剔除;利用分析谱线轮廓的函数拟合得到的基线强度作为光谱的联系背景噪声进行光谱基线校正;针对相邻特征谱线的重叠峰干扰问题,引用小波Fourier自去卷积方法进行重叠峰进行了有效分解;研究还建立了激光诱导击穿光谱分析的自动寻峰算法模型,并对特征光谱对应的元素标定的原理与准则进行了归纳总结;最后采用小波变换的方法对光谱数据的压缩进行了试验分析,该方法在高度还原分析光谱的同时可以实现很高的压缩比例。
     在详细分析LIBS测量中基体效应与自吸收效应的相关机理与对光谱分析影响的基础上,总结并结合实验评价了现有其他研究专家提出的基体效应校正方法与自吸收校正模型的基本原理与技术特点。在此基础上,提出了基于内标法基础的多元素间相互校正方法。通过试验证实,这种校正方法可以在内标法的基础上进一步减小基体效应的影响。此外针对自吸收对分析谱线强度的影响,研究建立了一种基于单幅谱图光谱特征信息的自吸收校正方法,通过分析谱线理论展宽与实际展宽的关系计算该谱线的自吸收系数,以用于光谱强度校正。实验证明,这种方法计算简单快捷、需求信息量更少,并且能够有效校正光谱自吸收对于LIBS定量分析的影响。
     结合具体测量对象实验分析,研究与评价了定标分析与自由定标分析这两种目前常用LIBS定量分析方法的分析过程与方法特点,将自相关分析与神经网络预测方法分别引入到激光诱导击穿光谱分析辨识过程中来,以满足不同领域不同对象的应用需求。自相关定量分析通过建立标准参考样品的光谱数据库,将分析样品多次测量的光谱与各参考样品光谱进行相关性分析,依据相关性系数的大小与分布概率,判断分析样品的特性与成分。神经网络预测分析方法则利用大量标准样本的训练学习构建合理可靠的网络模型,应用于未知分析对象的测量。研究详细介绍了两种新方法的定量分析途径与具体过程,并结合具体对象分析的实验研究,验证分析了方法应用于定量分析的可行性与各自的适用对象范围。
     利用建立的激光诱导击穿光谱实验平台,结合关于应用关于LIBS光谱数据处理方面的研究成果,利用IIBS技术对典型燃煤样品进行了元素分析试验。采用LIBS定标技术分析煤中的金属元素与Si时均能取得较高的分析精度(相对误差在0.7%~9.2%)与良好的探测限水平。面对煤中主量元素(C、H、O、N)定标分析线性度差的问题,通过采用神经网络方法综合考虑挥发份的影响,实验发现相对定标分析其分析的准确性有了明显的提升。采用一种新型的元素浓度比计算模型对燃煤的结渣特性进行了预测分析。此外,采用LIBS方法对煤灰样中的未燃尽碳含量进行了内标法定标分析,分析的相对误差均在5%水平之内。
     最后,对全文的研究内容做了总结,并针对进一步的研究工作开展提出了一定的建议。
Since the early 1960s, Laser-Induced Breakdown Spectroscopy (LIBS), as a rising atomic emission spectroscopy, has been researched as an element analysis technique in many fields because of its advantages of remote distance, in-situ and multi-element analytical capability. Recently, the data processing with the purpose of improving the measure accuracy and stability of LIBS analysis has become an important research subject and attracted lots of interests and attention. This work chooses the spectral data processing in LIBS elemental analysis and its application in coal analysis as the topic investigated, and aims at developing some new methods and models for the optimization of the spectral data processing, spectral analysis and elementary analysis of coal. The following investigations were made in this dissertation.
     Some data preprocessing approaches and models were introduced and verified for their validity by the corresponding example test. The "jump degree" method was used to discern and remove the abnormal spectral data in series of repeated measurement spectroscopic data. The analyzed spectral line profile was fitted by Lorentzian function for determining the spectral background, which was proved to be an effective method for the baseline correction of the spectrum. For the resolution of adjacent overlapped spectral lines, a model based on Fourier self-deconvolution combined with wavelet transfer was established and tested. The automatic peak-seeking algorithm as well as the qualitative analysis rules was founded for automatic spectral line identification. Also the wavelet analysis was used for the data compression of LIBS, and a high compression ratio and nice recovery coefficient was obtained by this method.
     The special attention was paid to the matrix effect and self-absorption effect, which were two common and negative phenomenons in the LIBS analysis. The existing correction methods proposed by the other researchers were presented and analyzed by some example experiments. And then, a kind of inter-element correction method was studied to reduce the influence of matrix effects on the calibration curves, and the experimental result showed that this method was more effective for correcting the matrix effect than internal standard method. As well, a correction model for emission line self-absorption, based on the information of line broadening in the analytical spectrum and the Stark broadening parameter, was introduced and used to calculate the degree of line self-absorption and then correct the line intensity. The results showed that this correction model was very effective to improve the LIBS calibrating measurement when the analytical spectral line was obviously self-absorbed in the optical thick plasma.
     Two existing LIBS quantitative analysis methods, the calibration curve analysis and free-calibration analysis, were introduced in detail. Also some experiments were carried out to analyze the feature and applications of these methods. Then, a new quantitative analysis method, based on the observed dependence of the linear correlation coefficient between spectra of sample analyzed and the spectrum of reference certified samples, was introduced and analyzed for its application. Beside, another new spectral analysis method based on neural networks was developed and used for the LIBS analysis, and its effectiveness was examined and certified by the elemental analysis of aluminum alloy standard samples.
     The experiment investigation about coal analysis by LIBS was executed at the typical LIBS setup. Some important experimental parameters, such as laser energy, the distance of lens to sample, delay time for spectrum acquisition and particle size of coal samples, were put to test for finding an optimal measurement condition. On this basic, the elemental components of coal were analyzed by LIBS. In this experimental investigation, the quantitative results of metallic elements and silicon were at a high confidence level with relative error between 0.7% and 9.2%, and the detection limits between 0.0013% and 0.0743% were obtained foe these elements. The fractionation effect of volatile matter and self-absorption of thick cool flame were considered to have negative effect on the calibration quantitative analysis of nonmetallic elements. Thus, the neural network method integrated the spectral line intensity and volatile matter content was used in the LIBS to analyze the nonmetallic elements of coal, and an acceptable result was gained. Beside, the carbon content in ash was analyzed by LIBS based on internal standard method, and the relative error was under 5%.
     Finally, the results of the whole research works were summarized and the directions for the further studies were suggested.
引文
[1]陆同心,路轶群.激光光谱技术原理及应用.合肥:中国科学技术大学出版社,1999.
    [2]F.Brech,L.Cross.Optical microemission stimulated by a ruby laser.Appl.Spectrosc.16(1962):59-67.
    [3]D.A.Rusak,B.C.Castle B.W.Smith,et al.Recent trends and the future of laser-induced plasma spectroscopy.Trends in analytical chemistry,1998,17(8):453-461.
    [4]袁平,张雪珍,刘站稳等.激光产生等离子体的研究.核聚变与等离子体物理1995,15(2):47-53.
    [5]董全力,满宝元,张庆刚等.激光等离子体发射谱展宽机制研究.原子与分子物理学报,2001,18(1):45-49.
    [6]董全力,王军,于衍宏等.激光等离子体产生条件的实验研究.光电子激光,1999,10(5):469-472.
    [7]满宝元,王象泰,官文栎等.激光辐照HgCdTe所产生的等离子体特性.中国激光.1998,25(6):528-532.
    [8]王公堂,王象泰,满宝元等.激光烧蚀铝靶生成空气等离子体的机理.原子与分子物理学报.1996,13(2):163-169.
    [9]王公堂,王象泰,张怿慈等.激光烧蚀硅所产生的等离子体发射光谱特性.中国激光.1996,23(1):64-68.
    [10]张树东,张为俊.激光诱导Al等离子体在背景气体中的流体现象.原子与分子物理学报,2001,18(2):159-162.
    [11]张树东,冯旺军,陈冠英等.激光诱导Al等离子体的时间分辨光谱.应用激光,2000,20(4):155-158.
    [12]张树东,刘兆远,陈冠英等.环境气体对激光诱导Al等离子体光谱的影响.原子与分子物理学报,2001,18(1):64-66.
    [13]宋一中,李亮,张延惠.气压对激光诱导Al等离子体特性的影响.原子与分子物理学报,2000,17(2):221-227
    [14]宋一中,李亮,朱瑞富.激光脉冲能量对激光诱导Al等离子体辐射特性的影响.原子与分子物理学报,2000,17(4):489-594
    [15]宋一中,李亮.激光诱导Al等离子体连续辐射研究.激光与红外,2000,30(3):148-150
    [16]崔执凤,凤尔银,黄时中等.外加静电场下激光诱导等离子体特性的实验研究.原子与分子物理学报,1996,13(2):181-187
    [17]崔执凤,凤尔银,赵献章等.准分子激光诱导铅等离子体中谱线Stark展宽时空特性研究.原子与分子物理学报,1999,16(3):307-311
    [18]陆同兴,赵献章,崔执凤等.用发射光谱测量激光等离子体的电子温度和电子密度.原子与分子物理学报,1994,11(2):120-127
    [19]陆同兴,崔执凤,赵献章.激光等离子体镁光谱线Stark展宽的测量与计算.中国激光,1994,21(2):114-119.
    [20]郑贤峰,杨锐,唐晓闩等.外加静电场下激光诱导等离子体电子、离子特性的实验研究.原子与分子物理学报,2002,19(1):1-4.
    [21]郑贤峰,唐晓闩,凤尔银等.缓冲气体对激光等离子体光谱特性影响的实验研究.原子与分子物理学报,2002,19(3):267-271.
    [22]李静,张仕定,孟祥儒.激光诱导等离子体光谱法测定水溶液中镁、钠、钾含量.实验力学,2007,22(3—4):447—450.
    [23]赵书瑞,陈金忠.高能量激光诱导等离子体技术在物质成分分析中的应用.光谱实验室,2005,22(2):235—237.
    [24]张晓萍,陈金忠,郭庆林等.激光等离子体光谱分析技术的发展现状.光谱学与光谱分析.2008,28(3):656—662.
    [25]陈金忠,史金超,张晓萍.激光等离子体光谱法定量分析土壤中元素Fe和Ti.应用激光,2007,27(1):33—36.
    [26]郭庆林,周玉龙,张秋琳等.激光微等离子体光谱分析法测定土壤中的铝钙.光谱学与光谱分析.2008,28(1):200—202.
    [27]许洪光,管士成,傅院霞等.土壤中微量重金属元素Pb的激光诱导击穿谱.中国激光,2007,23(4):577—581.
    [28]L.Dai,C.H.Wang,L.J.Wu,et al.laser-induced breakdown spectroscopy characterization of Al in different matrix.Optoelectronics letters,2007,3(2):148-151.
    [29]王智宏汪家升.利用激光诱导击穿光谱技术定性分析矿石成分.中国科技信息,2007,9.
    [30]王智宏 汪家升.激光诱导击穿光谱—LIBS—技术在矿物元素成份分析中的应用研究.北京交通大学,硕士学位论文,2007年5月.
    [31]亓洪兴,舒嵘,吕刚等.基于激光诱导离解光谱的物质成分分析技术.激光与红外,2007,37(4):314—317.
    [32]亓洪兴,舒嵘,马德敏等.基于激光诱导离解光谱技术的元素识别方法.红外与毫米波学报.2007,26(1):52—55.
    [33]马德敏,舒嵘,亓洪兴.一种用于激光诱导离解光谱的时间分辨探测技术.光电技术与应用,2007,28(1):124—126.
    [34]R.Shu,H.X.Qi,G.lu,et al.laser-induced breakdown spectroscopy based detection of lunar soil simulants for moon exploration.Chinese optics letters,2007,5(1):58-59.
    [35]姚宁娟,陈吉文,杨志军等.一种用于冶金炉前快速分析的新仪器—激光诱导击穿光谱仪.光谱学与光谱分析.2007,27(7):1452—1454.
    [36]D.A.Cremers,L.J.Radziemski,Handbook of Laser-Induced Breakdown Spectroscopy,John Wiley & Sons Ltd,Chichester,England,2006.
    [37]Leon J.Radziemski,From LASER to LIBS,the path of technology development,Spectrochimica Acta Part B,57(2002):1109-1113.
    [38] J. M. Vadillo, J. J. Laserna, Laser-induced plasma spectrometry: truly a surface analytical tool. Spectrochimica Acta Part B, 59 (2004): 147-161.
    [39] C. Pasquini, J. Cortez, L. M. C. Silva, et al. Laser Induced breakdown spectroscopy, J. Braz. Chem. Soc. 18 (2007): 463-512.
    [40] A. Kumar, F. Y. Yueh, T. Miller, et al. Detection of trace elements in liquids by laser-induced breakdown spectroscopy with a meinhard nebulizer. Applied Optics, 2003,42(30): 6040-6046.
    [41] D. A. Cremers, M. H. Ebinger, F. Capitelli, et al. Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS). Journal of Environmental Quality, 2001, 30(9): 2002-2010.
    [42] F. Colao, M. R. Provenzano, R. Fantonib, et al. Determination of heavy metals in soils by Laser Induced Breakdown Spectroscopy. Geoderma, 2002,106(1): 45-62.
    [43] D. A.Cremers, L. J. Radziemski. Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry. Anal. Chem., 55(1983):1252-1256.
    [44] Akira Kuwako, Yutaka Uchida, and Katsuji Maeda. Supersensitive detection of sodium in water with use of dual-pulse laser-induced breakdown spectroscopy.Applied Optics, 2003,42(30):6052-6056.
    [45] G. Area, A. Ciucci, V. Palleschi, et al. Trace element analysis in water by the Laser-induced breakdown spectroscopy technique. Appl. Spectrosc, 1997, 51(6): 1102-1105.
    [46] J. Gruber, J. Heitz, H. Strasser, et al. Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B, 2001, 56(2):685-693.
    [47] Q. Sun, M. Tran, B. W. Smith, et al. Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy. Analytica Chimica Acta, 2000,413(1): 187-195.
    [48] Q. Sun, M. Tran, B. W. Smith, et al. Zinc analysis in human skin by laser induced-breakdown spectroscopy. Talanta, 2000, 52(1): 293-300.
    [49] Y. Yoon, T. Kim, M. Yang, et al. Quantitative analysis of pottery glaze by laser induced breakdown spectroscopy. Microchemical Journal, 2001, 68(1): 251-256.
    [50] L. Burgio, K. Melessanaki, M. Doulgeridis, et al. Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy. Spectrochimica Acta Part B, 2001, 56(3): 905-913.
    [51] B. Salle, J. L. Lacou, E. Vors, et al. Laser-Induced Breakdown Spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements. Spectrochimica Acta Part B: Atomic Spectroscopy, 2004, 59(9): 1413-1422.
    [52] B. Salle, D. A. Cremers, S. Maurice. Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(4): 479-490.
    [53] D. K. Ottesen, J. C. F. Wang, L.J.Radziemski. Real-time Laser spark spectroscopy of particulates in combustion environments, Applied spectroscopy, 1989, 43(6): 967-976.
    [54] D.K.Ottesen, L.J.Radziemski. In situ elemental analysis of particu late fuels using laser spark spectroscopy. Optical Soc of America, 1987, P 67-70.
    [55] D. K. Ottesen, L. L. Baxter, L.J.Radziemski. Laser spark emission spectroscopy for in situ, real time monitoring of pulverized coal particle composition. Energy Fuels, 1991, 5(2): 304-312.
    [56] F. J. Wallis, B. L. Chadwick, J. S. Morrison, et al. Analysis of lignite using laser-induced breakdown spectroscopy. Applied Spectroscopy, 2000, 54(8): 1231-1235.
    [57] D. Body, B. L.Chadwick. Simultaneous elemental analysis system using laser induced breakdown spectroscopy. Rev. Sci. Instrum., 2001, 72(3): 1625-1629.
    [58] P. M. Lemieux, J. V. Ryan, N. B. French, et al. Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies. Waste Management, 1998, 18(2): 385-391.
    [59] H. S. Zhang, F. Y. Yueh, J. P. Singh. Laser-induced breakdown spectroscopy as a multimetal continuous-emission monitor. Applied Optics, 1999, 38(9): 1459-1466.
    [60]J.P.Singh,F.Y.Yueh,C.F.Su.Application of modern diagnostic methods to environmental improvement:laser-induced breakdown spectroscopy.U.S Department of Energy,No.DE-FG02-93CH-10575.Mississippi State University,1998,42-54.
    [61]S.G.Buckley,H.A.Johnsen,K.R.Hencken,et al.Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals.Waste Management,2000,20(2):455-462.
    [62]H.Zhang,J.P.Singh.Laser-induced breakdown spectra in a coal-fired MHD facility.Appl.Spectrosc.,1995,49(11):1617-1623.
    [63]Linda G.Blevins,Christopher R.Shaddix,Shane M.Stickafoose.Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces.Applied Optics,2003,42(30):6107-6118.
    [64]M.Noda,Y.Deguchi,S.Iwasaki,et al.Detection of carbon content in a high temperature and high-pressure environment using laser-induced breakdown spectroscopy.Spectrocimica Acta Part B,57(2002):701-709.
    [65]陈晨.水体污染物拉曼光谱检测的数据处理与建库技术.华中师范大学硕士学位论文,2006,5.
    [66]张耀东.基于智能算法的近红外光谱分析与建模.东北大学硕士学位论文,2006,1.
    [67]余浩.基于正交信号校正算法的近红外光谱预处理.浙江大学硕士学位论文,2004,3.
    [68]李兴.高光谱数据库及数据挖掘研究.中国科学院遥感应用研究所博士学位论文,2006,5.
    [69]M.R.Kraushaar,R.Noll,H.U.Schmitz.Slag analysis with laser-induced breakdown spectroscopy.Appl.Spectrosc.57(2003):1282-1287.
    [70]P.L.Garcia,J.M.Vadillo,J.J.Lasema.Real-time monitoring of high-temperature corrosion in stainless steels by open-path laser-induced breakdown spectroscopy.Appl.Spectrosc.58(2004):1347-1352.
    [71]A.I.Whitehouse,J.Young,I.M.Botheroyd,et al.Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy.Spectrochim.Acta Part B,56(2001):821-830.
    [72]A.W.Miziolek,V.Palleschi,I.Schechter (Eds.).Laser-Induced Breakdown Spectroscopy (LIBS):Fundamentals and Applications.Cambridge University Press,Cambridge,2006.
    [73]J.Scaffidi,W.Pearman,C.J.Chance,et al.Effects of sample temperature in femtosecond single-pulse laser-induced breakdown spectroscopy.Applied Optics,43(2004):2786-2791.
    [74]M.Alejandro,R.S.Christopher,M.S.Shane et al.Effect of temperature and CO2 concentration on laser-induced breakdown spectroscopy measurements of alkali fume.Spectrochimica Acta Part B,60 (2005):1103-1114.
    [75]L.St-Onge,V.Detalle,M.Sabsabi,Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses.Spectrochim.Acta Part B 57 (2002) 121-135.
    [76]V.I.Babushok,F.C.DeLucia Jr.,J.L.Gottfried,et al.Double pulse laser ablation and plasma Laser induced breakdown spectroscopy signal enhancement.Spectrochimica Acta Part B 61,(2006):999-1014.
    [77]A.De Giacomo,M.Dell'Aglio,O.De Pascale,et al.NS- and FS-LIBS of copper-based-alloys:A different approach.Applied Surface Science,253(2007):7677-7681.
    [78]谢承利,陆继东,李捷等.激光诱导煤粉发射光谱的基体效应研究.工程热物理学报,2008,29(2):331—334.
    [79]F.H.Kortenbrucka,R.Nolla,P.Wintjens,et al.Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence.Spectrochimica Acta Part B,56(2001):.933-945.
    [80]S.K.Sharma,A.K.Misra,R G Lucey,et al.Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals,and minerals coated with hematite or covered with basaltic dust.Spectrochim.Acta Part A,68(2007):1036-1045.
    [81] D. Body, B.L. Chadwick. Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system. Spectrochimica Acta Part B 56(2001) 725-736.
    [82] V. Lazic, F. Colao, R. Fantoni, et al. Laser-induced breakdown spectroscopy in water Improvement of the detection threshold by signal processing. Spectrochimica Acta Part B 60 (2005) 1002-1013.
    [83] V. Lazic, F. Colao, R. Fantoni, et al. Underwater sediment analyses by laser induced breakdown spectroscopy and calibration procedure for fluctuating plasma parameters. Spectrochimica Acta Part B 62 (2007) 30-39.
    [84] N. Omenetto, S. Nikdel, J.D. Bradshaw, et al. Diagnostic and analytical studies of the inductively coupled plasma by atomic fluorescence spectrometry, Anal. Chem. 51 (1979)1521-1525.
    [85] N. Omenetto, J.D. Winefordner, C. Th, et al. An expression for the atomic fluorescence and thermal-emission intensity under conditions of near saturation and arbitrary self-absorption, Spectrochim. Acta Part B30 (1975) 335- 341.
    [86] A.C.G. Mitchell, M.W. Zemansky, Resonance Radiation and Excited Atoms, Cambridge University Press, 1934.
    [87] I. B. Gornushkin, J. M. Anzano, L. A. King, et al. Curve of growth methodology applied to laser-induced plasma emission spectroscopy, Spectrochim. Acta Part B, 54 (1999): 491-503.
    [88] D. Bulajic, M. Corsi, G. Cristoforetti, et al. A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy, Spectrochim. Acta Part B, 57 (2002): 339- 353.
    [89] M. Corsi, G. Cristoforetti, V. Palleschi, et al. A fast and accurate method for the determination of precious alloys caratage by laser induced plasma spectroscopy, Eur. Phys. J. D 13 (2001): 373- 377.
    [90] A. Ciucci, V. Palleschi, S. Rastelli, et al. New procedure for quantitative elemental analysis by laser induced plasma spectroscopy, Appl. Spectrosc. 53 (1999): 960-964.
    [91] V. Lazic, R. Barbini, F. Colao, et al. Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments,Spectrochim.Acta Part B,56 (2001):807- 820.
    [92]C.Arago'n,J.Bengoechea,J.A.Aguilera.Influence of the optical depth on spectral line emission from laser-induced plasmas,Spectrochim.Acta Part B,56 (2001):619- 628.
    [93]J.A.Bolger.Semi-quantitative Laser-induced breakdown spectroscopy for analysis of mineral drill core.Appl.Spectrosc.54 (2000):181-189.
    [94]中华人民共和国国家标准—数据的统计处理和解释,GB4883—85.
    [95]王金哲,张光辉,申建梅等.地下水功能评价指标标准化过程中的异常数据识别与处理.南水北调与水利科技,2007,5(5):94—96.
    [96]辛仁轩.等离子体发射光谱分析.北京:化学工业出版社,2004.
    [97]李捷,陆继东,谢承利等.激光感生击穿煤质实验中延迟时间的研究.光谱学与光谱分析,2008,28(4):736-739.
    [98]李全臣,蒋月娟.光谱仪器原理.北京,北京理工大学出版社,1999.
    [99]W.Huag,T.L.E.Henderson,A.M.Bond,et al.Curve fitting to resolve overlapping voltammetgic peaks.Analytical Chimica Acta,1995,304:1 - 15.
    [100]Zou Xiaoyong,Mo Jinyuan.Spline wavelet analysis for voltammetric signals.Anal Chim Acta,1997,340:115 -121.
    [101]J.K.Kauppinen,D.J.Moffatt,D.G.Cameron,et al.Noise in Fourier self-deconvolution.Applied Optics,1981,20(10):1866-1879.
    [102]R.G.Stuart,P.F.Steven,M.G.Steven.Deconvolution of overlapping chromatographic peaks using a cerebellar model arithmetic computer neural network.Chemometrics and Intelligent Laboratory System,1993,18:41 - 67.
    [103]D.Body,B.L.Chadwick.Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system.Spectrochimica Acta Part B,56(2001):725-736.
    [104]刘宏德.一些化学计量学方法在分析化学中的新应用—小波频率谱研究和重叠信号的分解.西北师范大学,硕士学位论文,2003.
    [105]周元臻,汤宏胜,郑建斌.基于频域小波变换的Fourier去卷积法研究.计算机与应用化学.2008,25(3):269—274.
    [106]徐啸,郭应祥,黄文学等.基于微机的γ谱数据分析程序GSA.核电子学与探测技术,2001,21(1):40—44.
    [107]蔡顺燕,庹先国,高嵩.基于LABVIEW和数字多道脉冲幅度分析器的γ能谱分析软件的开发.核电子学与探测技术,2007,27(5):936-939.
    [108]R.Redon,B.Fermat,J.Richou.A reconvolution spectroscopic method.J.Quant.Spectrosc.Radiat.Transf.1997,58(2):151-170.
    [109]陆同心,路轶群。激光光谱技术原理及应用。合肥:中国科学技术大学出版社。2006。
    [110]彭玉华.小波变换与工程应用.北京:科学出版社,1999.
    [111]熊智新.基于小波变换的化学谱图数据处理.浙江大学博士学位论文,控制理论与控制工程.
    [112]杨建国.小波分析及其工程应用.北京:机械工业出版社,2005.
    [113]飞思科技产品研发中心编著.小波分析理论与MATLAB 7实现.北京:电子工业出版社,2005.
    [114]谢承利,陆继东,李捷等.激光诱导煤粉等离子体的特性研究.工程热物理学报,2007,28(S2):133—136.
    [115]谢承利,陆继东,李捷等.激光诱导煤粉发射光谱的基体效应研究.工程热物理学报,2008,29(2):331—334.
    [116]S.Palanco,L.M.Cabalin,D.Romero,et al.Infrared laser ablation and atomic emission spectrometry of stainless steel at high temperatures.Journal of Analytical Atomic Spectrometry,1999,14(12):1883-1887.
    [117]J.Vrenegor,R.Noll,V.Sturm.Investigation of matrix effects in laser-induced breakdown spectroscopy Plasmas of high-alloy steel for matrix and minor elements.Spectrochimica Acta Part B,60 (2005):1083 - 1091.
    [118]A.S.Eppler,D.A.Cremers,D.D.Hickmott,et al.Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy.Applied Spectroscopy,1996,50(9):1175-1181.
    [119]G.C.Y.Chan,W.T.Chan,X.L.Mao,et al.Investigation of matrix effects in inductively coupled plasma-atomic emission spectroscopy using laser ablation and solution nebulization - effect of second ionization potential.Spectrochimica Acta Part B,56 (2001):77-92.
    [120]A.V.Pakhomov,W.Nichols,J.Borysow.Laser-induced breakdown spectroscopy for detection of lead in concrete.Applied Spectroscopy,1996,50 (7):880-884.
    [121]L.Xu,V.Bulatov,V.V.Gridin,et al.Absolute analysis of particulate materials by laser-induced breakdown spectroscopy.Analytical Chemistry.1997,69(11):2103-2108.
    [122]I.B.Gornushkin,B.W.Smith,G.E,Potts,et al.Anal.Chem.,71(1999):5447-5449.
    [123]徐秋心.实用发射光谱分析.成都:四川科学技术出版社,1993.
    [124]C.Aragon,J.A.Aguilera,F.Penalba.Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser.Applied Spectroscopy,1999,53(10):1259-1267.
    [125]谢承利,陆继东,李勇等.用LIBS方法测量铝合金中的合金元素,华中科技大学学报(自然科学版),2008,(10):114-117.
    [126]姚顺春,陆继东,谢承利等.强度比定标法定量分析激光诱导击穿碳谱线的研究.强激光与粒子束,2008,20(7):1089—1092.
    [127]A.M.El Sherbini,Th.M.El Sherbini,H.Hegazy,et al.Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,Spectrochimica Acta Part B,60(2005):1573-1579.
    [128]A.Ciucci,M.Corsi,V.Palleschi,et al.New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy.Applied Spectroscopy,1999,53 (8),960-967.
    [129]李娉,陆继东,谢承利等.用激光感生击穿光谱技术测量燃煤含碳量.应用光学, 2007,28(6):756-759.
    [130]http://www.nist.gov
    [131]Li Wang,Chi-jian Zhang,Yuan Feng.Controlled calibration method of laser induced breakdown spectroscopy.Chinese Optics Letters,2008,6(1):5-8.
    [132]L.Bolognesi,M.Corsi,V.Palleschi,et al.Calibration free laser induced plasma spectroscopy:a new frontier for material analysis,environmental protection and cultural heritage conservation.Sixth Symposium on Optoeletronics,Eds:T.Necsoiu,M.Robu,D.C.Dumitras.SIQEL,1999,Proceedings of SPIE,2000,Vol.4068:6-16.
    [133]I.Borgia,L.M.F.Burgio,M.Corsi,et al.Self-calibrated quantitative elemental analysis by laser-induced plasma spectroscopy:application to pigment analysis.J.Cult.Heritage,2000,1 (S):281-286.
    [134]M.Corsi,G.Cristoforetti,M.Hidalgo,et al.Double pulse,calibration-free laser-induced breakdown spectroscopy:A new technique for in situ standard-less analysis of polluted soils.Applied Geochemistry,21 (2006):748-755.
    [135]V.S.Burakov,S.N.Raikov.Quantitative analysis of alloys and glasses by a calibration-free method using laser-induced breakdown spectroscopy.Spectrochimica Acta Part B,62 (2007):217-223.
    [136]余亮英,陆继东,陈文等.用激光感生击穿光谱对大气进行定量分析.应用光学.2006,27(2):147—151.
    [137]李鹏艳,谢承利,陆继东等.激光诱导击穿光谱法分析玻璃成分的实验研究.应用激光,2009,29(1):21—25.
    [138]M.Lentjes,K.Dickmann,J.Meije.Calculation and optimization of sample identification by laser induced breakdown spectroscopy via correlation analysis.Spectrochimica Acta Part B,62 (2007):56-62.
    [139]涂平,汪昌瑞.概率论与数理统计.武汉:华中科技大学出版社,2008.8.
    [140]张际先,宓霞.神经网络及其在工程中的应用.北京:机械工业出版社,1996.
    [141]李丽霞,张敏,郜艳晖等.人工神经网络在医学研究中的应用.数理医药学杂志. 2009,22(1):80—82.
    [142]张云飞,许敏,赵云胜.人工神经网络在安全科学中的应用综述.中国安全生产科学技术.2008,4(6):136-139.
    [143]周革文,胡育筑,葛建华等.应用人工神经网络鉴定高效液相色谱峰纯度.色谱,1996,14(2):94—97.
    [144]张海霞,张瑞生,孙占武等.用人工神经网络技术解析色谱重叠峰.兰州大学学报(自然科学版),1999,35(2):99—104.
    [145]I.Belic,L.Gyergyek.Neural network methodologies for mass spectra recognition.Vacuum,1997,48(9):633-637.
    [146]P.Chalus,S.Walter,M.Ulmschneider.Combined wavelet transform-artificial neural network use in tablet active content determination by near-infrared spectroscopy.Anal.Chim.Acta,2007,591 (2):219-224.
    [147]张卓勇,刘思东,丁保军.人工神经网络用于有机环境污染物紫外光谱库检索.光谱学与光谱分析,1998,18(6):680—685.
    [148]罗立强,马光祖,吉昂等.神经群结构、算法与X射线荧光光谱分析研究.分析科学学报,1998,14(3):177-182.
    [149]M.Babri,S.Rouhani,A.Massoumi.Identification of hydroxyl functional group and alcohols by near-infrared spectroscopy and artificial neural network.Iranian Journal of Science & Technology.1998,22(4):439-448.
    [150]S.R.Amendolia,A.Doppiu,M.L.Ganadu.Classification and quantitation of 1H NMR spectra of alditols binary mixtures using artificial neural networks.Analytical Chemistry,1998,70(7):1249-1254.
    [151]李士勇.模糊控制、神经网络和智能控制论.哈尔滨:哈尔滨工业大学出版社,1998.
    [152]马书民.人工神经网络—红外光谱法用于中药大黄样品的鉴定研究.东北师范大学分析化学专业硕士学位论文,2004,5.
    [153]E.C.Ferreira,D.M.B.P.Milori,E.J.Ferreira,et al.Artificial neural network for Cu quantitative determination in soil using a portable Laser Induced Breakdown Spectroscopy system.Spectrochimica Acta Part B,63 (2008):1216-1220.
    [154]P.Inakollu,T.Philip,A.K.Rai,et al.A Comparative Study of Laser Induced Breakdown Spectroscopy Analysis for Element Concentrations in Aluminum Alloy Using Artificial Neural networks and Calibration Methods.Spectrochimica Acta Part B:Atomic Spectroscopy.64 (2009):94-104.
    [155]M.Kurihara,K.Ikeda,Y.Izawa,et al.Optimal boiler control through real-time monitoring of unburned carbon in fly ash by laser-induced breakdown spectroscopy.Applied Optics,2003,42(30):6159-6165.
    [156]T.X.Phuoc,F.P.White.Laser-induced spark for measurements of the fuel-to-air ratio of a combustible mixture.Fuel,2002,81:1761-1765.
    [157]T.X.Phuoc,F.P.White.Laser ignition and measurement of the fuel-to-air of a turbulent jet diffusion flame.Proceedings of the Heat Transfer Division -Heat Transfer in Energy Systems,Fire and Combustion,2002,372(3):15-18.
    [158]C.D.Angelo,D.Diaz Pace,D.Bertuccelli,et al.Spectroscopic analysis of signals on LIBS experiences:fit of experimental measurements.5th lberoamerican meeting on optics and 8th Latin American meeting on optics,laser,and their applications.Eds:A.O.Marcano,J.L.Paz.Bellingham,WA,2004,Proceedings of SPIE,Vol.5622:1055-1060.
    [159]U.Panne,C.Haisch,M.Clara,et al.Analysis of glass and glass melts during the vitrification process of fly and bottom ashes by laser-induced plasma spectroscopy.Part I:Normalization and plasma diagnostics.Spectrochimica Acta,Part B:Atomic Spectroscopy,53 (1998):1957-1968.
    [160]M.Milan,J.J.Laserna.Diagnostics of silicon plasmas produced by visible nanosecond laser ablation.Spectrochimica Acta Part B,56(2001):275-288
    [161]G.W.Rieger,M.Taschuk,Y.Y.Tsui,et al.Laser induced breakdown spectroscopy with low energy laser pulses.Proceeding of SPIE,Vol 4087:1127-1136
    [162]李澜,陆冠英,张树东等.激光能量对激光诱导Cu等离子体特征辐射强度、电子温度的影响.原子与分子物理学报,2003,20(3):343-346
    [163]J.E.Carranza,D.W.Hahn.Sampling statistics and considerations for single-shot analysis using laser-induced breakdown spectroscopy.Spectrochimica Acta Part B,57(2002):779-790
    [164]Jer-Shing Huang,Ching-Bin Ke,Li-Shing Huang,et al.The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets.Spectrochimica Acta Part B,57(2002):35-48
    [165]李勇,陆继东,林兆祥等.应用激光诱导击穿光谱检测土壤中的铅.应用光学,2008,29(5):789-793.
    [166]孙学信.燃煤锅炉燃烧试验技术与方法.北京:中国电力出版社,2002.
    [167]E Weritz,S.Ryahi,D.Schaurich,et al.Quantitative determination of sulfur content in concrete with laser-induced breakdown spectroscopy.Spectrochimica Acta Part B,60 (2005):1121 - 1131.
    [168]Be'atrice Salle',Jean-Luc Lacour,Evelyne Vors,et al.Laser-Induced Breakdown Spectroscopy for Mars surface analysis:capabilities at stand-off distances and detection of chlorine and sulfur elements.Spectrochimica Acta Part B,59 (2004):1413- 1422.
    [169]E Weritz,D.Schaurich,G.Wilsch.Detector comparison for sulfur and chlorine detection with laser induced breakdown spectroscopy in the near-infrared-region.Spectrochimica Acta Part B,62 (2007):1504-1511.
    [170]谢承利,陆继东,李鹏艳等.激光诱导击穿光谱法分析燃煤的灰成分.工程热物理学报,2009,30(2):329-332.
    [171]M.P.Mateo,G.Nicolas,A.Yan~ez,Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations,Applied Surface Science,254 (2007):868-872.
    [172]M.Gaft,E.Dvir,H.Modiano,et al.Laser Induced Breakdown Spectroscopy machine for online ash analyses in coal.Spectrochimica Acta Part B,63 (2008):1177-1182.
    [173]B.L Chadwick,D.Body,Development and commercial evaluation of laser-induced breakdown spectroscopy chemical analysis technology in the coal power generation industry,Applied Spectroscopy,56 (2002):70-74.
    [174]M.Gaft,I.Sapir-Sofer,H.Modiano,et al.Laser induced breakdown spectroscopy for bulk minerals online analyses,Spectrochimica Acta Part B,62 (2007):1496-1503.
    [175]L.Zhang,L.Dong,H.P.Dou,et al.Laser-induced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions,Applied Spectroscopy,62 (2008):458-463.
    [176]岑可法,姚强,骆仲泱等.高等燃烧学.杭州,浙江大学出版社,2002.12.
    [177]飞思科技产品研发中心.Matlab 6.5辅助神经网络分析与设计.北京:电子工业出版社,2003.1.
    [178]余亮英.激光感生击穿光谱的理论与燃煤应用实验研究.华中科技大学博士研究生学位论文,热能工程专业,2005.6.
    [179]谢承利,陆继东,李捷等.基于激光感生击穿光谱的燃煤结渣特性评估.中国电机工程学报.2007,27(23):24—27.