大豆油在不同煎炸体系中的特征理化性质的变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了大豆油在180℃下加热、煎炸面团和煎炸鸡胸肉这三种煎炸体系中的特征性理化性质,包括煎炸油脂的颜色、黏度、脂肪酸组成及其含量、挥发性成分及其含量、红外指纹图谱和组分分子量分布的变化情况;探讨了产生这些代表性产物的可能的化学反应途径。
     油样的颜色和黏度分别采用色差仪和流变仪进行测定。三种处理过程中油样的颜色变化分别是:由浅黄色变为深黄色;浅黄色变为红黄色和浅黄色变为深黑色。三种处理过程中油样的黏度变化是:由新鲜大豆油的0.052Pa.s分别增大到油样7-8h时的0.142、0.312和0.146Pa.s。
     油样的脂肪酸组成采用GC-MS进行分析。脂肪酸变化在不同的处理下呈现出显著的差异。食物组分的引入加剧了大豆油中的多不饱和脂肪酸在高温下的氧化分解,其中鸡胸肉成分导致的多不饱和脂肪酸减少程度更大,这与鸡胸肉中脂肪含量相对较高有关。
     油样中挥发性成分采用SPME-GC-MS进行定性和定量分析。加热时大豆油的挥发性成分包括烷烃、烯烃、炔烃、醇、醛、酮和其他类物质,其中醛类含量最多。煎炸面团时,大豆油中红挥发性成分的数量减少、相对含量降低。煎炸鸡胸肉时,大豆油中的挥发性成分含量相对较低,尤其是醛类物质,同时在油样中检出了含氮物质。三种热处理过程中都检出了邻苯二甲酸酯类,这可能是大豆油多不饱和脂肪酸热氧化分解反应产物的反应产物。
     对油样红外图谱进行处理,含有O-H、C=C、C-H、C=O和C-O键的基本成分在三种处理过程中的含量随时间的变化都得到了很好的描述性分析。利用图谱所包含的全部信息,结合聚类和判别分析,对合格玉米油、花生油、菜籽油和大豆油掺入煎炸废油进行了良好的定性分析。通过分析代表性吸收波段间的峰面积比和其波数随掺入比例的变化规律,得到四种掺假方式在这两个参数下的检测限分别为6.6、7.3、5.1、4.3与8.3、9.1、7.4和5.7%。
     大豆油组分的分子量采用MALDI-TOF-MS进行分析,质谱图呈现三个明显的分布区域。A区(m/z853~1001)代表甘油三酯及其氧化单体。B区(m/z613-853)主要代表甘油二酯及其氧化单体、氧化甘油二酯与小分子分解产物的化合产物。C区(m/z1001~2907)主要代表甘油三酯二聚体及其氧化单体、氧化甘油三酯二聚体与小分子分解产物的化合产物、甘油三酯三聚体及其氧化单体。在三种处理下,油样的分子量呈现出不同的分布情况。
     大豆油组分在三种处理中发生的变化主要是不饱和甘油三酯的含量降低,生成含量逐渐增多的小分子酸类、挥发性成分、甘油二酯及其氧化单体、氧化甘油三酯单体、甘油三酯二聚体及三聚体等。食物组分的引入加剧了高温作用下发生的化学反应强度,促使甘油三酯含量减少、产物含量增多。煎炸鸡胸肉的情况比煎炸面团时表现出数量更多的产物及更为复杂的化学反应。
     基于所检测的产物种类和结构类型,大豆油在煎炸食物过程中发生的主要化学反应为不饱和甘油三酯的氧化分解反应,其次是水解反应、热聚合反应、美拉德反应和焦糖化反应。具体的化学反应类型有自由基反应、官能团位置异构化、立体异构化、环氧化和环化、缩合及协同反应等,其中自由基反应是最主要的化学反应。
The changes of color, viscosity, fatty acids and volatile compounds composition and their amounts, the infrared spectra and the component molecular distributions of the soybean oil (SO) heated or fried with wheat dough (WD) and chicken breast meat (CBM) at180℃were comparatively analyzed in this study. The proposed production reaction mechanisms of these typical products found during the treatment were also investigated according the yeilds and the molecular structures of these products.
     The color and viscosity of the treated oil samples were determined by colorimeter and rheometer, respectively. The color of the heated, WD-fried and CBM-fried SO were changed from pale yellow to deep yellow, reddish yellow and aterrimus, respectively, as the processing time increased. After the treatment of7days and8h/day, the viscosities of the heated, WD-fried and CBM-fried SO sample were increased from0.052Pa.s of the fresh SO to0.142,0.312and0.146Pa.s, respectively.
     The fatty acid (FA) profiles were detected by GC-MS. The changes in amount of the FAs were different under the different frying ways. The introduction of the food components increased the intensity of the oxidation occurred in the polyunsaturated FAs. The impact on the changes of FAs resulted from the constituents of CBM was the most significant, which was related with the relative high content of fat contained in CBM.
     SPME-GC-MS was used to isolate and investigate the volatile compounds in the headspase of the oil samples. A series of alkanes, alkenes, alkynes, alcohols, aldehydes, ketones and the other type of compounds were found in the heated SO samples. Aldehydes were the main volatile compound from the viewpoint of relative concentration. The number of the volatile compounds was reduced and the relative conteration of the volatile compounds were lower in the WD-fried SO samples compared to those in the heated SO samples. The concentrations of the detected typical volatile compounds (especially the aldehydes) found in the CBM-fried SO samples were the lowest among the three frying ways. However, the nitrogen-containing volatile compounds were only found in the CBM-fried SO samples. Phthalates which might be the reaction products of the oxidative decomposition products derived from the polyunsaturated FAs were found in relative low concentration in all the treated SO samples.
     The contents of the basic components with O-H, C=C, C-H, C=O, and C-O bonds were well descriptively analyzed with the proceeding of the heating and food deep-frying by thoroughly proceesing the FTIR spectra of the treated oil samples. By combining the whole imformation contained in the FTIR spectra and the cluster and discriminant analysis, the qualified corn oil, peanut oil, rapeseed oil and SOs adulterated with the used frying oil were all well quanlititively analyzed. Furthermore, by using the varying patterns of the area ratio (A19/A20) and the wavenumber shift of the typical bond (band19) along with the increace of the mixed proportion of used frying oil, the limit of detections (LODs) of the four adulteration situations were6.6,7.3,5.1,4.3and8.3,9.1,7.4,5.7%under the two parameters, respectively.
     MALDI-TOF-MS was used to study the molecular distribution of the constituents of the treated SO samples. Three districts of the molecular distribution named as District A, District B and District C were clearly shown from m/z600to3000for the constituents of the treated SO samples. Constituents in the District A (m/z853-1001) included the triacylglycerols (TAG) and their oxidation monomers (oxidized TAG). Constituents in the District B (m/z613-853) included the diacylglycerols (DAG) and their oxidation monomers (Oxidized DAG) and the combined compounds between the oxidized DAG and the small-molecular-weaght decomposition compounds produced from the thermaloxidation of the unsaturated TAGs. Constituents in the District C (m/z1001-2907) included the TAG dimers and their oxidation products (oxidized TAG dimers), the combined compounds between the oxidized TAG dimers and the small-molecular-weaght decomposition compounds, the TAG trimers and their oxidation products (oxidized TAG trimers) and so on. Different molecular distribution patterns were shown under the condition of different frying systems.
     The constituents of SO were changed significantly during the heating and food frying process. The content of the polyunsaturated TAGs was significantly decreased. Consequently, the concentrations of the small-molecular-weight acids, volatile compounds, DAGs, oxidized DAGs, oxidized TAGs, TAG dimers, and TAG trimers were correspondingly increased. The introduction of the food components intensified the chemical reactions occurred under the conditions of high temperature and prompted the decrease in content of the TAGs and the increase in amount and concentration of these products. More products and more complex reactions were found in the CBM-fried SO samples than those in the WD-fried SO samples.
     According to the types and structure features of the products, the main chemical reaction occurred during the heating and food frying of SO is oxidation decomposition of TAGs. In addition, hydrolysis, thermal polymerization, Maillard reation and caramelization were also found during these frying ways. The specific chemical reaction type include free radical action, Location of heterogeneous reaction and stereoisomerism of the functional groups (such as C=C bonds), epoxidation, cyclization, concerted reaction, and condensation reaction and so on.
引文
[1]Gunstone F. D., Harwood J. L., Dijkstra A. J. The Lipid Handbook (3rd Edition). CRC Press, Taylor & Francis Group,2007.37-141
    [2]Production, Supply and Distribution Online:http://apps.fas.usda.gov/psdonline/psdHome.aspx
    [3]Phan A. N., Phan T M. Biodiesel production from waste cooking oils. Fuel,2008,87(17-18): 3490-3496
    [4]Kullarni M G, Dalai A. K. Waste cooking oil-Aneconomical source for biodiesel:A review. Industrial & Engineering Chemistry Research,2006,45(9):2901-2913
    [5]中国新闻网, 每年有一半废油回流餐桌 回收无力难进加油站:http://www.chinanews.com/cj/2011/09-27/3357040.shtml
    [6]张根旺.油脂化学.北京:中国财政经济出版社,1999
    [7]Moreau R. A., Whitaker B. D., Hicks K. B. Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Progress in Lipid Research, 2002,41(6):457-500
    [8]Verleyen, T., Sosinska U., Ioannidou S., et al. Influence of the vegetable oil refining process on free and esterified sterols. Journal of the American Oil Chemists'Society,2002,79(10):947-953
    [9]Dutta P. C. Studies on phytosterol oxides. Ⅱ:Content in some vegetable oils and in French fries prepared in these oils. Journal of the American Oil Chemists'Society,1997,74(6):659-666
    [10]Aluyor E. O., Ori-Jesu M. The use of antioxidants in vegetable oils-A review. African Journal of Biotechnology,2008,7(25):4836-4842
    [11]Sherwin,1976, Antioxidants for vegetable oils. Journal of the American Oil Chemists'Society, 1976,53(6):430-436
    [12]Barrera-Arellano D., Ruiz-M6ndez V., Velasco J. Loss of tocopherols and formation of degradation compounds at frying temperatures in oils differing in degree of unsaturation and natural antioxidant content. Journal of the Science of Food and Agriculture,2002,82(14):1696-1702
    [13]Rossell J. B. Frying:Improving quality. Woodhead Publishing Limited and CRC Press,2001
    [14]Choe, E., Min, D. B. Chemistry of deep-fat frying oils. Journal of Food Science,2007,72(5): R77-R86
    [15]Saguy, I. S., Dana, D. Integrated approach to deep fat frying:engineering, nutrition, health and consumer aspects. Journal of Food Engineering,2003,56(2-3):143-152
    [16]Frankel E. N. Review. Recent advances in lipid oxidation. Journal of the Science of Food and Agriculture,1991,54(4):495-511
    [17]Chang S. S., Peterson R. J., Ho C. T. Chemical-reactions involved in deep-fat frying of foods. Journal of the American Oil Chemists'Society,1978,55(10):718-727
    [18]Paul S., Mittal G. S., Chinnan M. S. Regulating the use of degraded oil/fat in deep-fat/oil food frying. Critical Reviews in Food Science and Nutrition,1997,37(7):635-662
    [19]Bastida S., Sanchez-Muniz F. J. Polar content vs. TAG oligomer content in the frying-life assessment of monounsaturated and polyunsaturated oils used in deep-frying. Journal of the American Oil Chemists'Society,2002,79(5):447-451
    [20]Fullana A., Carbonell-Barrachina A. A., Sidhu S. Volatile aldehyde emissions from heated cooking oils. Journal of the Science of Food and Agriculture,2004,84(15):2015-2021
    [21]Mildner-Szkudlarz S., Jelen H. H. The potential of different techniques for volatile compounds analysis coupled with PCA for the detection of the adulteration of olive oil with hazelnut oil. Food Chemistry,2008,110(3):751-761
    [22]Lee J., Lee S., Lee H., et al. Spinach (Spinacia oleracea) powder as a natural food-grade antioxidant in deep-fat-fried products. Journal of Agricultural and Food Chemistry,2002,50(20): 5664-5669
    [23]Houhoula D. P., Oreopoulou V., Tzia C. The effect of process time and temperature on the accumulation of polar compounds in cottonseed oil during deep-fat frying. Journal of the Science of Food and Agriculture,2003,83(4):314-319
    [24]Velasco J., Berdeaux O., Marquez-Ruiz, G., et al. Sensitive and accurate quantitation of monoepoxy fatty acids in thermoxidized oils by gas-liquid chromatography. Journal of Chromatography A,2002,982(1):145-152
    [25]Schulte E. Determination of higher carbonyl compounds in used frying fats by HPLC of DNPH derivatives. Analytical and Bioanalytical Chemistry,2002,372(5-6):644-648
    [26]Caldwell J., Cooke B., Greer M. High performance liquid chromatography-size exclusion chromatography for rapid analysis of total polar compounds in used frying oils. Journal of the American Oil Chemists'Society,2011,88(11):1669-1674
    [27]Kamal-Eldin A., Marquez-Ruiz G, Dobarganes M. C., et al. Characterisation of aldehydic acids in used and unused frying oils. Journal of Chromatography A,1997,776(2):245-254
    [28]Yamane M. High-performance liquid chromatography-thermospray ionization-mass spectrometry of the oxidation products of polyunsaturated-fatty acids. Analytica Chimica Acta,2002,465(1-2): 227-236
    [29]Giuffrida F., Destaillats F., Skibsted L. H., et al. Structural analysis of hydroperoxy-and epoxy-triacylglycerols by liquid chromatography mass spectrometry. Chemistry and Physics of Lipids,2004,131(1):41-49
    [30]Aerts H. A. J., Jacobs P. A. Epoxide yield determination of oils and fatty acid methyl esters using 1H NMR. Journal of the American Oil Chemists'Society,2004,81(9):841-846
    [31]Dobson G, Christie W. W., Brechany E. Y., et al. Silver ion chromatography and gas chromatography-mass spectrometry in the structural analysis of cyclic dienoic acids formed in frying oils. Chemistry and Physics of Lipids,1995,75(2):171-182
    [32]Berdeaux O., Fournier V., Lambelet P., et al. Isolation and structural analysis of the cyclic fatty acid monomers formed from eicosapentaenoic and docosahexaenoic acids during fish oil deodorization. Journal of Chromatography A,2007,1138(1-2):216-224
    [33]Aro A., Kosmeijer-Schuil T., Van de Bovenkamp P., et al. Analysis of C18:1 cis and trans fatty acid isomers by the combination of gas-liquid chromatography of 4,4-dimethyloxazoline derivatives and methyl esters. Journal of the American Oil Chemists'Society,1998,75(8):977-985
    [34]Kandhro A., Sherazi S., Mahesar S. A., et al. GC-MS quantification of fatty acid profile including trans FA in the locally manufactured margarines of Pakistan. Food Chemistry,2008,109(1): 207-211
    [35]Eulitz K., Yurawecz M. P., Sehat N., et al. Preparation, separation, and confirmation of the eight geometrical cis/trans conjugated linoleic acid isomers 8,10-through 11,13-18:2. Lipids,1999, 34(8):873-877
    [36]Mossoba M. M., Milosevic V., Milosevic M., et al. Determination of total trans fats and oils by infrared spectroscopy for regulatory compliance. Analytical and Bioanalytical Chemistry,2007, 389(1):87-92
    [37]Caponio F., Gomes T., Pasqualone A., et al. Use of the high performance size exclusion chromatography analysis for the measurement of the degree of hydrolytic and oxidative degradation of the lipid fraction of biscuits. Food Chemistry,2007,102(1):232-236
    [38]Byrdwell W. C., Neff W. E. Electrospray ionisation MS of high M.W. TAG oligomers. Journal of the American Oil Chemists'Society,2004,81(1):13-26
    [39]Kuligowski J., Quintas G., Garrigues S., et al. Direct determination of polymerized triglycerides in deep-frying olive oil by attenuated total reflectance-Fourier transform infrared spectroscopy using partial least squares regression. Analytical and Bioanalytical Chemistry,2010,397(2):861-869
    [40]Kuligowski J., Quintas G., Garrigues S., et al. Monitoring of polymerized triglycerides in deep-frying oil by on-line GPC-FTIR spectrometry using the science based calibration multivariate approach. Chromatographia,2010,71(3-4):201-209
    [41]Soupas L., Juntunen L., Saynajoki S., et al. GC-MS method for characterization and quantification of sitostanol oxidation products. Journal of the American Oil Chemists'Society,2004,81(2): 135-141
    [42]Kemmo S., Ollilainen V., Lampi A. M., et al. Liquid chromatography mass spectrometry for plant sterol oxide determination in complex mixtures. European Food Research and Technology,2008, 226(6):1325-1334
    [43]RudzinSka M., Przybylski R., Zhao Y. Y., et al. Sitosterol thermo-oxidative degradation leads to the formation of dimers, trimers and oligomers:A study using combined size exclusion chromatography/mass spectrometry. Lipids,2010,45(6):549-558
    [44]Saldanha T., Sawaya A. C. H. F., Eberlin M. N., et al. HPLC separation and determination of 12 cholesterol oxidation products in fish:Comparative study of RI, UV, and APCI-MS detectors. Journal of Agricultural and Food Chemistry,2006,54(12):4107-4113
    [45]Lampi A. M., Kemmo S., Makela A., et al. Distribution of monomeric, dimeric and polymeric products of stigmasterol during thermo-oxidation. European Journal of Lipid Science and Technology,2009,111(10):1027-1034
    [46]Rennick K. A., Warner, K. Effect of elevated temperature on development of tocopherolquinones in oils. Journal of Agricultural and Food Chemistry,2006,54(6):2188-2192
    [47]Verleyen T., Verhe R., Huyghebaert A., et al. Identification of a-tocopherol oxidation products in triolein at elevated temperatures. Journal of Agricultural and Food Chemistry,2001,49(3): 1508-1511
    [48]Horiuchi M., Umano K., Shibamoto T. Analysis of volatile compounds formed from fish oil heated with cysteine and trimethylamine oxide. Journal of Agricultural and Food Chemistry,1998,46(12): 5232-5237
    [49]Lojzova L., Riddellova K., Hajslova J., et al. Alternative GC-MS approaches in the analysis of substituted pyrazines and other volatile aromatic compounds formed during Maillard reaction in potato chips. Analytica Chimica Acta,2009,641(1-2):101-109
    [50]Jautz U., Gibis M., Morlock G E. Quantification of heterocyclic aromatic amines in fried meat by HPTLC/UV-FLD and HPLC/UV-FLD:A comparison of two methods. Journal of Agricultural and Food Chemistry,2008,56(12):4311-4319
    [51]Zhang Y., Dong Y., Ren Y, et al. Rapid determination of acrylamide contaminant in conventional fried foods by gas chromatography with electron capture detector. Journal of Chromatography A, 2006,1116(1-2):209-216
    [52]Hoenicke K., Gatermann R., Harder W., et al. Analysis of acrylamide in different foodstuffs using liquid chromatography-tandem mass spectrometry and gas chromatography-tandem mass spectrometry. Analytica Chimica Acta,2004,520(1-2):207-215
    [53]Wang H., Lee A. W. M., Shuang S., et al. SPE/HPLC/UV studies on acrylamide in deep-fried flour-based indigenous Chinese foods. Microchemical Journal,2008,89(2):90-97
    [54]Gokmen V.,Senyuva H. Z., Acar J., et al. Determination of acrylamide in potato chips and crisps by high-performance liquid chromatography. Journal of Chromatography A,2005,1088(1-2): 193-199
    [55]Carrieri G., Anese M., Quarta B., et al. Evaluation of acrylamide formation in potatoes during deep-frying:The effect of operation and configuration. Journal of Food Engineering,2010,98(2): 141-149
    [56]Porter N. A., Caldwell S. E., Mills K. A. Mechanisms of free radical oxidation of unsaturated lipids. Lipids,1995,30(4):277-290
    [57]Yin H. Y, Xu L. B., Porte N. A. Free radical lipid peroxidation:Mechanisms and analysis. Chemical Reviews,2011,111(10):5944-5972
    [58]Silvagni A., Franco L., Bagno A. Thermoinduced lipid oxidation of a culinary oil:A kinetic study of the oxidation products by magnetic resonance spectroscopies. The Journal of Physical Chemistry A,2010,114(37):10059-10065
    [59]Bruhl L., Matthaus B. Short-chain fatty acids as marker for the degradation of frying fats and oils. Lipid Technology,2008,20(3):60-63
    [60]Dobarganes C., Marquez-Ruiz G, Velasco J. Interactions between fat and food during deep-frying. European Journal of Lipid Science and Technology,2000,102(8-9):521-528
    [61]Nawar W. W. Thermal degradation of lipids. Journal of Agricultural and Food Chemistry,1969, 17(1):18-21
    [62]Marmesat S., Velasco J., Dobarganes M. C. Quantitative determination of epoxy acids, keto acids and hydroxy acids formed in fats and oils at frying temperatures. Journal of Chromatography A, 2008,1211(1-2):129-134
    [63]Byrdwell W. C., Neff W. E. Autoxidation products of normal and genetically modified canola oil varieties determined using liquid chromatography with mass spectrometric detection. Journal of Chromatography A,2001,905(1-2):85-102
    [64]Berdeaux O., Marquez-Ruiz G, Dobarganes M. C. Characterization, quantitation and evolution of monoepoxy compounds formed in model systems of fatty acid methyl esters and monoacid triglycerides heated at high temperature. Grasas y Aceites,1999,50(1):53-59
    [65]IUPAC. Standard Method 2.507:Determination of polar compounds in frying fats. In:Standard Methods for the Analysis of Oils, Fats and Derivatives,7th Ed. International Union of Pure and Applied Chemistry, Blackwell, Oxford,1987
    [66]Dobarganes M. C., Velasco J., Dieffenbacher A. Determination of polar compounds, polymerized and oxidized triacylglycerols and diacylglycerols in oils and fats. Pure Applied Chemistry,2000, 72(8):1563-1575
    [67]Frankel E. N., Smith L. M., Hamblin C. L. Occurrence of cyclic fatty acid monomers in frying oils. Journal of the American Oil Chemists'Society,1984,61(1):87-90
    [68]Romero A., Cuesta C., Sanchez-Muniz F. J. Cyclic fatty acid monomers and thermoxidative alteration compounds formed during frying of frozen foods in extra virgin olive oil. Journal of the American Oil Chemists'Society,2000,77(11):1169-1175
    [69]Romero A., Bastida S., Sanchez-Muniz F. J. Cyclic fatty acid monomer formation in domestic frying of frozen foods in sunflower oil and high oleic acid sunflower oil without oil replenishment. Food and chemical toxicology,2006,44(10):1674-1681
    [70]Lambelet P., Grandgirard A., Gregoire S. Formation of modified fatty acids and oxyphytosterols during refining of low erucic acid rapeseed oil. Journal of Agricultural and Food Chemistry,2003, 51(15):4284-4290
    [71]Rojo J. A., Perkins E. G Cyclic fatty acid monomer formation in frying fats. I. Determination and structural study. Journal of the American Oil Chemists'Society,1987,64(3):414-421
    [72]Destaillats F., Angers P. On the mechanisms of cyclic and bicyclic fatty acid monomer formation in heated edible oils. European Journal of Lipid Science and Technology,2005,107(10):767-772
    [73]Christie W. W., Dobson G. Formation of cyclic fatty acids during the frying process. European Journal of Lipid Science and Technology,2000,102(9):515-520
    [74]Dobson G., Christie W. W., Brechany E. Y. Silver ion chromatography and gas chromatography-mass spectrometry in the structural analysis of cyclic dienoic acids formed in frying oils. Chemistry and Physics of Lipids,1995,75(2):171-182
    [75]Dobson G., Christie W. W., Sebedio J. L. Monocyclic saturated fatty acids formed from oleic acid in heated sunflower oils. Chemistry and Physics of Lipids,1996,82(2):101-110
    [76]Dobson G., Christie W. W., Sebedio J. L. Saturated bicyclic fatty acids formed in heated sunflower oils. Chemistry and Physics of Lipids,1997,87(2):137-147
    [77]Mansson H. L. Fatty acids in bovine milk fat. Food & Nutrition Research,2008,52:1-3
    [78]Willett W., Mozaffarian D. Ruminant or industrial sources of trans fatty acids public health issue or food label skirmish? The American journal of clinical nutrition,2008,87(3):515-516
    [79]Mozaffarian D., Katan M. B., Ascherio A. Trans fatty acids and cardiovascular disease. New England Journal of Medicine,2006,354:1650-1652
    [80]Liu W. H., Stephen Inbaraj B., Chen B.H. Analysis and formation of trans fatty acids in hydrogenated soybean oil during heating. Food Chemistry,2007,104(4):1740-1749
    [81]Schwarz, W. Formation of trans polyalkenoic fatty acids during vegetable oil refining. European journal of lipid science and technology,2000,102(10):648-649
    [82]Tsuzuki W., Matsuoka A., Ushida K. Formation of trans fatty acids in edible oils during the frying and heating process. Food Chemistry,2010,123(4):976-982
    [83]Gamel T. H., Kiritsakis A. Effect of phenolic extracts on trans fatty acid formation during frying. Grasas y Aceites,1999,50(6):421-425
    [84]Ribeiro A. P. B., Grimaldi R., Gioielli L. et al. A. Zero trans fats from soybean oil and fully hydrogenated soybean oil:Physico-chemical properties and food applications. Food Research International,2009,42(3):401-410
    [85]Destaillats F., Angers P. Evidence for [1,5] sigmatropic rearrangements of CLA in heated oils. Lipids,2002,37(4):435-438
    [86]Stevenson S. G., Vaisey-Genser M., Eskin N. A. M. Quality-control in the use of deep frying oils. Journal of the American Oil Chemists' Society,1984,61(6):1102-1108
    [87]Christopoulou C. N., Perkins E. G. Isolation and characterization of dinners formed in used soybean oil. Journal of the American Oil Chemists' Society,1989,66(9):1360-1370
    [88]Yoon S. H., Jung M. Y., Min D. B. Effects of thermally oxidized triglycerides on the oxidative stability of soybean oil. Journal of the American Oil Chemists'Society,1988,65(10):1652-1656
    [89]Tseng Y. C., Moreira R., Sun X. Total frying-use time effects on soybean-oil deterioration and on tortilla chip quality. International Journal of Food Science and Technology,1996,31(3):287-294
    [90]Dobarganes M.C. and Marquez-Ruiz G. Formation and analysis of oxidized monomeric, dimeric and higher oligomeric triglycerides. In:Erickson M. D., eds. Deep frying:Chemistry, Nutrition and Practical Applications,2nd Edition. Champaign, IL:AOCS Press,2007, pp.87-110
    [91]Tompkins C., Perkins E.G. Frying performance of low-linolenic acid soybean oil. Journal of the American Oil Chemists'Society,2000,77(3):223-229
    [92]Marquez-Ruiz G., Tasioula-Margari M., Dobarganes M. C. Quantitation and distribution of altered fatty-acids in frying fats. Journal of the American Oil Chemists'Society,1995,72(10):1171-1176
    [93]Ryan E., McCarthy F. O., Maguire A. R., et al. Phytosterol oxidation products:their formation, occurrence, and biological effects. Food Reviews International,2009,25(2):157-174
    [94]Soupas L., Huikko L., Lampi A. M., et al. Pan-frying may induce phytosterol oxidation. Food Chemistry,2007,101(1):286-297
    [95]Lampi A. M., Juntunen L., Toivo J., et al. Determination of thermo-oxidation products of plant sterols. Journal of Chromatography B,2002,777(1-2):83-92
    [96]Kemmo S., Soupas L., Lampi A. M., et al. Formation and decomposition of stigmasterol hydroperoxides and secondary oxidation products during thermo-oxidation. European journal of lipid science and technology,2005,107(11):805-814
    [97]Verleyen T., Kamal-Eldin A., Dobarganes C., et al. Modeling of a-tocopherol loss and oxidation products formed during thermoxidation in triolein and tripalmitin mixtures. Lipids,2001,36(7): 719-726
    [98]Verleyen T., Verhe R., Huyghebaert A., et al. Identification of a-tocopherol oxidation products in triolein at elevated temperatures. Journal of Agricultural and Food Chemistry,2001,49(3): 1508-1511
    [99]Kurechi T., Kato T. Studies on the antioxidants XI. Oxidation products of concomitantly used butylated hydroxyanisole and butylated hydroxytoluene. Journal of the American Oil Chemists' Society,1980,57(7):220-223
    [100]Hodge J. E. Dehydrated foods, chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry,1953,1(15):928-943
    [101]Elizalde B. E., Dalla Rosa M., Lerici C. R. Effect of maillard reaction volatile products on lipid oxidation. Journal of the American Oil Chemists'Society,1991,68(10):758-762
    [102]Wagner K. H., Derkits S., Herr M., et al. Antioxidative potential of melanoidins isolated from a roasted glucose-glycine model. Food Chemistry,2002,78(3):375-382
    [103]Zamora R., Hidalgo F. J. Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning. Critical Reviews in Food Science and Nutrition,2005,45(1):49-59
    [104]Chen Y. C., Chen B. H. Determination of polycyclic aromatic hydrocarbons in fumes from fried chicken legs. Journal of the American Oil Chemists'Society,2006,51 (14):4162-4167
    [105]Jagerstad M., Skog K. Genotoxicity of heat-processed foods. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2005,574(1-2):156-172
    [106]Jagerstad M., Skog K., Arvidsson P. Chemistry, formation and occurrence of genotoxic heterocyclic amines identified in model systems and cooked foods. Zeitschrift fur Lebensmitteluntersuchung und-Forschung A,1998,207(6):419-427
    [107]Zhang Y, Ho C. T. Volatile compounds formed from thermal interaction of 2,4-decadienal with cysteine and glutathione. Journal of Agricultural and Food Chemistry,1989,37(4):1016-1020
    [108]Kim Y. S., Hartman T. G., Ho C. T. Formation of 2-pentylpyridine from the thermal interaction of amino acids and 2,4-decadienal. Journal of Agricultural and Food Chemistry,1996,44(12): 3906-3908
    [109]Kim Y. S., Ho C. T. Formation of pentylpyridines in an oil medium. Journal of Agricultural and Food Chemistry,1998,46(2):644-647
    [110]Balogh Z., Gray J. I., Gomaa E. A., et al. Formation and inhibition of heterocyclic aromatic amines in fried ground beef patties. Food and Chemical Toxicology,2000,38(5):395-401
    [111]Mottram D. S. Flavour formation in meat and meat products:a review. Food Chemistry,1996, 62(4):415-424
    [112]Yu T. H., Wu C. M., Ho C. T. Volatile compounds of deep-oil fried, microwave-heated and oven-baked garlic slices. Journal of Agricultural and Food Chemistry,1993,41(5):800-805
    [113]Macku C., Shibamoto T. Volatile sulfur-containing compounds generated from the thermal interaction of corn oil and cysteine. Journal of Agricultural and Food Chemistry,1991,39(11): 1987-1989
    [114]Tareke E., Rydberg P., Karlsson P., et al. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry,2002,50(17):4998-5006
    [115]Friedman M. Chemistry, biochemistry, and safety of acrylamide. A review. Journal of Agricultural and Food Chemistry,2003,51(16):4504-1526
    [116]Hagmar L., Wirfalt E., Paulsson B., et al. Differences in hemoglobin adduct levels of acrylamide in the general population with respect to dietary intake, smoking habits and gender. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2005,580(1-2):157-165
    [117]Becalski A., Lau B. P. Y, Lewis D., et al. Acrylamide in foods occurrence, sources, and modeling. Journal of Agricultural and Food Chemistry,2003,51(3):802-808
    [118]ZyzakD. V., Sanders R. A., Stojanovic M., et al. Acrylamide formation mechanism in heated foods. Journal of Agricultural and Food Chemistry,2003,51(16):4782-1787
    [119]Mottram D. S., Wedzicha B. L., Dodson A. T. Food chemistry:Acrylamide is formed in the Maillard reaction.2002,419:448-449
    [120]Romani S., Bacchiocca M., Rocculi P., et al. Effect of frying time on acrylamide content and quality aspects of French fries. European Food Research and Technology,2008,226(3):555-560
    [121]Fiselier K., Bazzocco D., Gama-Baumgartner F., et al. Influence of the frying temperature on acrylamide formation in French fries. European Food Research and Technology,2006,222(3-4): 414-419
    [122]Capuano E., Oliviero T., Acar O. C., et al. Lipid oxidation promotes acrylamide formation in fat-rich model systems. Food Research International,2010,43(4):1021-1026
    [123]Zamora R., Hidalgo F. J. Contribution of lipid oxidation products to acrylamide formation in model systems. Journal of Agricultural and Food Chemistry,2008,56(15):6075-6080
    [124]Dana D., Saguy I. S. Review:Mechanism of oil uptake during deep-fat frying and the surfactant effect-theory and myth. Advances in Colloid and Interface Science,2006,128-130:267-272
    [125]Mellema M. Mechanism and reduction of fat uptake in deep-fat fried foods. Trends in Food Science & Technology,2003,14(9):364-373
    [126]Ngadi M. O., Wang Y., Adedeji A. A., et al. Effect of microwave pretreatment on mass transfer during deep-fat frying of chicken nugget. LWT-Food Science and Technology,2009,42(1): 438-440
    [127]Takeoka G. R., Full G H., Dao L. T. Effect of heating on the characteristics and chemical composition of selected frying oils and fats. Journal of Agricultural and Food Chemistry,1997, 45(8):3244-3249
    [128]Maskan M. Change in colour and rheological behavior of sunflower seed oil during frying and after adsorbent treatment of used oil. European Food Research and Technology,2003,212(1): 20-25
    [129]Kim J., Kim D. N., Lee S. H., et al. Correlation of fatty acid composition of vegetable oils with rheological behavior and oil uptake. Food Chemistry,2010,118(2):398-402
    [130]Siddique B. M., Ahmad A., Ibrahim M. H., et al. Physico-chemical properties of blends of palm olein with other vegetable oils. Grasas y Aceites,2010,61(4):423-429
    [131]Kalogianni E. P., Karapantsios T. D., Miller R. Effect of repeated frying on the viscosity, density and dynamic interfacial tension of palm and olive oil. Journal of Food Engineering,2011,105(1): 169-179
    [132]Navarra G, Cannas M., D'Amico M., et al. Thermal oxidative process in extra-virgin olive oils studied by FTIR, rheology and time-resolved luminescence. Food Chemistry,2011,126(3): 1226-1231
    [133]Lee D. S., Noh B. S., Bae S. Y., et al. Characterization of fatty acids composition in vegetable oils by gas chromatography and chemometrics. Analytica Chimica Acta,1998,358(2):163-175
    [134]Brodnjak-Voncina D., Kodba Z. C., Novic M. Multivariate data analysis in classification of vegetable oils characterized by the content of fatty acids. Chemometrics and Intelligent Laboratory Systems,2005,75(1):31-43
    [135]Gurdeniz G, Ozen B., Tokatli F. ClassiWcation of Turkish olive oils with respect to cultivar, geographic origin and harvest year, using fatty acid profile and mid-IR spectroscopy. European Food Research and Technology,2008,227(4):1275-1281
    [136]Hajimahmoodi M., Vander Heyden Y, Sadeghi N., et al. Gas-chromatographic fatty-acid fingerprints and partial least squares modeling as a basis for the simultaneous determination of edible oil mixtures. Talanta,2005,66(5):1108-1116
    [137]Fang G, Goh J. Y, Tay M., et al. Characterization of oils and fats by 1H NMR and GC/MS fingerprinting:Classification, prediction and detection of adulteration. Food chemistry,2013, 138(2-3):1461-1469
    [138]Hamilton J. G., Comai K. Separation of neutral lipids and free fatty acids by high-performance liquid chromatography using low wavelength ultraviolet detection. Journal of Lipid Research,1984, 25(10):1142-1148
    [139]Shantha N. C., Napolitano G. E. Gas chromatography of fatty acids. Journal of Chromatography A,1992,624(1-2):37-51
    [140]Ismail A. A., Van de Voort F. R., Emo G, et al. Rapid quantitative determination of free fatty acids in fats and oils by FTIR spectroscopy. Journal of the American Oil Chemists'Society,1993,70(4): 335-341
    [141]Jie M. S. F. L. K., Mustafa J. High-resolution nuclear magnetic resonance spectroscopy-applications to fatty acids and triacylglycerols. Lipids,1997,32(10):1019-1034
    [142]Kerwin J. L., Wiens A. M., Ericsson L. H. Identification of fatty acids by electrospray mass spectrometry and tandem mass spectrometry. Journal of Mass Spectrometry,1996,31(2):184-192
    [143]Eder K. Gas chromatographic analysis of fatty acid methyl esters. Journal of Chromatography B: Biomedical Sciences and Applications,1995,671(1-2):113-131
    [144]Christie W. W. Gas chromatography-mass spectrometry methods for structural analysis of fatty acids. Lipids,1998,33(4):343-353
    [145]Ichihara K., Fukubayashi Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. Journal of Lipid Research,2010,51(3):635-640
    [146]Harvey D. J. Picolinyl esters for the structural determination of fatty acids by GC/MS. Molecular biotechnology,1998,10(3):251-260
    [147]Fay L., Richli U. Location of double bonds in polyunsaturated fatty acids by gas chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization. Journal of Chromatography A,1991,541:89-98
    [148]Tyagi V. K., Vasishtha A. K. Changes in the characteristics and composition of oils during deep-fat frying. Journal of the American Oil Chemists'Society,1996,73(4):499-506
    [149]Aladedunye F. A., Przybylski R. Degradation and nutritional quality changes of oil during frying. Journal of the American Oil Chemists'Society,2009,86(2):149-156
    [150]Kim T. S., Yeo J. D., Kim J. Y., et al. Determination of the degree of oxidation in highly-oxidised lipids using profile changes of fatty acids. Food Chemistry,2013,138(2-3):1792-1799
    [151]Juarez M. D., Osawa C. C., Acuna M. E., et al. Degradation in soybean oil, sunflower oil and partially hydrogenated fats after food frying, monitored by conventional and unconventional methods. Food Control,2011,22(12):1920-1927
    [152]中华人民共和国卫生部.GB 5009.3~2010.食品安全国家标准食品中水分的测定.北京:中国标准出版社,2010-3-26
    [153]中华人民共和国卫生部.GB 5009.5-2010.食品安全国家标准食品中蛋白质的测定.北京:中国标准出版社,2010-5-31
    [154]中华人民共和国卫生部中国国家标准化管理委员会.GB/T 5009.6 2003.食品中脂肪的测定.北京:中国标准出版社,2004-1-1
    [155]中华人民共和国卫生部.GB 5009.4~2010.食品安全国家标准食品中灰分的测定.北京:中国标准出版社,2010-5-31
    [156]中华人民共和国卫生部.GB/T 17376-2008.动植物油脂脂肪酸甲酯制备.北京:中国标准出版社,2009-2-11
    [157]中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会.GB/T17377-2008.动植物油脂脂肪酸甲酯的气相色谱分析.北京:中国标准出版社,2009-1-20
    [158]中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会.用GB/T5530-2005.动植物油脂酸值和酸度测定.北京:中国标准出版社,2006-04-29
    [159]Christie W.W. Preparation of ester derivative of fatty acids for chromatographic analysis. In: Christie W. W., Eds. Advances in Lipid Methodology-Two. Dundee:Oily Press,1993,69-111
    [160]Destaillats F., Angers P. One-step methodology for the synthesis of FA picolinyl esters from intact lipids. Journal of the American Oil Chemists'Society,2002,79(3):253-256
    [161]杨月欣,王光亚,潘兴昌.中国食物成分表2002.北京:北京大学医学出版社,2002,122
    [162]Moyano P.C., Rioseco V.K., Gonzalez P. A. Kinetics of crust color changes during deep-fat frying of impregnated french fries. Journal of Food Engineering,2002,54(3):249-255
    [163]Paul S., Mittal G. S. Dynamics of fat/oil degradation during frying based on optical properties. Journal of Food Engineering,1996,30(3-4):389-403
    [164]Pokorny J. Substrate influence on the frying process. Grasas y Aceites,1998,49(3-4):265-270
    [165]B Altunakar, S Sahin, G Sumnu. Functionality of batters containing different starch types for deep-fat frying of chicken nuggets. European Food Research and Technology,2004,218(4): 318-322
    [166]Melton S. L., Jafar S., Sykes D., Review of stability measurements for frying oils and fried food flavor. Journal of the American Oil Chemists'Society,1994,71(12):1301-1308
    [167]Boyaci I. H., Tekin A., Cizmeci M., et al. Viscosity estimation of vegetable oils based on their fatty acid composition. Journal of Food Lipids,2002,9(3):175-183
    [168]Bonnet J. P., Devesvre L., Artaud J., et al. Dynamic viscosity of olive oil as a function of composition and temperature:A first approach. European Journal of Lipid Science and Technology, 2011,113(8):1019-2011
    [169]中华人民共和国国家质量监督检验检疫总局.GB 1535-2003.大豆油.北京:中国标准出版社,2004-05-01
    [170]Lebedev A. T. Introduction to mass spectra Interpretation:Organic chemistry. In:Ekman R., Silberring J., Westman-Brinkmalm A., et al. eds. Mass Spectrometry Instrumentation, Interpretation, and Applications. New Jersey:John Wiley & Sons, Inc.2009.119-178
    [171]Gilpin J. A., McLafferty F. W., Mass spectrometric analysis aliphatic aldehydes. Analytical Chemistry,1957,29(7):990-994
    [172]Shrivastava A., Gupta V. B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists,2011,2(1):21-25
    [173]Ruiz-Jimenez J., Priego-Capote F., Castro M. D. Identification and quantification of trans fatty acids in bakery products by gas chromatography-mass spectrometry after dynamic ultrasound-assisted extraction. Journal of chromatography A,2004,1045(1-2):203-210
    [174]Cuesta C., Romero A., Sanchez-Muniz F. J. Fatty acid changes in high oleic acid sunflower oil during successive deep-fat fryings of frozen foods. Food Science and Technology International, 2001,7(4):317-328
    [175]Goburdhun D., Seebun P., Ruggoo A. Effect of deep-fat frying of potato chips and chicken on the quality of soybean oil. Journal of Consumer Studies & Home Economics,2000,24(4):223-233
    [176]Marquez-Ruiz G., Dobarganes C. Short-chain fatty acid formation during thermal oxidation and frying. Journal of the Science of Food and Agriculture,1996,70(1):120-126
    [177]Seow A., Poh W. T., Teh M., et al. Fumes from meat cooking and lung cancer risk in Chinese women. Cancer Epidemiology, Biomarkers & Prevention,2000,9(11):1215-1221
    [178]Wu S. C., Yen G. C. Effects of cooking oil fumes on the genotoxicity and oxidative stress in human lung carcinoma (A-549) cells. Toxicology in vitro,2004,18(5):571-580
    [179]Nawar W. W. Volatile components of the frying process. Grasas y Aceites,1998,49(3-4): 271-274
    [180]Schultz T.H., Flath R. A., Mon T. R., et al. Isolation of volatile components from a model system. Journal of Agricultural and Food Chemistry,1977,25(3):446-449
    [181]Katragadda H. R., Fullana A., Sidhu S., et al. Emissions of volatile aldehydes from heated cooking oils. Food Chemistry,2010,120(1):59-65
    [182]Eisert R., Pawliszyn J. New trends in solid-phase microextraction. Critical Reviews in Analytical Chemistry,1997,27(2):103-135
    [183]Prosen H., Zupancic-Kralj L. Solid-phase microextraction. Trends in Analytical Chemistry,1999, 18(4):272-282
    [184]Bastos L. C. S., Pereira P. A. P. Influence of heating time and metal ions on the amount of free fatty acids and formation rates of selected carbonyl compounds during the thermal oxidation of canola oil. Journal of Agricultural and Food Chemistry,2010,58(24):12777-12783
    [185]Katsuta I., Shimizu M., Yamaguchi T., et al. Emission of volatile aldehydes from dag-rich and tag-rich oils with different degrees of unsaturation during deep-frying. Journal of the American Oil Chemists'Society,2008,85(6):513-519
    [186]Conzalez F. R., Nardillo A. M. Retention index in temperature-programmed gas chromatography. Journal of Chromatography A,1999,842(1-2):29-49
    [187]Bianchi F., Careri M., Mangia A., et al. Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography:Database creation and evaluation of precision and robustness. Journal of Separation Science,2007,30(4):563-572
    [188]Cottyn B. G., Boucque C. V. Rapid method for the gas-chromatographic determination of volatile fatty acids in rumen fluid. Journal of Agricultural and Food Chemistry,1968,16(1):105-107
    [189]Kanavouras A., Hernandez R. J. The analysis of volatiles from thermally oxidized virgin olive oil using dynamic sorption-thermal desorption and solid phase micro-extraction techniques. International. Journal of Food Science & Technology,2006,41(7):743-750
    [190]Jelen H. H., Obuchowska M. Zawirska-Wojtasiak R., et al. Headspace solid-phase microextraction use for the characterization of volatile compounds in vegetable oils of different sensory quality. Journal of Agricultural and Food Chemistry,2000,48(6):2360-2367
    [191]Chung T. Y., Eiserich J. P., Shibamoto T. Volatile compounds identified in headspace samples of peanut oil heated under temperatures ranging from 50 to 200℃. Journal of Agricultural and Food Chemistry,1993,41(9):1467-1470
    [192]周雅琳.煎炸油的品质评价及其极性化合物的快速检测技术研究:[博士学位论文].重庆:西南大学,2009
    [193]Dobarganes M. C., Rios J. J., Perez-Camino M. C. Relationships between the oil composition and the volatile compounds formed under thermoxidative conditions. Grasas y Aceites,1986,37: 61-67
    [194]Ho C. T., Chen Q. Lipids in food flavors:An overview. In:Ho C. T., Hartman T. G., eds. Lipids in food flavors. Washington D C:American Chemical Society,1994.2-14.
    [195]李靖,王成涛,刘国荣,等.电子鼻快速检测煎炸油品质.食品科学,2013,34(8):236-239
    [196]Selke E., Rohwedder W. K., Dutton H. J. Volatile components from tristearin heated in air. Journal of the American Oil Chemists'Society,1975,52(7):232-235
    [197]Selke E., Rohwedder W. K., Dutton H. J. Volatile components from triolein heated in air. Journal of the American Oil Chemists'Society,1977,54(2):62-67
    [198]Selke E., Rohwedder W. K., Dutton H. J. Volatile components from trilinolein heated in air. Journal of the American Oil Chemists'Society,1980,57(1):25-30
    [199]Selke E., Rohwedder W. K. Volatile components from trilinolenin heated in air. Journal of the American Oil Chemists'Society,1983,60(11):1853-1858
    [200]Takeoka G, Perrino C., Buttery R. Volatile constituents of used frying oils. Journal of Agricultural and Food Chemistry,1996,44(3):654-660
    [201]Brodnitz M. H. Autoxidation of saturated fatty acids. A review. Journal of Agricultural and Food Chemistry,1968,16(6):994-999
    [202]Ingold K. U. Inhibition of the autoxidation of organic substances in the liquid phase. Chemical Reviews,1961,61(6):563-589
    [203]Osmont A., Catoire L., Gokalp I., et al. Thermochemistry of C-C and C-H bond breaking in fatty acid methyl esters. Energy & fuels,2007,21(4):2027-2032
    [204]van der Klis F., van den Hoorn M. H. Oxidative decarboxylation of unsaturated fatty acids. European Journal of Lipid Science and Technology,2011,113(5):562-571
    [205]Crnjar E. D., Witchwoot A., Nawar W. W. Thermal oxidation of a series of saturated triacylglycerols. Journal of Agricultural and Food Chemistry,1981,29(1):39-42
    [206]Porter N. A. Mechanisms for the autoxidation of polyunsaturated lipids. Accounts of Chemical Research,1986,19(9):262-268
    [207]Alencar J. W., Alves P. B., Craveiro A. A. Pyrolysis of tropical vegetable oils. Journal of Agricultural and Food Chemistry,1983,31(6):1268-1270
    [208]Frankel E. N. Lipid oxidation:Mechanisms, products and biological significance. Journal of the American Oil Chemists'Society,1984,61(2):1908-1917
    [209]Forss D. A.1973, Odor and flavor compounds from lipids. Progress in the Chemistry of Fats and other Lipids,1973,13:177-258
    [210]Halliwell B. Chirico S. Lipid peroxidation:its mechanism, measurement, and significance. The American journal of clinical nutrition,1993,57(5):715S-724S
    [211]Petersen K. D., Jahreis G., Busch-Stockfisch M., et al. Chemical and sensory assessment of deep-frying oil alternatives for the processing of French fries. European Journal of Lipid Science and Technology,2013,115(8):935-945
    [212]Petersen K. D., Kleeberg K. K., Jahreis G., et al. Comparison of analytical and sensory lipid oxidation parameters in conventional and high-oleic rapeseed oil. European Journal of Lipid Science and Technology,2012,114(10):1193-1203
    [213]Matsui K., Sasahara S., Akakabe Y., Linoleic acid 10-hydroperoxide as an intermediate during formation of 1-octen-3-ol from linoleic acid in Lentinus decadetes. Bioscience, Biotechnology, and Biochemistry,2003,67(10):2280-2282
    [214]Asaaf S., Hadar Y., Dosoretz C. G. 1-Octen-3-ol and 13-hydroperoxylinoleate are products of distinct pathways in the oxidative breakdown of linoleic acid by Pleurotus pulmonarius. Enzyme and Microbial Technology,1997,21(7):484-490
    [215]Ontanon I., Cullere L., Zapata J., Application of a new sampling device for determination of volatile compounds released during heating olive and sunflower oil:sensory evaluation of those identified compounds. European Food Research and Technology,2013,236(6):1031-1040
    [216]Frankel E. N. Frying fats. In:Lipid Oxidation. Dundee, Scotland:The Oily Press,1998.227-248
    [217]Matthews R. F., Scanlan R. A., Libbey L. M. Autoxidation products of 2,4-decadienal. Journal of the American Oil Chemists'Society,1971,48(11):745-747
    [218]Frankel E. N. Hydroperoxide decomposition. In:Lipid Oxidation. Dundee, Scotland:The Oily Press,1998.55-77
    [219]Frankel E. N., Neff W. E., Selke E. Analysis of autoxidized fats by gas chromatography-mass spectrometry:VII. Volatile thermal decomposition products of pure hydroperoxides from autoxidized and photosensitized oxidized methyl oleate, linoleate and linolenate. Lipids,1981, 16(5):279-285
    [220]Warner K., Neff W. E., Byrdwell W. C. Effect of oleic and linoleic acids on the production of deep-fried odor in heated triolein and trilinolein. Journal of Agricultural and Food Chemistry,2001, 49(2):899-905
    [221]Neff W. E., Warner K., Byrdwell W. C. Odor significance of undesirable degradation compounds in heated triolein and trilinolein. Journal of the American Oil Chemists'Society,2000,77(12): 1303-1314
    [222]Choi H. S. Characteristic odor components of Kumquat(Fortunella japonica Swingle) peel oil. Journal of Agricultural and Food Chemistry,2005,53(5):1642-1647
    [223]Guillen M. D., Cabo N., Ibargoitia M. L., et al. Study of both sunflower oil and its headspace throughout the oxidation process. Occurrence in the headspace of toxic oxygenated aldehydes. Journal of Agricultural and Food Chemistry,2005,53(4):1093-1101
    [224]Jelen H. H., Mildner-Szkudlarz S., Jasinska I. A headspace-SPME-MS method for monitoring rapeseed oil autoxidation. Journal of the American Oil Chemists'Society,2007,84(6):509-517
    [225]Fullana A., Carbonell-Barrachina A. A., Sidhu S. Comparison of volatile aldehydes present in the cooking fumes of extra virgin olive, olive, and canola oils. Journal of Agricultural and Food Chemistry,2004,52(16):5207-5214
    [226]Warner K. Flavor changes during frying. In:Sahin S., Sumnu S. G. eds. Advances in Deep-Fat Frying of Foods. Boca Raton:CRC Press,2009.201-213
    [227]Boskou G., Salta F. N., Chiou A. Content of trans,trans-2,4-decadienal in deep-fried and pan-fried potatoes. European Journal of Lipid Science and Technology,2006,108(2):109-115
    [228]Zhu X. D., Wang K. X., Zhu J. L., et al. Analysis of cooking oil fumes by ultraviolet spectrometry and gas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry,2001, 49(10):4790-4794
    [229]Waner K., Orr P., Glynn M. Effect of fatty acid composition of oils on flavor and stability of fried foods. Journal of the American Oil Chemists'Society,1997,74(4):347-356
    [230]Grein B., Huffer M., Scheller G. 4-Hydroxy-2-alkenals and other products formed by water-mediated oxidative decomposition of a,p-unsaturated aldehydes. Journal of Agricultural and Food Chemistry,1993,41(12):2385-2390
    [231]Yu T. H., Lee M. H., Wu C. M., et al. Volatile compounds generated from thermal interaction of 2,4-decadienal and the flavor precursors of garlic. In:Ho C. T., Hartman T. G., eds. Lipids in Food Flavors. Washington D C:American Chemical Society,1994.61-76
    [232]Horiuchi M., Umano K., Shibamoto T. Analysis of volatile compounds formed from fish oil heated with cysteine and trimethylamine oxide. Journal of Agricultural and Food Chemistry,1998, 46(12):5232-5237
    [233]Guillen M. D., Goicoechea E. Toxic oxygenated a,p-unsaturated aldehydes and their study in foods:A review. Critical Reviews in Food Science and Nutrition,2008,48(2):119-136
    [234]Guillen M. D., Uriarte P. S. Aldehydes contained in edible oils of a very different nature after prolonged heating at frying temperature:Presence of toxic oxygenated α,β unsaturated aldehydes. Food Chemistry,2012,131(3):915-926
    [235]Neff W. E., Frankel E. N., Selke E., et al. Photosensitized oxidation of methyl linoleate monohydroperoxides:Hydroperoxy cyclic peroxides, dihydroperoxides, keto esters and volatile thermal decomposition products. Lipids,1983,18(12):868-876
    [236]Qu Y. H., Xu G. X., Zhou J. Z., et al. Genotoxicity of heated cooking oil vapors. Mutation Research/Genetic Toxicology,1995,298(2):105-111
    [237]许华,刘晓毅,曹红.油脂中成分的气相色谱-质谱分析.分析测试学报,2007,26(9):275-277
    [238]王嫚.餐厨废弃油脂特征组分检测方法的研究:[硕士学位论文].成都:西华大学,2013
    [239]Yang J., Jia J., Wang Y., et al. Treatment of cooking oil fume by low temperature catalysis. Applied Catalysis B:Environmental,2005,58(1-2):123-131
    [240]Dauqan E. M. A., Sani H. A., Abdullah A., et al. Fatty acids composition of four different vegetable oils (red palm olein, palm olein, corn oil and coconut oil) by gas chromatography. In: 20112nd International Conference on Chemistry and Chemical Engineering. Singapore,2011
    [241]Nawar W. W. Chemical changes in lipids produced by thermal processing. Journal of Chemical Education,1984,61(4):299-302
    [242]Thompson J. A., May W. A., Paulose M. M., et al. Chemical reactions involved in the deep-fat frying of foods. VII. Identification of volatile decomposition products of trilinolein. Journal of the American Oil Chemists'Society,1978,55(12):897-901
    [243]Horiuchi M., Umano K., Shibamoto T. Analysis of volatile compounds formed from fish oil heated with cysteine and trimethylamine oxide. Journal of Agricultural and Food Chemistry,1998, 46(12):5232-5237
    [244]Brewer M. S., Vega J. D., Perkins E. G. Volatile compounds and sensory characteristics of frying fats. Journal of Food Lipids,1999,6(1):47-61
    [245]Perez-Palacios T., Petisca C., Melo A., et al. Quantification of furanic compounds in coated deep-fried products simulating normal preparation and consumption:Optimisation of HS-SPME analytical conditions by response surface methodology. Food Chemistry,2012,135(3):1337-1343
    [246]Smouse T. H., Chang S. S. A systematic characterization of the reversion flavor of soybean oil. Journal of the American Oil Chemists'Society,1967,44(8):509-514
    [247]Min D. M., Boff J. M. Chemistry and reaction of singlet oxygen in foods. Reviews in Food Science and Food Safety,2002,1(2):58-72
    [248]Chang S. S., Smouse T. H., Krishnamurthy R. G, et al. Isolation and identification of 2-pentyl-furan as contributing to the reversion flavour of soyabean oil. Chemistry & Industry 1966, 46(12):1926-1927
    [249]Dlugogorski B. Z., Kennedy E. M., Mackie J. C. Identification and quantitation of volatile organic compounds from oxidation of linseed oil. Industrial & Engineering Chemistry Research,2012, 51(16):5645-5652
    [250]Hamama A. A, Nawar W. W. Thermal decomposition of some phenolic antioxidants. Journal of Agricultural and Food Chemistry,1991,39(6):1063-1069
    [251]Marmesat S., Morales A., Velasco J., et al. Action and fate of natural and synthetic antioxidants during frying. Grasas y Aceites,2010,6(4):333-340
    [252]Allam S. S. M., Mohamed H. M. A. Thermal stability of some commercial natural and synthetic antioxidants and their mixtures. Journal of Food Lipids,2002,9(4):277-293
    [253]Moreda W., Perez-Camino M. C., Cert A. Gas and liquid chromatography of hydrocarbons in edible vegetable oils. Journal of Chromatography A,2001,936(1-2):159-171
    [254]Izumi H., Kimura E., Ota T., et al. A two-generation reproductive toxicity study of n-butylbenzene in rats. The Journal of Toxicological Sciences,2005,30(9):21-38
    [255]Uriarte P. S., Guillen M. D. Formation of toxic alkylbenzenes in edible oils submitted to frying temperature Influence of oil composition in main components and heating time. Food research international,2010,43(8):2161-2170
    [256]Santos C. S. P., Cruz R., Cunha S. C., et al. Effect of cooking on olive oil quality attributes. Food research international,2013,54(2):2016-2024
    [257]Pitts Jr J. N. Formation and fate of gaseous and particulate mutagens and carcinogens in real and simulated atmospheres. Environmental Health Perspectives,1983,47:115-140
    [258]Armstrong B., Hutchinson E., Unwin J., et al. Lung cancer risk after exposure to polycyclic aromatic hydrocarbons:A review and meta-analysis. Environmental Health Perspectives,2004, 112(9):970-978
    [259]Qin Y. Y., Leung C. K. M., Leung A. O. W., et al. Persistent organic pollutants in food items collected in Hong Kong. Chemosphere,2011,82(9):1329-1336
    [260]Wu S. M., Yu W. J. Liquid-liquid extraction of polycyclic aromatic hydrocarbons in four different edible oils from China. Food Chemistry,2012,134(1):597-601
    [261]Li S. G., Pan D. H., Wang G. X. Analysis of polycyclic aromatic hydrocarbons in cooking oil fumes. Archives of Environmental Health:An International Journal,1994,49(2):119-122
    [262]Chen B. H., Chen Y. C. Formation of polycyclic aromatic hydrocarbons in the smoke from heated model lipids and food lipids. Journal of Agricultural and Food Chemistry,2001,49(11): 5238-5243
    [263]Goicoechea E., Guillen M. D. Volatile compounds generated in corn oil stored at room temperature. Presence of toxic compounds. European Journal of Lipid Science and Technology, 2014,116(4):395-406
    [264]Mestres J., Sola M. Diels-Alder cycloadditions of 1,3-butadiene to polycyclic aromatic hydrocarbons (PAH). Quantifying the reactivity likeness of bowl-shaped PAHs to C60. The Journal of organic chemistry,1998,63(21):7556-7558
    [265]Velasco J., Marmesat S., Bordeaux O., et al. Formation and evolution of monoepoxy fatty acids in thermoxidized olive and sunflower oils and quantitation in used frying oils from restaurants and fried-food outlets. Journal of Agricultural and Food Chemistry,2004,52(14):4438-4443
    [266]Lin J. S., Chuang K. T., Huang M. S., et al. Emission of ethylene oxide during frying of foods in soybean oil. Food and chemical toxicology,2007,45(4):568-574
    [267]Rudel R. A., Gray J. M., Engel C. L., et al. Food packaging and bisphenol A and bis(2-Ethyhexyl) phthalate exposure:Findings from a dietary intervention. Environmental Health Perspectives,2011, 119(7):914-920
    [268]Schecter A., Lorber M., Guo Y., et al. Phthalate concentrations and dietary exposure from food purchased in New York State. Environmental Health Perspectives,2013,121(4):473-479
    [269]Yen T. H., Lin-Tan D. T., Lin J. L. Food safety involving ingestion of foods and beverages prepared with phthalate-plasticizercontaining clouding agents. Journal of the Formosan Medical Association,2011,110(11):671-684
    [270]Nanni N., Fiselier K., Grob K., et al. Contamination of vegetable oils marketed in Italy by phthalic acid esters. Food Control,2011,22(2):2209-214
    [271]Hauser R., Calafat A. M. Phthalates and human health. Occupational and Environmental Medicine, 2005,62(11):806-818
    [272]Gillatt P. Flavour and aroma development in frying and fried food. In:Rossell J. B. eds. Frying Improving Quality. Woodhead Publishing Limited and CRC Press LLC.2001,226-336
    [273]Pei X. Q., Song M., Guo M., et al. Concentration and risk assessment of phthalates present in indoor air from newly decorated apartments. Atmospheric Environment,2013,68:17-23
    [274]Wieser H. Chemistry of gluten proteins. Food Microbiology,2007,24(2):115-119
    [275]Song Y. H., Zheng Q. Dynamic rheological properties of wheat flour dough and proteins. Trends in food science & technology,2007,18(3):132-138
    [276]Maire M., Rega B., Cuvelier M. E., et al. Lipid oxidation in baked products:Impact of formula and process on the generation of volatile compounds. Food chemistry,2013,141(4):3510-3518
    [277]Pokorny J., Kolakowska A. Lipid-protein and lipid-saccharide interactions. In:Sikorski Z. E., Kolakowska A. eds. Chemical, Biological, and Functional Aspects of Food Lipids. Second Edition. Florida:CRC press LLC,2011.455-472
    [278]冯云,彭增起,崔国梅.烘烤对肉制品中多环芳烃和杂环胺含量的影响.肉类工业,2009,340(8):27-30
    [279]Shahid F., Rubin L. J., D'Souza L. A., et al. Meat flavor volatiles:A review of the composition, techniques of analysis, and sensory evaluation. Critical Reviews in Food Science and Nutrition, 1986,24(2):141-243
    [280]孟晓霞,彭增起,冯云.煎炸对肉制品中杂环胺及多环芳香烃化合物含量的影响及其控制措施.肉类研究,2009,(6):52-54
    [281]Knasmuller S., Schwab C. E., Land S. J., et al. Genotoxic effects of heterocyclic aromatic amines in human derived hepatoma (HepG2) cells. Mutagenesis,1997,14(6):533-540
    [282]Pearson A. M., Chen C., Gray J. I., et al. Mechanism(s) involved in meat mutagen formation and inhibition. Free Radical Biology and Medicine,1992,13(2):161-167
    [283]Vitaglione P., Fogliano V. Use of antioxidants to minimize the human health risk associated to mutagenic/carcinogenic heterocyclic amines in food. Journal of Chromatography B,2004,802(1): 189-199
    [284]Rizzi G. P. The strecker degradation of amino acids:Newer avenues for flavor formation. Food reviews international,2008,24(4):416-435
    [285]Chun H., Ho C. Volatile nitrogen-containing compounds generated from Maillard reactions under simulated deep-fat frying conditions. Journal of Food Lipids,1997,4(4):239-244
    [286]Adams A., Kitryte V., Venskutonis R., et al. Model studies on the pattern of volatiles generated in mixtures of amino acids, lipid-oxidation-derived aldehydes, and glucose. Journal of Agricultural and Food Chemistry,2011,59(4):1449-1456
    [287]Kim Y., Ho C. Formation of pyridines from thermal interaction of glutamine or glutamic acid with a mixture of alkadienals in aqueous and oil media. Journal of Food Lipids,1998,5(3):173-182
    [288]Probst Y. Nutrient composition of chicken meat. RIRDC Publication No 8/210,2009.
    [289]Buttery R. G., Ling L. C., Teranishi R., Roasted lamb fat:Basic volatile components. Journal of Agricultural and Food Chemistry,1977,25(6):1227-1229
    [290]Tang J., Jin Q. Z., Shen G. H., et al. Isolation and identification of volatile compounds from fried chicken. Journal of Agricultural and Food Chemistry,1983,31(6):1287-1292
    [291]Wang Y., Kays S. J. Contribution of volatile compounds to the characteristic aroma of baked 'Jewel' sweetpotatoes. Journal of the American Society for Horticulture Science,2000,125(5): 638-643
    [292](Sayre L. M., Arora P. K., Iyer R. S., et al. Pyrrole formation from 4-hydroxynonenal and primary amines. Chemical Research in Toxicology,1993,6(1):19-22
    [293]Davies W. L., Grunert R. R., Haff R. F., et al. Antiviral activity of 1-adamantanamine (amantadine). Science,1964,144(3620):862-863
    [294]Maugh T. H. Panel urges wide use of antiviral drug. Science,1979,206(4422):1058-1060
    [295]Blanpied T. A., Clarke R. J., Johnson J. W. Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. The Journal of Neuroscience,2005,25(13):3312-3322
    [296]Giacino J. T., Whyte J., Bagiella E., et al. Placebo-controlled trial of Amantadine for severe traumatic brain injury. The New England Journal of Medicine,2012,366:819-826
    [297]Pabbaraju K., Ho K. C. Y., Wong S., Adamantane resistance in circulating human influenza A viruses from Alberta, Canada (1970-2007). Antiviral research,2008,79(2):81-86
    [298]Keyser L. A., Karl M., Nafziger A. N., et al. Comparison of central nervous system adverse effects of amantadine and rimantadine used as sequential prophylaxis of influenza a in elderly nursing home patients. Archives of Internal Medicine,2000,160(10):1485-1488
    [299]Ferrari A. Headache:one of the most common and troublesome adverse reactions to drugs. Current Drug Safety,2006,1(1):43-58
    [300]云环,张朝晖,罗胜亮,等.固相萃取/LC-MS/MS法检测动物源性食品中的金刚烷胺.现代仪器与医疗,2009,15(85):46-49
    [301]陈燕,李晓雯,王柯,等.液相色谱-串联质谱法检测鸡肉中金刚烷胺.食品安全质量检测技术,2014,5(2):408-414
    [302]孙海新,曹立民,林洪,等.HPLC-MS/MS法检测鸡肉食品中金刚烷胺残留.食品工业科技,2013,34(12):61-64
    [303]新京报,肯德基鸡肉样品疑检出金刚烷胺,2012-12-22:http://www.gd.xinhuanet.com/newscenter/2012-12/22/c_114120694.htm
    [304]Velasco J., Marmesat S., Marquez-Ruiz G, et al. Formation of short-chain glycerol-bound oxidation products and oxidised monomeric triacylglycerols during deep-frying and occurrence in used frying fats. European Journal of Lipid Science and Technology,2004,106(11):728-735
    [305]Suomela J. P., Leskinen H., Kallio H. Analysis of isomeric forms of oxidized triacylglycerols using ultra-high-performance liquid chromatography and tandem mass spectrometry. Journal of Agricultural and Food Chemistry,2011,59(15):8095-9100
    [306]Pokorny J., Reblova Z. Effect of food components on changes in frying oil. Food Technology and Biotechnology,1999,37(2):139-143
    [307]张寒琦.仪器分析.北京市:高等教育出版社,2009
    [308]McKelvy M. L., Britt T. R., Davis B. L., et al. Infrared Spectroscopy. Analytical Chemistry,1998, 70(12):119R-177R
    [309]Vlachos N., Skopelitis Y., Psaroudaki M., et al. Applications of Fourier transform-infrared spectroscopy to edible oils. Analytica Chimica Acta,2006,573-574(28):459-465
    [310]Lerma-Garcia M. J., Simo-Alfonso E. F., Bendini A., et al. Rapid evaluation of oxidized fatty acid concentration in virgin olive oil using Fourier-transform infrared spectroscopy and multiple linear regression. Food chemistry,2011,124(2):679-684
    [311]Guillen M. D., Cabo N. Characterization of edible oils and lard by Fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands in the fingerprint region. Journal of the American Oil Chemists'Society,1997,74(10):1281-1286
    [312]Guillen M. D., Cabo N. Relationships between the composition of edible oils and lard and the ratio of the absorbance of specific bands of their Fourier transform infrared spectra. Role of some bands of the fingerprint region. Journal of Agricultural and Food Chemistry,1998,46(5): 1788-1793
    [313]Guillen M. D., Cabo N. Usefulness of the frequency data of the Fourier transform infrared spectra to evaluate the degree of oxidation of edible oils. Journal of Agricultural and Food Chemistry,1999, 47(2):709-719
    [314]Guillen M. D., Cabo N. Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils. Food Chemistry,2002,77(4):503-510
    [315]Inon F. A., Garrigues J. M-, Garrigues S., et al. Selection of calibration set samples in determination of olive oil acidity by partial least squares-attenuated total reflectance-Fourier transform infrared spectroscopy. Analytica Chimica Acta,2003,489(1):59-75
    [316]van de Voort F. R., Ismail A. A., Sedman J., et al. The determination of peroxide value by Fourier transform infrared spectroscopy. Journal of the American Oil Chemists'Society,1994,71(9): 921-926
    [317]Hendl O., Howell J. A., Lowery J., et al. A rapid and simple method for the determination of iodine values using derivative Fourier transform infrared measurements. Analytica Chimica Acta, 2001,427(1):75-81
    [318]Dubois J., van de Voort F. R., Sedman J., et al. Quantitative Fourier transform infrared analysis for anisidine value and aldehydes in thermally stressed oils. Journal of the American Oil Chemists' Society,1996,73(6):787-794
    [319]Christy A. A., Egeberg P. K. Quantitative determination of saturated and unsaturated fatty acids in edible oils by infrared spectroscopy and chemometrics. Chemometrics and Intelligent Laboratory Systems,2006,82(1):130-136
    [320]Moros J., Roth M., Garrigues S., et al. Preliminary studies about thermal degradation of edible oils through attenuated total reflectance mid-infrared spectrometry. Food Chemistry,2009,114(4): 1529-1536
    [321]Tena N., Aparicio R., Garcia-Gonzalez D. L. Thermal deterioration of virgin olive oil monitored by ATR-FTIR analysis of trans content. Journal of Agricultural and Food Chemistry,2009,57(21): 9997-10003
    [322]Kuligowski J., Quintas G., Garrigues S., et al. Direct determination of polymerized triglycerides in deep-frying olive oil by attenuated total reflectance-Fourier transform infrared spectroscopy using partial least squares regression. Analytical and Bioanalytical Chemistry,2010,397(2):861-869
    [323]Tapp H. S., Defernez M., Kemsley E. K. FTIR spectroscopy and multivariate analysis can distinguish the geographic origin of extra virgin olive oils. Journal of Agricultural and Food Chemistry,2003,51(21):6110-6115
    [324]Maggio R. M., Cerretani L., Chiavaro E., et al. A novel chemometric strategy for the estimation of extra.virgin olive oil adulteration with edible oils. Food Control,2010,21(6):890-895
    [325]Gurdeniz G., Ozen B. Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data. Food Chemistry,2009,116(2):519-525
    [326]de la Mata P., Dominguez-Vidal A., Bosque-Sendra J. M., Olive oil assessment in edible oil blends by means of ATR-FTIR and chemometrics. Food Control,2012,23(2):449-455
    [327]Goburdhun D., Jhaumeer S. B., Musruck R. Evaluation of soybean oil quality during conventional frying by FTIR and some chemical indexes. International Journal of Food Sciences and Nutrition,2000,52(1):31-42
    [328]Innawong B., Mallikarjunan P., Irudayaraj J., et al. The determination of fryingoil quality usingFourier transform infrared attenuated total reflectance. LWT-Food Science and Technology, 2004,37(1):23-28
    [329]Du R., Lai K. Q., Xiao Z. Q., et al. Evaluation of the quality of deep frying oils with fourier transform near-infrared and mid-infrared spectroscopy. Journal of Food Science,2011,77(2): C261-C266
    [330]van de Voort F. R., Ismail A. A., Sedman J., et al. Monitoring the oxidation of edible oils by Fourier transform infrared spectroscopy. Journal of the American Oil Chemists'Society,1994, 71(3):243-253
    [331]Yang H., Irudayaraj J., Paradkar M. M. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chemistry,2005,93(1):25-32
    [332]Fetterman M.R. Fourier-transform infrared derivative spectroscopy with an improved signal-to-noise ratio. Optics Letters,2005,30(17):2311-2313
    [333]Ferrari R. A., Schulte E., Esteves W., et al. Minor constituents of vegetable oils during industrial processing. Journal of the American Oil Chemists'Society,1996,73(5):587-592
    [334]Tasan M., Demirci M. Trans FA in sunflower oil at different steps of refining. Journal of the American Oil Chemists'Society,2003,80(8):825-828
    [335]Bansal G., Zhou W., Tan T.W., et al. Analysis of trans fatty acids in deep frying oils by three different approaches. Food Chemistry,2009,116(2):535-541
    [336]Rustan A. C, Drevon C. A. Fatty acids:Structures and properties. Encyclopedia of Life Sciences. London:Nature Publishing,2000
    [337]Kharasch M. S., Fono A., Nudenberg W. The chemistry of hydroperoxides. III. The free-radical decomposition of hydroperoxides. The Journal of Organic Chemistry,1950,15(4):763-774
    [338]Soushida H., Alexander J. C. Changes in the structure of soybean triacylglycerols due to heat. Lipids,1984,19(8):589-593
    [339]Guillen M. D., Goicoechea E. Detection of primary and secondary oxidation products by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (NMR) in sunflower oil during storage. Journal of Agricultural and Food Chemistry,2007,55(26):10729-10736
    [340]Sjovall O., Kuksis A., Kallio H. Tentative identification and quantification of TAG core aldehydes as dinitrophenylhydrazones in autoxidized sunflowerseed oil using reversed-phase HPLC with electrospray lonization MS. Lipids,2003,38(11):1179-1190
    [341]Dziuba B., Babuchowski A., Nalecz D., et al. Identification of lactic acid bacteria using FTIR spectroscopy and cluster analysis. International Dairy Journal,2007,17(3):183-189
    [342]Yang H., Irudayaraj J., Paradkar M. M. Discriminant analysis of edibleoils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chemistry,2005,93(10):25-32
    [343]Sherazi S. T. H., Talpur M. Y, Mahesar S. A., et al. Main fatty acid classes in vegetable oils by SB-ATR-Fourier transform infrared (FTIR) spectroscopy. Talanta,2009,80(2):600-606
    [344]Kostik V., Memeti S., Bauer B. Fatty acid composition of edible oils and fats. Journal of Hygienic Engineering and Design,2012,4:112-116
    [345]Stuart B. H. Infrared Spectroscopy:Fundamentals and Applications. John Wiley & Sons, Ltd, 2004
    [346]Aparicio R., Aparicio-Ruiz R. Authentication of vegetable oils by chromatographic techniques. Journal of Chromatography A,2000,881(1-2):93-104
    [347]Yang H., Irudayaraj J. Comparison of near-infrared, fourier transform-infrared, and fourier transform-raman methods for determining olive pomace oil adulteration in extra virgin olive oil. Journal of the American Oil Chemists'Society,2001,78(9):889-895
    [348]Hu H., Toyoda K., Ihara I. Discrimination of olive oil adulterated with vegetable oils using dielectric spectroscopy. Journal of food engineering,2010,96(2):167-171
    [349]Blakley C. R., Carmody J. J., Vestal M. L. A new soft ionization technique for mass spectrometry of complex molecules. Journal of the American Chemical Society,1980,102(12):5931-5933
    [350]Fenn J. B., Mann M., Meng C. K., et al. Electrospray ionization-principles and practice. Mass Spectrometry Reviews,1993,91(1):37-70
    [351]Gaskell S. J. Electrospray:Principles and practice. Journal of mass spectrometry,1997,32(7): 677-688
    [352]Bruins A. P. Mechanistic aspects of electrospray ionization. Journal of Chromatography A,1998, 794(1-2):345-357
    [353]Cheng X., Camp D. G., Wu Q., et al. Molecular weight determination of plasmid DNA using electrospray ionization mass spectrometry. Nucleic Acids Research,1996,24(11):2183-2189
    [354]Jiang H., Desaire H., Butnev V. Y., et al. Glycoprotein profiling by electrospray mass spectrometry. Journal of the American Society for Mass Spectrometry,2004,15(5):750-758
    [355]Wilm M. Principles of electrospray ionization. Molecular & Cellular Proteomics,2011,10:1-8
    [356]Ho C. S., Lam C. W. K., Chan M. H. M., et al. Electrospray ionisation mass spectrometry principles and clinical applications. The Clinical Biochemist Reviews,2003,24(1):3-12
    [357]Wu X. L., Prior R. L. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States:Fruits and berries. Journal of Agricultural and Food Chemistry,2005,53(7):2589-2599
    [358]Pellati F., Orlandini G., Pinetti D., et al. HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts. Journal of Pharmaceutical and Biomedical Analysis,2011, 55(5):934-948
    [359]Hillenkamp F., Karas M., Beavis R. C., et al. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Analytical Chemistry,1991,63(24):1193A-1203A
    [360]Jagtap R. N., Ambre A. H. Overview literature on matrix assisted laser desorption ionization mass spectroscopy (MALDI MS):Basics and its applications in characterizing polymeric materials. Bulletin of Materials Science,2005,28(6):515-528
    [361]Wiley W. C., McLaren I. H. Time-of-flight mass spectrometer with improved resolution. Review of Scientific Instruments,1955,26(12):1150-1157
    [362]Chernushevich I. V., Loboda A. V., et al. Thomson B. A. An introduction to quadrupole-time-of-flight mass spectrometry. Journal of Mass Spectrometry,2001,36(8):849-965
    [363]Chaurand P., Luetzenkirchen F., Spengler B. Peptide and protein identification by matrix-assisted laser desorption ionization (MALDI) and MALDI-post-source decay time-of-flight mass spectrometry. Journal of the American Society for Mass Spectrometry,1999,10(2):91-103
    [364]Marvin L. F., Roberts M. A., Fay L. B. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clinica Chimica Acta,2003,337(1-2):11-21
    [365]Jurinke C., Oeth P., van den Boom D. MALDI-TOF mass spectrometry A versatile tool for high-performance DNA analysis. Molecular biotechnology,2004,26(2):147-163
    [366]Nordhoff E., Kirpekar F. Roepstorff P. Mass spectrometry of nucleic acids. Mass Spectrometry Reviews,1996,15(2):67-138
    [367]Cozzolino R., De Giulio B. Application of ESI and MALDI-TOF MS for triacylglycerols analysis in edible oils. European Journal of Lipid Science and Technology,2011,113(2):160-167
    [368]Neff W. E., Byrdwell W. C. Soybean oil triacylglycerol analysis by reversed-phase high-performance liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry. Journal of the American Oil Chemists'Society,1995,72(10):1185-1191
    [369]Yoshida H., Alexander J. C. Changes in the structure of soybean triacylglycerols due to heat. Lipids,1984,19(8):589-593
    [370]Cossignani L., Simonetti M. S., Neri A., et al. Changes in olive oil composition due to microwave heating. Journal of the American Oil Chemists'Society,1998,75(8):931-937
    [371]Guyon F., Absalon C., Eloy A., et al. Comparative study of matrix-assisted laser desorption/ionization and gas chromatography for quantitative determination of cocoa butter and cocoa butter equivalent triacylglycerol composition. Rapid Communications in Mass Spectrometry, 2003,17(20):2317-2332
    [372]Kaufman M., Wiesman Z. Pomegranate oil analysis with emphasis on MALDI-TOF-MS triacylglycerol fingerprinting. Journal of Agricultural and Food Chemistry,2007,55(25): 10405-10413
    [373]Picariello G., Sacchi R., Addeo F. One-step characterization of triacylglycerols from animal fat by MALDI-TOF MS. European Journal of Lipid Science and Technology,2007,109(5):511-524
    [374]Jakab A., Nagy K., Heberger K., et al. Differentiation of vegetable oils by mass spectrometry combined with statistical analysis. Rapid Communications in Mass Spectrometry,2002,16(24): 2291-2297
    [375]Saraiva S. A. Cabral E. C., Eberlin M. N., et al. Amazonian vegetable oils and fats:fast typification and quality control via triacylglycerol (TAG) profiles from dry matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry fingerprinting. Journal of Agricultural and Food Chemistry,2009,57(10):4030-4034
    [376]Chapagain B. P., Wiesman Z. MALDI-TOF/MS fingerprinting of triacylglycerols (TAGs) in olive oils produced in the Israeli Negev Desert. Journal of Agricultural and Food Chemistry,2009,57(4): 1135-1142
    [377]Lay Jr. J. O., Liyanage R., Durham B., et al. Rapid characterization of edible oils by direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis using triacylglycerols. Rapid Communications in Mass Spectrometry,2006,20(6):952-958
    [378]Vichi S., Lazzez A., Grati-Kamoun N., et al. Modifications in virgin olive oil glycerolipid fingerprint during olive ripening by MALDI-TOF MS analysis. LWT-Food Science and Technology,2012,48(1):24-29
    [379]Zhang H. X., Smith M. A., Purves R. W. Optimization of triacylglycerol-estolide analysis by matrix-assisted laser desorption/ionization-mass spectrometry. Journal of the American Oil Chemists'Society,2014, online:DOI 10.1007/s11746-014-2437-y
    [380]Schiller J., Suβ R., Petkovic M., et al. Thermal stressing of unsaturated vegetable oils effects analysed by MALDI-TOF mass spectrometry,1H and 31P NMR spectroscopy. European Food Research and Technology,2002,215(4):282-286
    [381]Picariello G, Paduano A., Sacchi R., et al. MALDI-TOF mass spectrometry profiling of polar and nonpolar fractions in heated vegetable oils. Journal of Agricultural and Food Chemistry,2009, 57(12):5391-5400
    [382]Jung M. Y., Yoon S. H., Min D. B. Effects of processing steps on the contents of minor compounds and oxidation of soybean oil. Journal of the American Oil Chemists'Society,1989, 66(1):118-120
    [383]Park Y. W., Jeong M. K., Park C. U., et al. Distribution of triacylglycerols and fatty acids in soybean oil with thermal oxidation and methylene blue photosensitization. Journal of the American Oil Chemists'Society,2011,88(3):373-380
    [384]Brockerhoff H. A stereospecific analysis of triglycerides. Journal of Lipid Research,1965,6: 10-15
    [385]Brockerhoff H. Stereospecific analysis of triglycerides. Lipids,1971,6(2):942-956
    [386]Andrikopoulos N. K. Triglyceride species compositions of common edible vegetable oils and methods used for their identification and quantification. Food Reviews International,2002,18(1): 71-102
    [387]Byrdwell W. C., Neff W. E. Non-volatile products of triolein produced at frying temperatures characterized using liquid chromatography with online mass spectrometric detection. Journal of Chromatography A,1998,852(2):417-432
    [388]Byrdwell W. C., Neff W. E.2002, Dual parallel electrospray ionization and atmospheric pressure chemical ionization mass spectrometry (MS), MS/MS and MS/MS/MS for the analysis of triacylglycerols and triacylglycerol oxidation products. Rapid Communications in Mass Spectrometry,2002,16(4):300-319
    [389]Velasco J., Marmesat S., Berdeaux O., et al. Quantitation of short-chain glycerol-bound compounds in thermoxidized and used frying oils. A monitoring study during thermoxidation of olive and sunflower oils. Journal of Agricultural and Food Chemistry,2005,53(10):4006-4011
    [390]Marquez-Ruiz G., Garces R., Leon-Camacho M., et al. Thermoxidative stability of triacylglycerols from mutant sunflower seeds. Journal of the American Oil Chemists'Society,1999, 76(10):1169-1174
    [391]Shimizu M., Moriwaki J., Nishide T., et al. Thermal deterioration of diacylglycerol and triacylglycerol oils during deep-frying. Journal of the American Oil Chemists'Society,2004,81(6): 571-576
    [392]Lee J. Y., Jin M. K. Steric hindrance in the free radical polymerization of aryloxyethyl vinyl ethers containing electron-deficient olefin groups. Bulletin Korean Chemical Society,2000,21(6): 613-617
    [393]Ren Y. P., Kong X. J., Hu X. Y, et al. Influence of steric hindrance of organic ligand on the structure of keggin-based coordination polymer. Inorganic Chemistry,2006,45(10):4016-4023
    [394]Hanst P. L., Calvert J. G. The thermal decomposition of dimethyl peroxide:The oxygen-oxygen bond strength of dialkyl peroxides. The Journal of Physical Chemistry,1959,63(1):104-107
    [395]Blumenthal M. M. A new look at the chemistry and physics of deep-fat frying Food Technology, 1991,45(2):68-71,94
    [396]Esen H., Kusefoglu S. H. Photolytic and free-radical polymerization of cinnamate esters of epoxidized plant oil triglycerides. Journal of Applied Polymer Science,2003,89(14):3882-3888
    [397]Garner P., Park J. M. The synthesis and configurational stability of differentially protected β-hydroxy-a-amino aldehydes. The Journal of Organic Chemistry,1987,52(12):2361-2364
    [398]Saggiomo V., Luning U. On the formation of imines in water-a comparison. Tetrahedron Letters, 2009,50(32):4663-4665
    [399]Gibert J. A., Bendsen N. T., Tremblay A., et al. Effect of proteins from different sources on body composition. Nutrition, Metabolism and Cardiovascular Diseases,2011,21 (Supplement 2): B16-B31
    [400]靳林溪,潘翠芳,王石,等.“氧化鸡脂-半胱氨酸”反应体系的肉香味物质及其形成机制.食品科学,2011,32(19):1-7
    [401]Meyer B. Elemental Sulfur. Chemical Reviews,1976,76(3):367-388
    [402]Wettasinghe M., Vasanthan T., Temelli F., et al. Volatile flavour composition of cooked by-product blends of chicken, beef and pork a quantitative GC-MS investigation. Food Research International,2001,34(2-3):149-158
    [403]Blank I. Sensory relevance of volatile organic sulfur compounds in food. In:Reineccius G A., Reineccius T. A., eds. Heteroatomic Aroma Compounds; Washington, DC:American Chemical Society,2002,25-53
    [404]Tressl R., Wondrak G. T., Kruger R. P., et al. New melanoidin-like Maillard polymers from 2-deoxypentoses. Journal of Agricultural and Food Chemistry,1998,46(1):104-110
    [405]Hidalgo F. J., Zamora R. Fluorescent pyrrole producta from carbonyl-amine reactions. Journal of Biological Chemistry,1993,268:16190-16197
    [406]Hofmann T. Studies on the relationship between molecular weight and the color potency of fractions obtained by thermal treatment of glucose/amino acid and glucose/protein solutions by using ultracentrifugation and color dilution techniques. Journal of Agricultural and Food Chemistry, 1998,46(10):3891-3895