基于电子鼻和电子舌的羊肉品质检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国已成为羊肉生产和消费大国,于2010年羊肉产量已达到410万吨,占世界羊肉产量的1/3,同时羊肉的消费量年均增长10%。由于产地和消费市场之间的地理差异,羊肉多以冻藏贮藏、运输和分销以调节肉品市场。但冷链条件的不完善造成冻藏肉受到反复解冻和冻结的影响,使其食用品质和经济价值降低。此外,以低价值肉掺入或替代羊肉的现象时有发生,对市场监管问题及消费者的身体健康带来了严重影响,并严重干扰广大穆斯林群众肉类消费和宗教信仰。本文围绕电子鼻和电子舌技术在羊肉品质检测中的应用展开研究。采用电子鼻和电子舌系统检测和识别了羊肉、猪肉、鸡肉、冻融不同次数的羊肉及混入猪肉、鸡肉的掺假羊肉糜样品,实现了电子鼻、电子舌及电子鼻和电子舌联用信号对不同种类样品的区分和识别;建立了羊肉冻融次数和羊肉糜中混入的猪肉、鸡肉含量的有效预测模型。主要结论如下:
     (1)通过单因素方差分析和主成分分析对样品的分类效果,获得电子鼻的较佳检测条件为:样品量10g、顶空体积250mL、载气流速200mL/min和顶空生成时间30min。电子舌检测羊肉浸提液的较佳试验条件为:以100mL0.1mol/L氯化钾溶液浸提15g羊肉糜样品30min获得的羊肉浸提液进行检测。在上述优化的检测条件下,以羊肉、猪肉和鸡肉为样品进行电子鼻和电子舌检测,主成分分析和判别分析结果表明电子鼻、电子舌均具有区分不同种类生肉(猪肉、鸡肉和羊肉)的能力。
     (2)采用电子鼻和电子舌对冻融不同次数的羊肉进行了监测,同时检测了其理化指标(挥发性盐基氮、pH、色度L*值、a*值和b*值)的变化情况。不管是电子鼻、电子舌或两者直接联用的信号,主成分分析和典则判别分析都成功的区分了不同冻融次数的羊肉;以电子鼻、电子舌或两者的联用信号为输入,采用偏最小二乘回归分析、主成分回归分析和多元线性回归分析对羊肉冻融次数和理化指标进行预测,三种回归方法建立的定量预测模型均成功预测了羊肉的冻融次数和理化指标(除b*)。电子鼻、电子舌及其联用信号均能实现对冻融不同次数羊肉的快速鉴别,且能成功预测冻融次数和理化指标:且采用联用信号的判别和预测效果均优于单独采用电子鼻、电子舌单独进行分析结果。
     (3)应用电子鼻、电子舌快速鉴别混入不同比例猪肉、鸡肉的掺假羊肉糜及其浸提溶液。对电子鼻检测信号进行分析时,以判别分析结果的正确率为依据,优化传感器阵列组合方式和特征参数提取(逐步判别分析分析、主成分分析、loading分析)。以优化后参数进行分析时,主成分分析和典则判别分析可成功区分(正确率高达99.17%)不同掺假羊肉样品;采用多元线性回归分析、偏最小二乘回归分析、BP神经网络及主成分回归分析建立掺假羊肉中混入其他成分的含量的定量预测模型时,回归模型的R2>0.9,预测误差均在10%以内。
     对掺假羊肉的电子舌信号进行分析时,主成分分析可以基本能实现对混入不同含量猪肉、鸡肉的掺假羊肉实现区分,典则判别分析的判别结果比主成分分析结果略好。建立的混入猪肉、鸡肉的含量定量预测模型的相关系数R2高达0.99,预测值均方根误差均小于3%,成功预测了掺假羊肉中掺杂物的含量。
     采用电子舌定性判别不同掺假羊肉和定量预测掺假羊肉中混杂其他成分的含量时,其检测效果优于电子鼻
     (4)对掺假羊肉的电子鼻和电子舌响应信号,研究了直接联用、逐步判别分析优选参数、主成分特征提取等方法融合电子鼻和电子舌信号,并对比电子鼻、电子舌及其联用信号的判别和预测效果。发现任一融合了气味和滋味信息的电子鼻和电子舌联用信号方法均能提高掺假羊肉的判别正确率和预测的精度,在此基础上建立了基于联用信号的快速鉴别羊肉掺假和定量预测掺假物含量模型,成功预测了掺假羊肉糜中混入猪肉、鸡肉的含量。
     相比于单一气味或滋味信息的分析,电子鼻和电子舌数据的联用融合了气味和滋味信息,使综合分析的结果更全面,有利于提高区分鉴别的正确率和定量预测模型的有效性。
The production of mutton in China has reached4.1million tons in2010, occupying a third of the world production of mutton. China has been a great nation of mutton production and consumption, with a growing consumption by an average growth rate of10%a year. Mutton is mostly frozen stored, transported and distributed to adjust meat market due to the geographical differences between producer and consumer market. The eating quality and economic value of mutton is greatly affected by the repeated thawing and freezing cycles caused by the imperfect conditions of cold chains in the processing, transportation and distribution process. What's more, Adulteration of meat, involving the replacement of selected breeds, particular geographical region or particular traditional method with other cheaper animal proteins and even none meat proteins (soy proteins), has jeopardized the market regulation and consumers' health, and religion belief of Muslims. Electronic nose and electronic tongue were employed to detect samples of mutton, pork, chicken, mutton with different freeze-thaw cycles, and minced mutton adulterated with different content of pork or chicken. Combined with pattern recognition methods, meat samples were classified according to their origin, and the physicochemical parameters and content of adulterants in minced meat were predicted using predictive models. The main conclusions are as follows:
     With the help of One-way analysis of variance (ANOVA) and principle component analysis (PCA), the optimum experimental parameters were acquired with15g of mutton sample extracted by100mL K.C1solution for electronic tongue,10g sample with30min headspace-generated time in250mL beaker with a flow rate of200mL/min for electronic nose. With the optimized experimental parameters, meat samples of pork, chicken and mutton were detected and analyzed by PCA and canonical discriminant analysis (CDA). Results were obtained that meat of different kinds could be discriminated both by electronic tongue and electronic nose.
     Electronic nose, electronic tongue and physicochemical parameters detection of total volatile basic nitrogen (TVB-N), pH, Color values of L*, a*and b*were employed to monitoring the effect of freeze-thaw cycles on mutton. Mutton samples with different freeze-thaw cycles were successfully differentiated by electronic nose, electronic tongue and their fusion data by PCA and CDA. Cycles of mutton freeze-thawed and the physicochemical parameter (except b*) were effectively predicted by methods of partial least squares regression (PLS), multiple linear regression (MLR) and principle component regression (PCR) using signals of electronic nose, electronic tongue. Electronic nose, electronic tongue and their fusion data have the ability in discrimination of mutton samples with different freeze-thaw cycles and in prediction of Cycles of mutton freeze-thawed and the physicochemical parameter. What's more, better results were obtained by combining of electronic nose and electronic tongue.
     Fast authentication of meat was conducted by electronic nose and electronic tongue on minced mutton adulterated with pork, chicken at levels of0%,20%,40%,60%,80%and100%by weight, respectively. For electronic nose, the false rate and numbers of misclassified samples were used as evaluation criterion to estimate feature extraction methods, Principle component analysis, loading analysis and stepwise linear discriminant analysis (step-LDA) employed to optimize the data matrix of electronic nose. The adulterated mutton samples were successfully discriminated by PCA and CDA using data set extracted by step-LDA with correct accuracy as high as99.17%. Effective predictive models for the pork, chicken content in minced mutton built by PLS, MLR and Back propagation neural network (BPNN) were obtained with R2>0.9, the prediction error within10%.
     For electronic tongue, the adulterated mutton samples were grouped according to their content of chicken with few misclassified samples by means of PCA, and better classification were found by CDA with more samples correctly clustered. Predictive model for the pork, chicken content in minced mutton built by PLS, MLR and LS-SVM were obtained the highest R2of0.99, the lowest prediction error within3%. Adulterated mutton could be discriminated and successfully predicted both by electronic nose and electronic tongue by PLS, MLR and LS-SVM, and better results were obtained by signals of electronic nose.
     Data fusion methods were explored for integration of smell and taste information of minced mutton adulterated with pork and chicken obtained by electronic nose and electronic tongue by methods of combination of signals of electronic nose and electronic tongue data, normalization, data extraction by step-LDA and principle component analysis. The accuracy rate of discrimination and precision of prediction were all improved by the fusion of electronic nose and electronic tongue data.
     Integration of smell and taste information made the combination use of electronic nose and electronic tongue generating overall and comprehensive results of mutton samples, improving the identification accuracy and the validity of the quantitative prediction model.
引文
[1]Jia Zhang, Xiaoshuan Zhang, Lorena Dediu, et al. Review of the current application of fingerprinting allowing detection of food adulteration and fraud in China[J]. Food Control,2011, 22(8):1126-1135.
    [2]阿依木古丽,蔡勇,等.冻融对早胜牛肉品质及微细结构的影响[J].畜牧兽医学报,2011,42(3):375-380.
    [3]余小领,李学斌,闫利萍,等.不同冻结和解冻速率对猪肉保水性和超微结构的影响[J].农业工程学报,2007,23(8):261-265.
    [4]Farag K W, Lyng J G, Morgan D J, et al. Effect of low temperatures (-18 to+5℃癈) on the texture of beef lean[J]. Meat science,2009,81(1):249-254.
    [5]韩敏义,刘志勤,刘岳,等.反复冻融对鸡肉品质的影响[J].江苏农业学报,2013,(1):167-171.
    [6]冉俊,李凤.反复冻融对猪肉品质特性的影响[J].农业科技与信息,2012,(8):26-28.
    [7]李玫,李苗云,赵改名,等.冻融循环下鸡肉品质变化的低场核磁共振研究[J].食品科学,2013,34(11):58-61.
    [8]李金平,李春保,徐幸莲,等.反复冻融对牛外脊肉品质的影响[J].江苏农业学报,2010,26(002):406-410.
    [9]黄鸿兵,徐幸莲,周光宏.冷冻贮藏过程中温度波动对猪肉肌间冰晶、颜色和新鲜度的影响[J].食品科学,2006,27(8):49-53.
    [10]Sigurgisladottira S, Ingvarsdottira H, Torrissenb O J, et al. Effects of freezing/thawing on the microstructure and the texture of smoked Atlantic salmon (Salmosalar)[J]. Food Research International,2000,33(857):865.
    [11]Wang H, Luo Y, Shi C, et al. Effect of different thawing methods and multiple freeze-thaw cycles on the quality of common carp (Cyprinuscarpio)[J]. Journal of Aquatic Food Product Technology, 2013, DOI:10.1080/10498850.2013.763884
    [12]Guo Y, Kong B, Xia X, et al. Changes in physicochemical and protein structural properties of common carp (Cyprinuscarpio) muscle subjected to different freeze-thaw cycles[J]. Journal of Aquatic Food Product Technology,2013, DOI:10.1080/10498850.2012.741663.
    [13]Norman J L, Berg E.P, Heymann H. et al. Pork loin color relative to sensory and instrumental tenderness and consumer acceptance [J]. Meat Science,2003,65:927-933.
    [14]周炜,李小昱,王为等.基于机器视觉的猪肉新鲜度无损检测方法的研究[A].“第二届国际计算机及计算技术在农业中的应用研讨会”暨“第二届中国农村信息化发展论坛”论文集;2008
    [15]袁芳,郭培源,吴浩,等.猪肉新鲜度检测方法发展的文献综述[J].中国农业科技导报,2009,11(S1):72-74
    [16]彭涛,许建平,付童生,等.电导率测定对猪肉新鲜度的判定[J].黑龙江畜牧兽医,1997,10:8-9.
    [17]韩晓雷,杨增.测定牛肉pH值对其新鲜度判定应用研究[J].黑龙江畜牧科技,1998,3:1-1.
    [18]许益民.肌肉pH值变化在肉检中的应用[J].中国畜牧兽医,1983,5:24-26.
    [19]王登临,兀征,杨红岩,等.猪肉新鲜度与微生物学指标的相关性研究[J].甘肃畜牧兽医,1999,4:18-18.
    [20]刘万臣,唐晓敏,崔建华,等.应用等电聚焦电泳鉴别动物肉种类的研究[J].中国兽医学报,1993,13(2):177-179.
    [21]Rencova E, Svoboda I, Necidova L. Identification by ELISA of poultry, horse, kangaroo, and rat muscle specific proteins in heat-processed products[J]. VeterinarniMedicina,2000,45(12): 353-356.
    [22]Asensio, L., Gonzalez, I., Garcia, T., Martin, R., Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA) [J].Food Control,2008,19(1),1-8.
    [23]宋君,雷绍荣,郭灵安,等.DNA指纹技术在食品掺假、产地溯源检验中的应用[J].安徽农业科学,2012,40(6):326-3228,3233.
    [24]Chen S Y, Liu Y P, Yao Y G. Species authentication of commercial beef jerky based on PCR-RFLP analysis of the mitochondrial 12S rRNA gene[J]. Journal of Genetics and Genomics, 2010,37(11):763-769.
    [25]高琳.应用PCR-RFLP技术鉴别肉制品中的原料肉种类[D].南京农业大学,2007.
    [26]Che Man Y B, Aida A A, Raha A R, et al. Identification of pork derivatives in food products by species-specific polymerase chain reaction (PCR) for halal verification[J]. Food Control,2007, 18(7):885-889.
    [27]Ghovvati, S., Nassiri, M.R., Mirhoseini, S., Moussavi, A.H., Javadmanesh, A., Fraud identification in industrial meat products by multiplex PCR assay[J].Food Control,2009,20(8),696-699.
    [28]Rodriguez, M.A., Garcia, T., Gonzalez, I., Hernandez, P.E., Martin, R., TaqMan real-time PCR for the detection and quantitation of pork in meat mixtures[J].Meat Science,2005,70(1),113-120.
    [29]Nurjuliana, M., Che Man, Y.B., Mat Hashim, D., Mohamed, A.K.S., Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer[J].Meat Science,2011,88(4),638-644.
    [30]Chou, C.C., Lin, S.P., Lee, K.M., Hsu, C.T., Vickroy, T.W., Zen, J.M., Fast differentiation of meats from fifteen animal species by liquid chromatography with electrochemical detection using copper nanoparticle plated electrodes[J]. Journal of Chromatography B,2007,846(1-2),230-239.
    [31]Meza-Marquez, O.G., Gallardo-Velazquez, T., Osorio-Revilla, G., Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef[J]. Meat Science,2010,86(2),511-519.
    [32]Rohman, A., Sismindari, Erwanto, Y., Man, Y.B.C., Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy [J]. Meat Science,2011,88(1),91-95.
    [33]Sacco, D., Brescia, M.A., Buccolieri, A., Jambrenghi, A.C., Geographical origin and breed discrimination of Apulian lamb meat samples by means of analytical and spectroscopic determinations[J]. Meat Science,2005,71(3),542-548.
    [34]Zhang, N., Zhang, D., Li, S., Li, Q., Preliminary study on origin traceability of mutton by near infrared reflectance spectroscopy coupled with SIMCA method[J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24(12),309-312.
    [35]Cozzolino, D., Murray, I., Identification of animal meat muscles by visible and near infrared reflectance spectroscopy[J]. LWT-Food Science and Technology,2004,37(4),447-452.
    [36]Persaud K C, Khaffaf S M, Payne J S, et al. Sensor array techniques for mimicking the mammalian olfactory system[J]. Sensors and Actuators B:Chemical,1996,36(1/3):236-273.
    [37]Zhang, H., Wang, J., Tian, X., Yu, H., Yu, Y., Optimization of sensor array and detection of stored duration of wheat by electronic nose [J].Journal of Food Engineering,2007,82(4),403-408.
    [38]Hai, Z., Wang, J., Electronic nose and data analysis for detection of maize oil adulteration in sesame oil [J]. Sensors and Actuators B:Chemical,2006,119(2),449-455.
    [39]Arnold J W, Senter S D. Use of digital aroma technology and SPME GC-MS to compare volatile compounds produced by bacteria isolated from processed poultry[J]. Journal of the Science of Food and Agriculture,1998,78(3):343-348.
    [40]Wang Danfeng, Wang Xichang, Liu Taiang, et al. Prediction of total viable counts on chilled pork using an electronic nose combined with support vector machine[J]. Meat Science,2012,90(2): 373-377.
    [41]王丹凤,王锡昌,刘源,等.电子鼻分析猪肉中负载的微生物数量研究[J].食品科学,2010,31(6):148-150.
    [42]Rajamaki T, Alakomi H,Ritvanen T, et al. Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat[J]. Food Control,2006,17(1):5-13.
    [43]石志标,佟月英,陈东辉,等.牛肉新鲜度的电子鼻检测技术[J].农业机械学报,2009,40(11):184-188.
    [44]Zhang Zhe, Tong Jin, Chen Donghui, et al. Electronic nose with an air sensor matrix for detecting beef freshness[J]. Journal of Bionic Engineering,2008,5(1):67-73.
    [45]Panigrahi S, Balasubramanian S, Gu H, et al. Design and development of a metal oxide based electronic nose for spoilage classification of beef[J]. Sensors and Actuators B-Chemical,2006, 119(1):2-14.
    [46]Blixt Y,Borch E. Using an electronic nose for determining the spoilage of vacuum-packaged beef[J]. International Journal of Food Microbiology,1999,46(2):123-134.
    [47]Limbo S, Totti L, Sinelli N, et al. Evaluation and predictive modeling of shelf life of minced beef stored in high-oxygen modified atmosphere packaging at different temperatures[J]. Meat Science, 2010,84(1):129-136.
    [48]孙钟雷,电子鼻技术在猪肉新鲜度识别中的应用[J].肉类研究,2008,22(2):50-53.
    [49]顾赛麒,王锡昌,刘源,等.电子鼻检测不同贮藏温度下猪肉新鲜度变化[J].食品科学,2010,31(6):172-176.
    [50]肖虹,谢晶.基于电子鼻技术判定冷却猪肉新鲜度[J].食品与发酵工业,2010,36(7):169-172.
    [51]洪雪珍,王俊,周博,等.猪肉储藏时间的电子鼻区分方法[J].浙江大学学报:农业与生命科学版,2010,36(5):568-572.
    [52]洪雪珍,王俊.基于逐步判别分析和BP神经网络的电子鼻猪肉储藏时间预测[J].传感技术学报,2010,23(10):1376-1380.
    [53]Musatov VY, Sysoev V V, Sommer M, et al. Assessment of meat freshness with metal oxide sensor microarray electronic nose:A practical approach[J]. Sensors and Actuators B:Chemical, 2010,144(1):99-103.
    [54]Vestergaard JS, Martens M, Turkki P. Analysis of sensory quality changes during storage of a modified atmosphere packaged meat product (pizza topping) by an electronic nose system [J]. Lwt-Food Science and Technology,2007,40(6):1083-1094.
    [55]VestergaardJS, Martens M, Turkki P,Application of an electronic nose system for prediction of sensory quality changes of a meat product (pizza topping) during storage[J]. LWT-Food Science and Technology,2007,40(6):1095-1101.
    [56]常志勇.仿生电子鼻设计及其在鸡肉品质检测中的应用[D].长春:吉林大学,2008
    [57]王曼,王振宇,马长伟.基于电子鼻的不同去势猪肉风味品质评价[J].肉类研究,2009,23(12):45-49.
    [58]Tikk K, Haugen J, Andersen H J, et al. Monitoring of warmed-over flavour in pork using the electronic nose-correlation to sensory attributes and secondary lipid oxidation products[J]. Meat Science,2008,80(4):1254-1263.
    [59]Garcia M, Aleixandre M, Gutierrez J, etal. Electronic nose for ham discrimination[J]. Sensors and Actuators B-Chemical,2006,114(1):418-422.
    [60]Santos JP, Garcia M, Aleixandre M, et al.Electronic nose for the identification of pig feeding and ripening time in Iberian hams [J]. Meat Science,2004,66(3):727-732.
    [61]O'Sullivan MG., Byrne D V, Jensen M T, Andersen H.J., estergaard J.V. A comparison of warmed-over flavour in pork by sensory analysis, GC/MS and the electronic nose[J]. Meat Science, 2003,65(3):1125-1138.
    [62]贾洪锋,卢一,何江红,等.肉类电子鼻识别模型的建立[J].食品与机械,2011,27(3):96-99.
    [63]李颖康,马吉锋,梁小军,等.应用电子鼻鉴别不同绵羊和山羊品种相同部位的羊肉研究[J].安徽农业科学,2012,40(27):113392-13396,13515.
    [64]邓少平,田师一.电子舌技术背景与研究进展[J].食品与生物技术学报,2007,26(4):110-116.
    [65]Kiyoshi Toko, Electronic tongue [J], Biosensors & Bioelectronics,1998,12:710-709.
    [66]韩剑众,黄丽娟,顾振宇,等.基于电子舌的肉品品质及新鲜度评价研究[J].中国食品学报,2008,8(3):125-132.
    [67]韩剑众,黄丽娟,顾振宇.基于电子舌的鱼肉品质及新鲜度评价[J].农业工程学报,2008,24(12):141-144.
    [68]Luis Gil, Jose M. Barat, Isabel Escriche, etal. An electronic tongue for fish freshness analysis using a thick-film array of electrodes [J].MicrochimActa,2008,163:121-129.
    [69]Luis Gil, Jose M. Barat, Eduardo Garcia-Breijo, etal. Fish freshness analysis using metallic potentiometric electrodes[J].Sensors and Actuators B,2008,131:362-370.
    [70]Luis Gil, Jose M Barat, Diana Baigts, etal.Monitoring of physical-chemical and microbiological changes in fresh pork meat under cold storage by means of a potentiometric electronic tongue[J]. Food Chemistry,2011,126:1261-1268.
    [71]Roberto H, Labrador, Rafael Masot, Miguel Alcaniz, et al. Prediction of NaCl, nitrate and nitrite contents in minced meat by usinga voltammetric electronic tongue and an impedimetric sensor [J]. Food Chemistry,2010,122:864-870.
    [72]InmaculadaCampos, Rafael Masot, Miguel Alcaniz, et al., Accurate concentration determination of anions nitrate, nitrite and chloride in minced meat using a voltammetric electronic tongue[J]. Sensors and Actuators B-Chemical,2010,149:71-78.
    [30]Chi-Chung Chou, Show-Ping Lin, Kuo-Ming Lee, et al., Fast differentiation of meats from fifteen animal species byliquid chromatography with electrochemical detectionusing copper nanoparticle plated electrodes[J] Journal of Chromatography B,2007,846:230-239.
    [73]黄丽娟.肉品品质的电子舌评价研究[D].浙江:浙江工商大学,2008,40-56.
    [74]王鹏,张岩,徐幸莲,等.应用电子舌区分不同原料鸡肉加工的产品[J],中国农业工程学会2011年学术年会论文集,2011.
    [75]Legin A,Rudnitskaya A, Seleznev B, et al. Recognition of liquid and flesh food using an'electronic tongue'[J]. International Journal of Food Science and Technology,2002,37:375-385.
    [76]Yu-binLan, Shi-zhou Wang, Yong-guang Yin, et al.Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass[J].Journal of Bionic Engineering, 2008,5(3):239-246.
    [77]GB/T 5009.44.肉与肉制品卫生标准的分析方法[S].2003.
    [78]GB/T 2707-2005.鲜(冻)畜肉卫生标准[S].2005.
    [79]GB/T 9695.5-2008.肉与肉制品pH测定[S].2008.
    [80]Persaud K C, Khaffaf S M, Payne J S, et al. Sensor array techniques for mimicking the mammalian olfactory system[J]. Sensors and Actuators B:Chemical,1996,36(1/3):236-273.
    [81]陈德钊.多元数据处理[M].化学工业出版社,1998,124-142.
    [82]于慧春,王俊.电子鼻技术在茶叶品质检测中的应用研究[J].传感技术学报,2008,21(5):748-752.
    [83]殷勇,田先亮.基于PCA与Wilks准则的电子鼻酒类鉴别方法研究[J].仪器仪表学报,2007,28(5):849-852.
    [84]徐亚丹,王俊,赵国军.检测掺假牛奶的电子鼻传感器阵列的优化[J].传感技术学报,2006,19(4):957-962.
    [85]庞旭欣,郑丽敏,朱虹,等.电子鼻对不同存储时间纯牛奶的检测分析[J].传感器与微系统,2012,31(9):67-70.
    [86]周鹏,张小刚,徐彪,等.基于高光谱的南疆红枣病虫害特征谱段选择模式[J].江苏农业科学,2013,41(4):108-111.
    [87]任雪松,于秀林.多元统计分析[M],北京:中国统计出版社,2011,156-179.
    [88]宋淑钦,张艳,方丽珊,等.应用Bayes判别分析异位妊娠的早期诊断[J].医学综述,2012,18(23):4095-4097.
    [89]洪雪珍,王俊.基于逐步判别分析和BP神经网络的电子鼻猪肉储藏时间预测[J].传感技术学报,2010,23(010):1376-1380.
    [90]程绍明,王俊,王永维,等.基于电子鼻技术的番茄苗早疫病病害快速检测研究[J].科技通报,2013,29(7):68-71.
    [91]程绍明,王俊,王永维,等.基于电子鼻信号判别番茄苗机械损伤程度[J].农业工程学报,2012,28(15):102-106.
    [92]秦璐,许自成,戴亚,等.逐步判别分析在烤烟产地鉴定中的应用[J].江西农业学报,2009,21(11):13-16.
    [93]Borin A. M arco Fl ores Ferr-ao, Cesar M ello, et al. Least-squares support vector m achines and near infrared spectroscopy for quantification of com mon adulterants in powdered milk [J]. Analytica Chimica Acta,2006,579:25-32.
    [94]杨宁.支持向量机在感官评估中的应用研究[D]青岛:中国海洋大学,2004.
    [95]陆璇.实用多元统计分析[M].北京:清华大学出版社,2001.
    [96]陈德钊.多元数据处理[M].化学工业出版社,1998.
    [97]刘罗曼.用主成分回归分析解决回归模型中复共线性问题[J].沈阳师范大学学报:自然科学版,2008,26(1):42-44.
    [98]舒晓惠,刘建平.利用主成分回归法处理多重共线性的若干问题[J].统计与决策,2004,10:25-26.
    [99]黄懿,李小昱,王为,等.多源信息融合技术的猪肉新鲜度检测方法研究[J].湖北农业科学,2011,50(12):2536-2540.
    [100]洪雪珍,王俊,周博,等.猪肉储藏时间的电子鼻区分方法[J].浙江大学学报:农业与生命科学版,2010,36(5):568-572.
    [101]常志勇.仿生电子鼻设计及其在鸡肉品质检测中的应用[D]长春:吉林大学,2008.
    [102]张虹艳.电子鼻技术对鸡肉、鸡蛋、羊奶贮藏时间的快速检测[D].西北农林科技大学,2012.
    [103]海铮.基于电子鼻的牛肉新鲜度检测[D].浙江省杭州市,浙江大学,2006.
    [104]贾洪锋,卢一,何江红,等.肉类电子鼻识别模型的建立[J].食品与机械,2011,27(3):96-99.
    [105]贾洪锋,卢一,何江红,等.电子鼻在牦牛肉和牛肉猪肉识别中的应用[J].农业工程学报,2011,27(5):358-363.
    [106]李颖康,马吉锋,梁小军,等.应用电子鼻鉴别不同绵羊和山羊品种相同部位的羊肉研究[J].安徽农业科学,2012,40(27):13392-13396,133515.
    [107]辛松林,李诚,肖岚,等.基于电子鼻的黑胡椒鸭胸肉调理产品品质评价[J].食品科学, 2012,33(008):191-194.
    [108]Haugen J E, Lundby F, Wold J P, et al. Detection of rancidity in freeze stored turkey meat using a commercial gas-sensor array system[J]. Sensors and Actuators B:Chemical,2006,116(1):78-84.
    [109]王霞,徐幸莲,王鹏.基于电子舌技术对鸡肉肉质区分的研究[J].食品科学,2012,33(21):100-103.
    [110]韩剑众.猪肉生鲜品质的控制与评价方法研究[D].浙江工商大学博士学位论文,2008.
    [111]Labrador R H, Masot R, Alcaniz M, et al. Prediction of NaCl, nitrate and nitrite contents in minced meat by using a voltammetric electronic tongue and an impedimetric sensor[J]. Food Chemistry,2010,122(3):864-870.
    [112]Lan Y, Wang S, Yin Y, et al. Using a Surface Plasmon Resonance Biosensor for Rapid Detection of Salmonella Typhimurium in Chicken Carcass[J]. Journal of Bionic Engineering,2008,5(3): 239-246.
    [113]Han F, Huang X, Teye E, et al. Nondestructive detection of fish freshness during its preservation by combining electronic nose and electronic tongue techniques in conjunction with chemometric analysis[J]. Analytical Methods,2014,6(2):529-536.
    [114]GB/T 9695.5-2008/ISO 2917:1999,肉与肉制品pH测定[S].
    [115]黄丽娟.肉品品质的电子舌评价研究[D].浙江:浙江工商大学,2008,40-56.
    [116]戚军,高菲菲,李春保,等.低场NMR研究冻融过程中羊肉持水力的变化[J].江苏农业学报,2010,26(3):617-622.
    [117]中华人民共和国国家质量监督检验检疫总局.GB/T 9961.鲜、冻胴体羊肉.北京:中国标准出版社,2008-08-12.
    [118]李金平.冷藏时间和反复冻融对牛肉品质影响的研究[D].南京农业大学,2009.
    [119]Bonne, K., Verbeke, W., Muslim consumer trust in halal meat status and control in Belgium[J]. Meat Science,2008,79(1),113-123.
    [120]Rodriguez, M.A., Garcia, T., Gonzalez, I., Hernandez, P.E., Martin, R., TaqMan real-time PCR for the detection and quantitation of pork in meat mixtures[J]. Meat Science,2005,70(1),113-120.
    [121]Chen, S.Y., Liu, Y.P., Yao, Y.G., Species authentication of commercial beef jerky based on PCR-RFLP analysis of the mitochondrial 12S rRNA gene[J]. Journal of Genetics and Genomics 2010,37(11),763-769.
    [122]Ghowati, S., Nassiri, M.R., Mirhoseini, S., Moussavi, A.H., Javadmanesh, A., Fraud identification in industrial meat products by multiplex PCR assay[J]. Food Control,2009,20(8), 696-699.
    [123]Man, Y.B.C., Aida, A.A., Raha, A.R., Son, R., Identification of pork derivatives in food products by species-specific polymerase chain reaction (PCR) for halal verification[J]. Food Control,2007 18(7),885-889.
    [124]Asensio, L., Gonzalez, I., Garcia, T., Martin, R., Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA) [J]. Food Control,2008,19(1),1-8.
    [125]Meza-Marquez, O.G., Gallardo-Velazquez, T., Osorio-Revilla, G., Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef [J]. Meat Science.2010,86(2),511-519.
    [126]Sacco, D., Brescia, M.A., Buccolieri, A., Jambrenghi, A.C., Geographical origin and breed discrimination of Apulian lamb meat samples by means of analytical and spectroscopic determinations[J]. Meat Science,2005,71(3),542-548.
    [127]Zhang, N., Zhang, D., Li, S., Li, Q., Preliminary study on origin traceability of mutton by near infrared reflectance spectroscopy coupled with SIMCA method[J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24(12),309-312.
    [128]Cozzolino, D., Murray, I., Identification of animal meat muscles by visible and near infrared reflectance spectroscopy[J]. LWT-Food Science and Technology,2004,37(4),447-452.
    [129]Rohman A, Erwanto Y, Che Man Y B. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy [J]. Meat Science,2011,88(1):91-95.
    [130]Meza-Marquez O G, Gallardo-Velazquez T, Osorio-Revilla G. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef[J]. Meat Science,2010,86(2):511-519.
    [131]杨志敏.应用近红外光谱技术快速检测原料肉新鲜度及掺假的研究[D].陕西:西北农林科技大学,2011:18-44.
    [132]Zhang Zhe, Tong Jin, Chen Donghui, et al. Electronic Nose with an Air Sensor Matrix for Detecting Beef Freshness [J]. Journal of Bionic Engineering,2008,5(1):67-73.
    [133]Limbo S., Totti L., Sinelli N., et al. Evaluation and Predictive Modeling of Shelf Life of Minced Beef Stored in High-oxygen Modified Atmosphere Packaging at Different Temperatures[J]. Meat Science,2010,84(1):129-136.
    [134]王曼,王振宇,马长伟.基于电子鼻的不同去势猪肉风味品质评价[J].肉类研究,2009,23(12):45-49.
    [135]Wang Danfeng, Wang Xichang, Liu Taiang, et al. Prediction of Total Viable Counts on Chilled Pork Using an Electronic Nose Combined with Support Vector Machine[J]. Meat Science,2012, 90(2):373-377.
    [136]王丹凤,王锡昌,刘源,等.电子鼻分析猪肉中负载的微生物数量研究[J].食品科学,2010,31(6):148-150.
    [137]Garcia, M., Aleixandre, M., Gutierrez, J., Horrillo, M.C. Electronic nose for ham discrimination [J]. Sensors and Actuators B:Chemical,2006,114(1),418-422.
    [138]南庆贤.肉类工业手册[M].中国轻工业出版社,2003.
    [139]汪敏,赵晔.电子鼻和电子舌在鱼肉鲜度评价中的应用研究[J].肉类研究,2009,6:63-65
    [140]周映霞,武海.电子鼻及其在肉品感官评定中的应用[J].肉类研究,2009,8:55-58.
    [141]王鹏,张岩,徐幸莲,等.应用电子舌区分不同原料鸡肉加工的产品[J].中国农业工程学会2011年学术年会论文集,2011.
    [142]Rodriguez-Mendez M L, Arrieta A A, Parra V, et al. Fusion of three sensory modalities for the multimodal characterization of red wines [J]. Sensors Journal, IEEE,2004,4(3):348-354.
    [143]Apetrei C, Apetrei I M, Villanueva S, et al. Combination of an e-nose, an e-tongue and an e-eye for the characterisation of olive oils with different degree of bitterness[J]. Analytica chimica acta, 2010,663(1):91-97.
    [144]Cosio M S, Ballabio D, Benedetti S, et al. Evaluation of different storage conditions of extra virgin olive oils with an innovative recognition tool built by means of electronic nose and electronic tongue[J]. Food Chemistry,2007,101(2):485-491.