褪黑素和聚ADP-核糖聚合酶-1在大鼠记忆障碍中的作用及其相关分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer’s disease, AD)的两大重要的病理学特征是神经细胞内的大量神经原纤维缠结(neurofibrillary tangles, NFT)和细胞间沉积的大量老年斑(senile plaques, SP)。神经原纤维缠结主要由异常过度磷酸化的骨架蛋白tau构成,而老年斑的核心成分是由β-淀粉样前体蛋白(β-amyloid precursor protein, APP)降解产生的β-淀粉样多肽(β-amyloid, Aβ)。目前研究认为蛋白激酶和蛋白磷酸酯酶系统的失衡是导致AD中tau蛋白过度磷酸化的主要原因,然而对磷酸化系统失衡的上游调控因子尚知之甚少。有报道证明老年人褪黑素(melatonin, MT)水平下降,在AD病人尤为明显,我们推测老年人褪黑素水平下降可能和AD发生有关,但是尚缺乏直接证据。我们最近发现褪黑素可以对抗花萼海绵诱癌素诱导的神经细丝损伤和神经毒性作用。本实验中,给予褪黑素合成抑制剂——氟哌啶醇,观察对大鼠的空间记忆的影响,tau蛋白磷酸化水平,蛋白磷酸酯酶PP2A活性改变并探讨其可能机制。结果如下:(1)血清中褪黑素含量测定:为了检测给予氟哌啶醇对大鼠褪黑素合成的抑制作用,我们采用高压液相(HPLC)检测大鼠血清中褪黑素的含量。结果显示:和对照组相比,给予氟哌啶醇26小时以后,血清中褪黑素的含量明显下降;外源性补充褪黑素,并未发现褪黑素水平显著升高,可能和褪黑素的代谢半衰期较短有关,具体原因见讨论部分。(2)抑制褪黑素的生物合成对大鼠空间记忆的影响:为了检测抑制大鼠褪黑素的生物合成对大鼠空间记忆的影响,我们采用Morris水迷宫检测大鼠的空间记忆。结果表明,给予氟哌啶醇后,大鼠找到平台的潜伏期明显变长;外源性补充褪黑素可以部分改善大鼠的学习障碍,但不同剂量之间没有明显差异。(3)抑制大鼠褪黑素的生物合成对tau蛋白磷酸化的作用:为了检测抑制大鼠褪黑素的生物合成对tau蛋白磷酸化的影响,我们发现给予氟哌啶醇以后,免疫印迹和免疫组化结果显示总的tau蛋白表达水平没有明显变化,在PHF-1(Ser396/404)位点磷酸化水平增强,而非磷酸化的tau蛋白在tau-1(Ser198/199/202)位点的免疫反应减弱,表明抑制大鼠的褪黑素生物合成可引起tau蛋白发生过度磷酸化。(4)抑制大鼠褪黑素的生物合成对PP2A活性的影响:为阐明抑制大鼠褪黑素的生物合成tau蛋白发生过度磷酸化的机制,我们监测了PP2A的活性变化。采用γ-32P标记的特殊底物法进行活性分析。与对照组相比,给予氟哌啶醇以后,PP2A的活性下降明显,补充低剂量的褪黑素,PP2A的活性未发现明显改善,高剂量组PP2A活性则显著性提高。(5)抑制大鼠褪黑素的生物合成对氧化应激的影响:褪黑素作为体内的抗氧化剂,其合成被抑制后,体内的氧化应激可能增强,氧化应激可能影响PP2A的活性,从而影响tau蛋白的磷酸化。具体检测结果如下:给予氟哌啶醇以后,SOD活性显著下降,MDA的含量增多,补充褪黑素以后,SOD的活性和MDA的含量可以恢复到正常水平,二者之间没有明显差异。结论:以上结果提示:给予大鼠氟哌啶醇以后,可以抑制大鼠褪黑素的生物合成,抑制PP2A的生物活性,使大鼠的空间记忆发生障碍,tau蛋白在PHF-1位点发生过度磷酸化;氧化应激的增强可能是PP2A活性下降的机制之一;外源性补充褪黑素,可以抑制氧化应激,增强PP2A的活性,改善大鼠的空间记忆障碍,降低tau蛋白的过度磷酸化。
     过度磷酸化的tau蛋白作为AD两大病理特征之一的神经原纤维缠结(NFTs)的主要成分,在AD的发病过程中起重要作用。有研究表明,NFT的水平和痴呆程度正相关,而蛋白激酶(如Gsk3, cdk5, MAPK, PKA等)和蛋白磷酸酯酶(PP1, PP2A等)系统的失衡是导致AD中tau蛋白过度磷酸化的主要原因。本文主要探讨抑制大鼠褪黑素的生物合成以后,蛋白激酶PKA和GSK-3的活性改变,探讨tau蛋白不同位点磷酸化的可能发生机制。用氟哌啶醇抑制褪黑素的生物合成,通过γ-P32标记的酶的活性测定方法检测PKA和GSK-3的活性,结果显示:(1)抑制大鼠褪黑素的生物合成后,PKA的活性比正常水平升高1.9倍,外源性补充褪黑素,可以明显抑制氟哌啶醇引起的PKA活性升高,同时基础水平的PKA也被抑制。抑制褪黑素生物合成时,GSK-3的活性与对照组相比下降不明显,而外源性补充褪黑素可以抑制GSK-3的活性。(2)抑制大鼠褪黑素的生物合成对不同位点tau蛋白磷酸化的影响:抑制褪黑素的生物合成以后,tau蛋白在pS214和M4位点发生过度磷酸化,而总的tau蛋白水平变化不明显。(3)结论:抑制大鼠褪黑素的生物合成,可以激活PKA引起tau蛋白在pS214和M4位点发生过度磷酸化,而GSK-3活性没有明显改变。直接补充外源性褪黑素可以同时抑制PKA和GSK-3的活性。
     在阿尔茨海默病(Alzheimer’s Disease, AD)患者脑内神经细胞骨架蛋白神经细丝(Neurofilament, NF)发生了过度磷酸化,同时褪黑素的水平下降,但二者的内在关系不明。本部分探讨了抑制大鼠褪黑素的生物合成和神经细丝磷酸化之间的关系并探讨其可能机制。结果如下:(1)抑制大鼠褪黑素的生物合成对大鼠海马神经细丝磷酸化的影响:抑制大鼠褪黑素的生物合成以后,我们用免疫印迹和免疫组化分别检测了海马神经细丝的磷酸化情况。给予氟哌啶醇以后,与对照组相比,大鼠海马神经元磷酸化的神经细丝明显增多,非磷酸化的神经细丝下降;外源性补充褪黑素,则可减轻神经细丝的磷酸化。免疫组化的结果与免疫印迹的结果相似。(2)抑制大鼠褪黑素的生物合成对大鼠皮质神经细丝磷酸化的影响:免疫组化与免疫印迹的结果显示:给予氟哌啶醇以后,与对照组相比,大鼠海马神经元磷酸化的神经细丝明显增多,非磷酸化的神经细丝下降;外源性补充褪黑素,则可减轻神经细丝的磷酸化。(3)抑制大鼠褪黑素的生物合成对大鼠cdk-5活性的影响:结果显示,给予氟哌啶醇以后,海马和皮质的cdk-5的活性比对照组升高了大约1.5倍,外源性补充褪黑素能逆转cdk-5的活性。结论:抑制褪黑素的生物合成可以激活cdk-5导致神经细丝的过度磷酸化,而外源性补充褪黑素可以抑制cdk-5的活性并抑制氟哌啶醇诱导的神经细丝过度磷酸化。
     长期记忆的形成需要基因表达和新的蛋白质合成,海马突触可塑性则是信息存储和长期记忆的基础。大量研究资料表明神经元的兴奋可以影响细胞的形态和功能,但是神经元的兴奋如何保持持久性,目前尚不清楚。Cohen-Armon等在Aplysia上研究发现,PARP-1(polyADP-ribose-polymerase-1,聚ADP-核糖聚合酶-1)可参与基因的调控和长期记忆的形成,然而,对PARP-1是否影响海马依赖的记忆目前还不清楚。本研究通过给予3-Aminobenzamide(3AB)抑制PARP-1或NGF(Nerve growth factor)激活PARP-1,观察PARP-1对大鼠海马参与的记忆,包括长期记忆(long-term memory, LTM)和短期记忆(short-term memory, STM)的影响,探讨其可能的分子机制和信号途径。结果显示:(1)PARP-1抑制或激活可影响大鼠海马依赖的联想记忆(Contextual memory),而不依赖海马的(Cue memory)记忆则不受到影响。(2)采用不同浓度的3AB抑制PARP-1,用电跳台观察大鼠的短期记忆和长期记忆的影响,发现低浓度(1 mM)3AB对大鼠的短期记忆和长期记忆无明显作用;当浓度增加(50 mM, 100 mM)时,大鼠的长期记忆受到抑制,但短期记忆仍未见明显改变。(3)抑制PARP-1降低大鼠的空间记忆能力;同时给予PARP-1激活剂NGF,大鼠的空间记忆得到改善;单独给予NGF可促进大鼠的空间记忆。(4)采用双向电泳加抗体检测PARP-1等电点偏移的情况以评估PARP-1的活性,发现3AB使PARP-1活性下降,而NGF激活PARP-1。(5)给予3AB抑制PARP-1时,蛋白polyADP-ribosylation作用减弱,再给予NGF,则部分逆转该效应;单独NGF处理可使蛋白polyADP-ribosylation作用明显增强。(6)抑制PARP-1可以损伤大鼠的长时程增强(long-term potentiation, LTP)。不同浓度的3AB,都可以抑制大鼠LTP的斜率和幅度。(7)给予大鼠3AB时,PKA的含量与对照组相比没有明显改变,而再给予NGF或单独给予NGF,PKA的含量明显增加。免疫组织化学的结果则显示,给予3AB组与对照组相比,海马CA3区着色增强,CA1区海马着色反而减弱;先给予3AB以后再给予NGF,与3AB组相比,海马CA3区着色减弱,CA1区海马着色反而增强;NGF组结果类似。提示PARP-1对海马的不同分区作用可能不尽相同。而3AB组于对照组相比,PKA的活性轻微下降,再给予NGF,PKA的活性趋于正常,单独给予NGF,可以显著升高PKA的活性。(8)利用放射免疫实时测定法检测cAMP的含量,发现给予3AB以后,cAMP的含量明显下降;再给予NGF以后,cAMP的含量有所增加;单独给予NGF以后,cAMP的含量明显高于对照组和3AB组。(9)给予3AB导致CREB的磷酸化受到抑制,再给予NGF以后,CREB的磷酸化恢复正常,单独给予NGF,与3AB组相比,磷酸化增强,但对照组相比没有明显差异。(10)采用PCR检测记忆相关基因PKA和NF-κB的mRNA的表达情况,结果显示,抑制PARP-1对PKA和NF-κB的表达没有明显影响,推测可能和其他基因有关。结论:(i) 3AB(50 mM)可抑制大鼠PARP-1的活性,NGF则可激活PARP-1;(ii)抑制PARP-1的活性可损伤大鼠海马依赖的长期记忆和空间记忆;(iii)抑制PARP-1可降低大鼠的LTP;(iv)抑制PARP-1时,cAMP含量下降;反之cAMP含量升高,同时PKA的活性相应发生变化;(v)抑制PARP-1的活性时,CREB的磷酸化受到抑制;(vi)与记忆相关基因PKA和NF-κB mRNA水平未受到影响。
Alzheimer’s disease is characterized by intracellular neurofibrillary tangles and extracellular senile plaques. Neurofibrillary tangles are composed of aberrantly hyperphosphorylated tau protein, andβ-amyloid (Aβ), a peptide derived from cleavage ofβ-amyloid precursor protein (APP), is the major component of senile plaques. Numerous studies have demonstrated that an imbalanced regulation of specific phosphatases and kinases in neurons represents a critical step for the cytoskeleton hyperphosphorylation. But till now the upstream factors leading to cytoskeleton hyperphosphorylation are not defined. Lots of evidences suggest that melatonin deficit may serve as an upstream effecter in AD-like pathology and melatonin may be a potent drug for the therapy of AD. Recent studies show that the level of melatonin in serum is decreased in aged people, especially in AD patients and the cognitive function of the patients is improved after melatonin supplement. We have found recently that melatonin protects SH-SY5Y neuroblastoma cells from calyculin A-induced neurofilament impairment and neurotoxicity. Growing evidences suggest that melatonin deficit may serve as an upstream effector in AD-like pathology. The aim of the present study is to investigate the in vivo effect of inhibiting melatonin biosynthesis on spatial memory retention of rats and tau phosphorylation, and the possible underlying mechanisms. The results as follows: (1) Effect of haloperidol on serum melatonin level: To confirm the suppression of melatonin synthesis by haloperidol, the serum level of melatonin was measured by HPLC. The melatonin level decreased dramatically compared with vehicle control after administration of haloperidol. We also observed that exogenous supplementation of melatonin did not significantly restore the serum level of melatonin. (2) Effect of inhibited biosynthesis of melatonin on spatial memory of rats: To detect the effect of inhibited biosynthesis of melatonin on spatial memory of rats, Morris water maze test was used. Compared with vehicle-control rats, injection of haloperidol significantly prolonged the latency of rats to find the hidden platform, and these rats took a random searching strategy for the platform in the maze. Supplementation of melatonin with both low and high doses before and during haloperidol injection partially restored the haloperidol-induced impairment in spatial memory. (3) Effect of inhibition melatonin synthesis on tau phosphorylation: To detect the effect of inhibited melatonin synthesis on tau phosphorylation, we carried out western blot by using phosphorylation-dependent mAb tau-1 and PHF-1, as well as nonphosphorylation dependent pAb R134d. We found that the immunoreactivity of tau-1 was remarkably weaker, and of PHF-1 was obviously stronger in haloperidoltreated rats than in vehicle control rats. The immunoreactivity of tau was partially restored to the vehicle control level by supplement of melatonin both with low and high doses. The treatments used in the study did not alter the immunoreactivity of total tau stained by R134d. These results suggested that tau was hyperphosphorylated at Ser199/202 (tau-1 epitope) and Ser396/404 (PHF-1 epitope) when synthesis of melatonin was inhibited, and the supplement of melatonin partially arrested the haloperidol-induced hyperphosphorylation of tau at the above epitopes. (4) Effect of haloperidol and melatonin on the activity of PP2A: To determine the connection of PP2A with haloperidol-induced melatonin deficits and tau hyperphosphorylation, we measured the activity of PP2A by 32P-labeling assay using specific substrates. We found that the infusion of haloperidol significantly inhibited PP2A activity. The supplementation with melatonin at the high dose not only restored but also significantly elevated PP2A activity. An obvious increased activity of PP2A was also observed in low dose melatonin supplemented group, but it was not statistically significant. (5) Effect of inhibition of melatonin biosynthesis on the oxidative stress: Melatonin is a well-known antioxidant. It was shown that treatment of the rats with haloperidol significantly depressed the activity of SOD with a concomitant elevation of MDA. Supplementation of high and low doses of melatonin significantly restored SOD activity and arrested MDA overproduction. Conclusion: In summary, we have found in the present study (i) that inhibition of melatonin biosynthesis by haloperidol induces hyperphosphorylation of tau at both PHF-1 and tau-1 epitopes and compromises spatial memory retention in rats; (ii) that inhibition of melatonin biosynthesis inactivates PP2A, which may play a major role in haloperidol-induced tau hyperphosphorylation; (iii) that administration of haloperidol inhibits SOD and elevates MDA which might be the upstream alterations of decreased PP2A activity, and as well as tau hyperphosphorylation and spatial memory impairment; (iv) that melatonin supplementation can at least partially reverse elevated haloperidol-induced oxidative stress, tau hyperphosphorylation/PP2A inhibition, and as well as behavioral changes.
     Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is characterized by the presence of two pathological hallmarks: extracellular b-amyloid deposits in senile plaques and intracellular neurofibrillary tangles (NFTs). It is reported that the abundance of NFTs correlates well with the clinical degree of dementia and numerous studies have demonstrated that tau hyperphosphorylation plays a crucial role in the formation of NFTs. An imbalanced regulation of specific phosphatases and kinases in neurons represents a critical step for the initiation of tau hyperphosphorylation. The aim of this study is to investigate the effect of inhibiting melatonin biosynthesis on activities of protein kinase A (PKA), glycogen synthase kinase-3 (GSK-3) and tau phosphorylation at PS214 and M4 epitopes using haloperidol, a specific inhibitor of 5-hydroxyindole-O-methyltransferase.By 32P-labeling assays of protein kinase activities and western blot, we found that: Haloperidol injection through the lateral ventricle and intraperitoneal reinforcement significantly stimulated PKA activity with a concurrent hyperphosphorylation of tau at M4 (Thr231/Ser235) and pS214 (Ser214) sites. Prior treatment of the rats using melatonin supplement for one week and reinforcement during the haloperidol administration arrested PKA activity and attenuated tau hyperphosphorylation. GSK-3 activity showed no obvious change after haloperidol injection, however, melatonin supplements and reinforcements during haloperidol infusion inactivated basal activity of GSK-3. We concluded that: Decreased melatonin may be involved in Alzheimer-like tau hyperphosphorylation, and overactivation of PKA may play a crucial role in this process.
     Decreased level of melatonin and hyperphosphorylation of neurofilament proteins have been reported in Alzheimer’s disease (AD). However, the direct evidence linking melatonin and neurofilament phosphorylation is still lacking. Here, we investigated the effect of inhibiting melatonin biosynthesis on phosphorylation of neurofilament proteins and the involvement of cyclin-dependent kinase 5 (cdk-5) in rats. We observed that injection of haloperidol, a specific inhibitor of 5-hydroxyindole-O-methyltransferase, resulted in significantly decreased level of serum melatonin with a concomitantly increased phosphorylation of neurofilament proteins and activation of cdk-5 in rats. Exogenous supplementation of melatonin partially arrested the hyperphosphorylation of neurofilament and the activation of cdk-5. These results suggest that inhibition of melatonin biosynthesis may activate cdk-5 and thus induces Alzheimer-like hyperphosphorylation of neurofilament proteins.
     Synaptic activity-dependent de novo gene transcription is crucial for long-lasting neuronal plasticity and long-term memory (LTM), while short term memory (STM) involves gene expression-dependent synaptic plasticity in the hippocampus. PolyADP-ribose-polymerase-1 (PARP-1) is a multifunctional enzyme that can modulate gene expression and LTM. The cAMP-PKA pathway is involved in CREB activation, which is recognized as a molecular switch for LTM formation in hippocampus. Little is known whether PARP-1 is involved in the formation of hippocampus-dependent memory. Here, we studied the effect of PARP-1 on hippocampus-dependent memory in rats and the underlying mechanisms. The PARP-1 inhibitor (3-Aminobenzamide) and activator (NGF) were adiministered respectively to rats through lateral ventricle injection. The results were as follows: (1) Inhibition of PARP-1 by injection of 3AB (50 mM, 20μl) impaired the hippocampus-dependent contextual memory but not the cue memory measured by fear conditioning tasks (2) Injection of 3AB at 50 mM and 100 mM inhibited LTM but not STM measured by inhibitory avoidance tasks, and 3AB at 1mM did not affect the memory of the rats. (3) 3AB (50 mM, 20μl) impaired the spatial memory measured by Morris water maze, and the impairment was partially improved by simultaneous administration of NGF. Adminitration of NGF alone stimulated the memory functions. (4) The relative amount of polyADP-ribosylated PARP-1, representing activated PARP-1, in 3AB (50 mM, 20μl) treated hippocampal neurons was significantly decreased, and a significant shift to acid PI was found in samples treated with NGF. (5) Western blotting results showed that polyADP-ribosylation protein decreased when the activity of PARP-1 was inhibited by 3AB. Activition of PARP-1 by NGF increased the level of polyADP-ribosylation proteins. Immunocytochemical results also demonstrated that after treated 3AB, staining with PAR was much weaker in hippocampus and cortex, while staining of 3AB+NGF group was stronger than group treated with 3AB alone. (6) Inhibition of PARP-1 impaired the LTP. When the high-dose 3AB was given (3AB50, 50mM; 3AB100, 100mM), the ampitude and slope of LTP were decreased compared with the controls. No statistical significance between 3AB1 and control group was observed. (7) Western blotting and quantitative analysis of PKAcαshowed that there was no significance between 3AB group and control. The level of PKAcαwas increased after NGF was administered. The activity of PKA was significantly decreased after inhibition of PARP-1 by 3AB, whereas NGF could provent 3AB-induced inhibition of the kinase. Additionally, NGF alone could increase significantly the activity of PKA. The results of immunohistochemistry in hippoampus showed that the staining of PKA was much stronger in region CA3, while weaker in region CA1 compared with control when 3AB was adiministered. When the animals were then treated with NGF, the staining became weaker in CA3 but stronger in CA1 region than that of 3AB group; In animals treated with NGF alone, the staining of PKA was the weakest in CA3 and the strongest in CA1 region. (8) The cAMP level was significantly decreased in the group treated with 3AB while NGF could increase the level of cAMP. cAMP level was significantly increased when NGF was administrated alone. (9) Western blots of homogenized tissue from rat hippocampal neurons were probed with anti-CREB and anti-phospho-CREB (p-CREB) antibodies. The total amount of CREB did not change in each group. The phosphorylated CREB level was decreased in 3AB-treated animals, and NGF supplementation could provent the inhibition of CREB phosphorylation. But when NGF was given alone, the phosphorylation level of CREB did not increase compared with control. (10) The mRNA levels of memory-associated genes, including PKA cαand NF-κB, were measured by RT-PCR and no change was found. Conclusion: these results disclose a novel hierarchical transcriptional network involving PARP-1, PKA, and CREB that leads to concerted nuclear transduction of synaptic signals in neurons, accounting for the critical function of PARP-1 in learning and memory.
引文
[1] Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986;261:6084-9.
    [2] Drewes G, Ebneth A, Mandelkow EM. MAPs, MARKs and microtubule dynamics. Trends Biochem Sci. 1998;23:307-11.
    [3] Grundke-Igbal I, Igbal K, Tung Y-C, Quinlan M, Wisniewski HM, Prinder L. Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer’s cytoskelecal pathology. Proc Natl Acad USA 1986;83:4913-7.
    [4] Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I. Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol. 1997:56; 70-8.
    [5] Saito T, Ishiguro K, Uchida T, Miyamoto E, Kishimoto T, Hisanaga S. In situ dephosphorylation of tau by protein phosphatase 2A and 2B in fetal rat primary cultured neurons. FEBS Lett. 1995;376:238-42.
    [6] Reiter RJ, Tan DX, Osuna C, Gitto E. Actions of melatonin in the reduction of oxidative stress. J Biomed Sci. 2000;7:444-58.
    [7] Uchida K, Okamoto N, Ohara K, Morita Y.Daily rhythm of serum melatonin in patients with dementia of the degenerate type. Brain Res. 1996;717:154-9.
    [8] Asayama K, Yamadera H, Ito T, Suzuki H, Kudo Y, Endo S. Double blind study of melatonin effects on the sleep-wake rhythm, cognitive and non-cognitive functions in Alzheimer type dementia. J Nippon Med Sch. 2003;70:334-41.
    [9] Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF. Early neuropathological Alzheimer's changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res. 2003;35:125-30.
    [10] Pappolla MA, Simovich MJ, Bryant-Thomas T, Chyan YJ, Poeggeler B, Dubocovich M, Bick R, Perry G, Cruz-Sanchez F, Smith MA. The neuroprotective activities of melatonin against the Alzheimer beta-protein are not mediated bymelatonin membrane receptors. J Pineal Res. 2002;32:135-42.
    [11] Lahiri DK. Melatonin affects the metabolism of the beta-amyloid precursor protein in different cell types. J Pineal Res. 1999;26:137-46.
    [12] Liu SJ, Wang JZ. Alzheimer-like tau phosphorylation induced by wortmannin in vivo and its attenuation by melatonin. Acta Pharmacol Sin. 2002;23:183-7.
    [13] Li SP, Deng YQ, Wang XC, Wang YP, Wang JZ. Melatonin protects SH-SY5Y neuroblastoma cells from calyculin A-induced neurofilament impairment and neurotoxicity. J Pineal Res. 2004;36:186-91.
    [14] Satake N, Morton BE. Scotophobin A causes dark avoidance in goldfish by elevating pineal N-acetylserotonin. Pharmacol Biochem Behav. 1979;10:449–456.
    [15] Satake N, Morton BE. Pineal hydroxyindole-O-methyltransferase: mechanism, and inhibition by scotophobin A. Pharmacol Biochem Behav. 1979;10:457–62.
    [16] Cremer-Bartels G, Ebels I, Sykes JE, de Moree A. Effects of retinal and pineal low molecular weight fractions and antipsychotic drugs on hydroxyindole-O-methyltransferase. J Neural Transm. 1983;58:107-19.
    [17] Gong CX, Singh TJ, Grundke-Iqbal I, Iqbal K. Phosphoprotein phosphatase activities in Alzheimer disease brain. J Neurochem. 1993;61:921-7.
    [18] Mawal-Dewan M, Henley J, Van de Voorde A, Trojanowski JQ, Lee VM. The phosphorylation state of tau in the developing rat brain is regulated by phosphoprotein phosphatases. J Biol Chem. 1994;269:30981-7.
    [19] Wu YH, Feenstra MG, Zhou JN, Liu RY, Torano JS, Van Kan HJ, Fischer DF, Ravid R, Swaab DF. Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J Clin Endocrinol Metab. 2003;88:5898-906.
    [20] Liu RY, Zhou JN, van Heerikhuize J, Hofman MA, Swaab DF. Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer's disease, and apolipoprotein E-epsilon4/4 genotype. J Clin Endocrinol Metab. 1999;84:323-7.
    [21] Gong CX, Shaikh S, Wang JZ, Zaidi T, Grundke-Iqbal I, Iqbal K. Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain. J Neurochem. 1995;65:732-8.
    [22] Tian Q, Wang JZ. Role of serine/threonine protein phosphatase in Alzheimer’s disease. Neurosignals. 2002;11:262–269.
    [23] He J, Yamada K, Zou LB, Nabeshima T. Spatial memory deficit and neurodegeneration induced by the direct injection of okadaic acid into the hippocampus in rats. J Neural Transm. 2001;108:1435-43.
    [24] Sun L, Liu SY, Zhou XW, Wang XC, Liu R, Wang Q, Wang JZ. Inhibition of protein phosphatase 2A- and protein phosphatase 1-induced tau hyperphosphorylation and impairment of spatial memory retention in rats. Neuroscience. 2003;118:1175-82.
    [25] Arendt T, Holzer M, Fruth R, Bruckner MK, Gartner U. Paired helical filament-like phosphorylation of tau, deposition of beta/A4-amyloid and memory impairment in rat induced by chronic inhibition of phosphatase 1 and 2A. Neuroscience. 1995;69:691-8.
    [26] Smith CD, Carney JM, Tatsumo T, Stadtman ER, Floyd RA, Markesbery WR. Protein oxidation in aging brain. Ann N Y Acad Sci. 1992;663:110-9.
    [27] Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci USA. 1994;91:4766-70.
    [28] Yan SD, Chen X, Schmidt AM, Brett J, Godman G, Zou YS, Scott CW, Caputo C, Frappier T, Smith MA.Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci USA. 1994;91:7787-91.
    [29] Perry G, Nunomura A, Hirai K, Zhu X, Perez M, Avila J, Castellani RJ, Atwood CS, Aliev G, Sayre LM, Takeda A, Smith MA. Is oxidative damage the fundamental pathogenic mechanism of Alzheimer's and other neurodegenerative diseases? Free Radic Biol Med. 2002;33:1475-9.
    [30] Pablos M, Guerrero J, Ortiz G et al. Both melatonin and a putative nuclear melatonin receptor agonist CGP 52608 stimulate glutathione peroxidase and glutathione reductase activities in mouse brain in vivo. Neuroendocrinol Lett. 1997;32:354–8.
    [31] Kotler M, Rodriquez C, Sainz RM. Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res. 1998;32:83–9.
    [32] Hsu CH, Chi BC, Casida JE. Melatonin reduces phosphineinduced lipid and DNA oxidation in vitro and in vivo in rat brain. J Pineal Res. 2002;32:53–8.
    [33] Karbownik M, Reiter RJ. Melatonin protects against oxidative stress caused by delta-aminolevulinic acid: implications for cancer reduction. Cancer Invest. 2002; 20:276–286.
    [34] Baydas G, Kutlu S, Naziroglu M, Canpolat S, Sandal S, Ozcan M, Kelestimur H. Inhibitory effects of melatonin on neural lipid peroxidation induced by intracerebroventricularly administered homocysteine. J Pineal Res. 2003;34:36-9.
    [35] Shen YX, Xu SY, Wei W, Sun XX, Yang J, Liu LH, Dong C. Melatonin reduces memory changes and neural oxidative damage in mice treated with D-galactose. J Pineal Res. 2002;32:173-8.
    [36] Rosales-Corral S, Tan DX, Reiter RJ, Valdivia-Velazquez M, Martinez-Barboza G, Acosta-Martinez JP, Ortiz GG. Orally administered melatonin reduces oxidative stress and proinflammatory cytokines induced by amyloid-beta peptide in rat brain: a comparative, in vivo study versus vitamin C and E. J Pineal Res. 2003;35:80-4.
    [37] Zatta P, Tognon G, Carampin P. Melatonin prevents free radical formation due to the interaction between beta-amyloid peptides and metal ions [Al(III), Zn(II), Cu(II), Mn(II), Fe(II)]. J Pineal Res. 2003;35:98–103.
    [38]Mallo C, Zaidan R, Galy G, Vermeulen E, Brun J, Chazot G, Claustrat B. Pharmacokinetics of melatonin in man after intravenous infusion and bolus injection.Eur J Clin Pharmacol. 1990;38:297-301.
    [1] Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986;261:6084-9.
    [2] Drewes G, Ebneth A, Mandelkow EM. MAPs, MARKs and microtubule dynamics. Trends Biochem Sci. 1998;23:307-11.
    [3] Grundke-Igbal I, Igbal K, Tung Y-C, Quinlan M, Wisniewski HM, Prinder L. Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer’s cytoskelecal pathology. Proc Natl Acad USA 1986;83:4913-7.
    [4] Gong CX, Liu F, Grundke-Iqbal I, Iqbal K. Epub 2004 Oct 27.Post-translational modifications of tau protein in Alzheimer's disease. J Neural Transm. 2005;112:813-38.
    [5] Wang JZ, Wu Q, Smith A, Grundke-Iqbal I, Iqbal K. Tau is phosphorylated by GSK-3 at several sites found in Alzheimer disease and its biological activity markedly inhibited only after it is prephosphorylated by A-kinase. FEBS Lett. 1998;436:28-34.
    [6] Liu SJ, Zhang JY, Li HL, Fang ZY, Wang Q, Deng HM, Gong CX, Grundke-Iqbal I, Iqbal K, Wang JZ. Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem. 2004;279:50078-88.
    [7] Reiter RJ, Tan DX, Osuna C, Gitto E. Actions of melatonin in the reduction of oxidative stress. J Biomed Sci. 2000;7:444-58.
    [8] Asayama K, Yamadera H, Ito T, Suzuki H, Kudo Y, Endo S. Double blind study ofmelatonin effects on the sleep-wake rhythm, cognitive and non-cognitive functions in Alzheimer type dementia. J Nippon Med Sch. 2003;70:334-41.
    [9] Liu SJ, Wang JZ. Alzheimer-like tau phosphorylation induced by wortmannin in vivo and its attenuation by melatonin. Acta Pharmacol Sin. 2002;23:183-7.
    [10] Chen YG. Specific tau phosphorylation sites in hippocampus correlate with impairment of step-down inhibitory avoidance task in rats. Behav Brain Res. 2005;158:277-84.
    [11] Satake N, Morton BE. Scotophobin A causes dark avoidance in goldfish by elevating pineal N-acetylserotonin. Pharmacol Biochem Behav. 1979; 10:449–456.
    [12] Satake N, Morton BE. Pineal hydroxyindole-O-methyltransferase: mechanism, and inhibition by scotophobin A. Pharmacol Biochem Behav. 1979;10:457–462.
    [13] Cremer-Bartels G, Ebels I, Sykes JE, de Moree A. Effects of retinal and pineal low molecular weight fractions and antipsychotic drugs on hydroxyindole-O-methyltransferase. J Neural Transm. 1983;58:107-19.
    [14] Liu SJ, Zhang AH, Li HL, Wang Q, Deng HM, Netzer WJ, Xu H, Wang JZ. Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J Neurochem. 2003;87:1333-44.
    [15] Kemp BE, Graves DJ, Benjamini E, Krebs EG Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinase.. J Biol Chem. 1977;252(14):4888-94.
    [16] Picinato MC, Haber EP, Cipolla-Neto J, Curi R, de Oliveira Carvalho CR, Carpinelli AR. Melatonin inhibits insulin secretion and decreases PKA levels without interfering with glucose metabolism in rat pancreatic islets. J Pineal Res. 2002;33:156-60.
    [17] Karlsson AM, Lerner MR, Unett D, Lundstrom I, Svensson SP. Melatonin-induced organelle movement in melanophores is coupled to tyrosine phosphorylation of a high molecular weight protein. Cell Signal. 2000;12:469-74.
    [1] Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986;261:6084-9.
    [2] Sternberger NH, Sternberger LA, Ulrich J. Aberrant neurofilament phosphorylation in Alzheimer disease. Proc Natl Acad Sci USA. 1985;82:4274-6.
    [3] Julien JP, Mushynski WE. Neurofilament in health and disease. Prog Nucleic AcidRes Mol Biol. 1998;61:1-23.
    [4] Wang J, Tung YC, Wang Y, Li XT, Iqbal K, Grundke-Iqbal I. Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett. 2001;507:81-7.
    [5] Vickers JC, Costa M. The NF triplet is present in distinct subpopulations of neurons in the central nervous system of the guinea-pig. Neuroscience. 1992; 49:73–100.
    [6] Rosengren LE, Karlsson JE, Sjogren M, Blennow K, Wallin A. Neurofilament protein levels in CSF are increased in dementia.Neurology. 1999;52:1090-3.
    [7] Hu YY, He SS, Wang X, Duan QH, Grundke-Iqbal I, Iqbal K, Wang J. Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer's disease patients: an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am J Pathol. 2002;160:1269-78.
    [8] Hu YY, He SS, Wang XC, Duan QH, Khatoon S, Iqbal K, Grundke-Iqbal I, Wang JZ. Elevated levels of phosphorylated neurofilament proteins in cerebrospinal fluid of Alzheimer disease patients. Neurosci Lett. 2002;320:156-60.
    [9] Reiter RJ, Tan DX, Osuna C, Gitto E. Actions of melatonin in the reduction of oxidative stress. J Biomed Sci. 2000;7:444-58.
    [10] Uchida K, Okamoto N, Ohara K, Morita Y. Daily rhythm of serum melatonin in patients with dementia of the degenerate type. Brain Res. 1996;717:154-9.
    [11] Asayama K, Yamadera H, Ito T, Suzuki H, Kudo Y, Endo S. Double blind study of melatonin effects on the sleep-wake rhythm, cognitive and non-cognitive functions in Alzheimer type dementia. J Nippon Med Sch. 2003;70:334-41.
    [12] Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF. Early neuropathological Alzheimer's changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res. 2003;35:125-30.
    [13] Pappolla MA, Simovich MJ, Bryant-Thomas T, Chyan YJ, Poeggeler B, Dubocovich M, Bick R, Perry G, Cruz-Sanchez F, Smith MA. The neuroprotective activities of melatonin against the Alzheimer beta-protein are not mediated bymelatonin membrane receptors. J Pineal Res. 2002;32:135-42.
    [14] Lahiri DK. Melatonin affects the metabolism of the beta-amyloid precursor protein in different cell types. J Pineal Res. 1999;26:137-46.
    [15] Liu SJ, Wang JZ. Alzheimer-like tau phosphorylation induced by wortmannin in vivo and its attenuation by melatonin. Acta Pharmacol Sin. 2002;23:183-7.
    [16] Li SP, Deng YQ, Wang XC, Wang YP, Wang JZ. Melatonin protects SH-SY5Y neuroblastoma cells from calyculin A-induced neurofilament impairment and neurotoxicity. J Pineal Res. 2004;36:186-91.
    [17] Bennecib M, Gong CX, Grundke-Iqbal I, Iqbal K. Role of protein phosphatase-2A and -1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain. FEBS Lett. 2000;485:87-93.
    [18] Willard M. and Simon C. Antibody decoration of neurofilament. Cell Biol, 1981;89:198-205.
    [19] Mata M, Honegger P, Fink DJ. Modulation of phosphorylation of neuronal cytoskeletal proteins by neuronal depolarization. Cell Mol Neurobiol. 1997;17: 129-40.
    [20] Julien JP, Mushynski WE. Neurofilament in health and disease. Prog Nucleic Acid Res Mol Biol. 1998;61:1-23.
    [21] Liu SJ, Fang ZY, Yang Y, Deng HM, Wang JZ. Alzheimer-like phosphorylation of tau and neurofilament induced by cocaine in vivo. Acta Pharmacol Sin. 2003;24:512-8.
    [22] de la Monte SM, Ganju N, Feroz N, Luong T, Banerjee K, Cannon J, Wands JR. Oxygen free radical injury is sufficient to cause some Alzheimer-type molecular abnormalities in human CNS neuronal cells. J Alzheimers Dis. 2000;2:261-81.
    [23] Patrick GN, Zukerberg L, Nikolic M. Conversion of p35 to p25 deregulates cdk-5 activity and promotes neurodegeneration. Nature. 1999;402: 615-22.
    [1] Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science. 2001;294:1030-8.
    [2] Mizzen C, Kuo MH, Smith E, Brownell J, Zhou J, Ohba R, Wei Y, Monaco L, Sassone-Corsi P, Allis CD. Signaling to chromatin through histone modifications: how clear is the signal? Cold Spring Harb Symp Quant Biol. 1998;63:469-81.
    [3] Workman JL, Kingston RE. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem. 1998;67:545-79.
    [4] Udea K. in ADP-Ribosylating Toxins and Proteins: Insights into Signal Transduction, J. Moss, M. Vaughn, Eds. (American Society for Microbiology, Washington DC, 1990), pp. 530–534.
    [5] Jean-Christophe A, Jacobson EL, Jacobson MK, in From DNA Damage and Stress Signaling to Cell Death:PolyADP-ribosylation Reactions, G. de Murcia, S. Shall, Eds. (Oxford University Press, Oxford, 2000), pp. 14–22.
    [6] Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab. 1997;17:1143-51.
    [7] Chatterjee S, Berger NA. Growth-phase-dependent response to DNA damage in poly(ADP-ribose) polymerase deficient cell lines: basis for a new hypothesis describing the role of poly(ADP-ribose) polymerase in DNA replication and repair. Mol Cell Biochem. 1994;138:61-9.
    [8] D'Amours D, Desnoyers S, D'Silva I, Poirier GG. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J. 1999;342:249-68.
    [9] Berger NA. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res. 1985;101:4-15.
    [10] Homburg S, Visochek L, Moran N, Dantzer F, Priel E, Asculai E, Schwartz D, Rotter V, Dekel N, Cohen-Armon M. .A fast signal-induced activation of Poly(ADP-ribose) polymerase: a novel downstream target of phospholipase c. JCell Biol. 2000;150:293-307.
    [11] Visochek L, Steingart RA, Vulih-Shultzman I, Klein R, Priel E, Gozes I, Cohen-Armon M. PolyADP-ribosylation is involved in neurotrophic activity. J Neurosci. 2005;25:7420-8.
    [12] Cohen-Armon M, Visochek L, Katzoff A, Levitan D, Susswein AJ, Klein R, Valbrun M, Schwartz JH.Long-term memory requires polyADP-ribosylation. Science. 2004 J;304:1820-2.
    [13] Pittenger C, Huang YY, Paletzki RF, Bourtchouladze R, Scanlin H, Vronskaya S, Kandel ER. Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron. 2002;34:447-62.
    [14] Silva AJ, Kogan JH, Frankland PW, Kida S. CREB and memory. Annu Rev Neurosci. 1998;21:127–48.
    [15] Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci. 2005;28:436-45.
    [16] Mizuno K, Giese KP. Hippocampus-dependent memory formation: do memory type-specific mechanisms exist? J Pharmacol Sci. 2005;98(3):191-7.
    [17] Abel T, Nguyen PV, Barad M, Deuel TA, Kandel ER, Bourtchouladze R. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term emory. Cell. 1997;88:615–626.
    [18] Sui L, Wang F, Liu F, Wang J, Li BM. Dorsal hippocampal administration of triiodothyronine enhances long-term memory for trace cued and delay contextual fear conditioning in rats. J Neuroendocrinol. 2006;18:811-9.
    [19] Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Academic Press, San Diego, 1998.
    [20] de Murcia G, Schreiber V, Molinete M, Saulier B, Poch O, Masson M, Niedergang C, Menissier de Murcia J.Structure and function of poly(ADP-ribose) polymerase. Mol Cell Biochem. 1994;138:15-24.
    [21] Cookson MR, Ince PG, Usher PA, Shaw PJ. Poly(ADP-ribose) polymerase is found in both the nucleus and cytoplasm of human CNS neurons. Brain Res. 1999;834:182-5.
    [22] Christmann M, Tomicic MT, Roos WP, Kaina B. Mechanisms of human DNA repair: an update. Toxicology. 2003;193:3-34.
    [23] d'Adda di Fagagna F, Hande MP, Tong WM, Lansdorp PM, Wang ZQ, Jackson SP. Functions of poly(ADP-ribose) polymerase in controlling telomere length and chromosomal stability. Nat Genet. 1999;23:76-80.
    [24] Kraus WL and Lis JT. PARP goes transcription. Cell. 2003;113:677–83.
    [25] Simbulan-Rosenthal CM, Rosenthal DS, Iyer S, Boulares AH, Smulson ME. Transient poly(ADP-ribosyl)ation of nuclear proteins and role of poly(ADP-ribose) polymerase in the early stages of apoptosis. J Biol Chem. 1998;273:13703-12.
    [26] Milner B, Squire LR, Kandel ER. Cognitive neuroscience and the study of memory. Neuron. 1998;20:445–468.
    [27] O’Keefe J, Nadel L. The hippocampus as a cognitive map. Oxford: Clarendon Press; 1978.
    [28] Phillips RG, Ledoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992;106:274–85.
    [29] Logue SF, Paylor R, Wehner JM. Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behav Neurosci. 1997;111:104–113.
    [30] Izquierdo LA, Barros DM, Ardenghi PG, Pereira P, Rodrigues C, Choi H, Medina JH, Izquierdo I. Different hippocampal molecular requirements for short- and long-term retrieval of one-trial avoidance learning. Behav Brain Res. 2000;111:93-8.
    [31] Morris RG, Garrud P, Rawlins JN, O’Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297:681–3.
    [32] Teyler TJ, DiScenna P. Long-term potentiation. Annu Rev.1987;10:131-61.
    [33] Anderson WW, Collingridge GL. The LTP program: a data acquisition program for on-line analysis of long-term potentiation and other synaptic events. J Neurosci Methods. 2001;108:71–83.
    [34] Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell. 1994;79:59–68.
    [35] Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002;35:605–623.
    [36] Duffy SN, Nguyen PV. Postsynaptic application of a peptide inhibitor of cAMP-dependent protein kinase blocks expression of long-lasting synaptic potentiation in hippocampal neurons. J Neurosci. 2003;23:1142-50.
    [37] Pittenger C, Huang YY, Paletzki RF, Bourtchouladze R, Scanlin H, Vronskaya S, Kandel ER. Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory.Neuron. 2002;34:447-62.
    [38] Levenson JM, Choi S, Lee SY, Cao YA, Ahn HJ, Worley KC. A bioinformatics analysis of memory consolidation reveals involvement of the transcription factor c-rel. J Neurosci. 2004;24:3933–43.
    [39] Kaltschmidt B, Ndiaye D, Korte M, Pothion S, Arbibe L, Prullage M, Pfeiffer J, Lindecke A, Staiger V, Israel A. NF-kappaB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling. Mol Cell Biol. 2006;26:2936-46.
    [40] Lautier D, Lagueux J, Thibodeau J, Menard L, Poirier GG. Molecular and biochemical features of poly(ADP-ribose) metabolism. Mol Cell Biochem. 1993;122:171–193.
    [1] Swanson, L. W., Kohler, C. and Bjorklund, A. The limbic region. I.The septohippocampal system. In: Handbook of Chemical Anatomy, vol. 5, Integrated Systems of the CNS, part 1 (Hokfelt, T., Bjorklund, A. and Swanson, L. W. Eds), 1987. pp:125– 277. Elsevier, Amsterdam.
    [2]罗焕敏.海马结构-从形态、功能到可塑性、衰老性变化.神经解剖学杂志. 1996;12 : 177-84.
    [3]隋鸿锦,张万琴,洪昭雄.海仁酸诱导癫痫模型海马的形态学改变.解剖科学进展. 1997;3:103-108.
    [4]张培林.神经解剖学.北京:人民卫生出版社. 1987. pp:482-6.
    [5]白亚夫1医苑荟萃[M]1成都∶四川科学技术出版社,1998.pp:21.
    [6] O_Keefe, J. and Nadel, L. The Hippocampus as a Cognitive Map, Oxford University Press, Oxford ,1978. pp. 570.
    [7] Handelmann GE and Olton DS. Spatial memory following damage to hippocampal CA3 pyramidal cells with kainic acid: impairment and recovery with preoperative training. Brain Res. 1981;217:41–58.
    [8] Jarrard LE. Selective hippocampal lesions and behavior: effects of kainic acid lesions on performance of place and cue tasks. Behav Neurosci. 1983;97;873–89.
    [9] Whishaw IQ. Hippocampal, granule cell and CA3– 4 lesions impair formation of a place learning-set in the rat and induce reflex epilepsy. Behav Brain Res. 1987;24;59-72.
    [10] Xavier GF, Oliveira-Filho, FJ and Santos, AM. Dentate gyrus-selective colchicine lesion and disruption of performance in spatial tasks: difficulties in _place strategy_because of a lack of flexibility in the use of environmental cues? Hippocampus. 1999; 9:668–81.
    [11] Lassalle JM, Bataille T. and Halley H. Reversible inactivation of the hippocampal mossy fiber synapses in mice impairs spatial learning, but neither consolidation nor memory retrieval, in the Morris navigation task. Neurobiol Learn Mem. 2000; 73:243–57.
    [12] Daumas S, Halley H and Lassalle JM. Disruption of hippocampal CA3 network: effects on episodic-like memory processing in C57BL/6J mice. Eur J Neurosci. 2004;20: 597–600.
    [13] Andersen P, Bliss TV, Lomo T, Olsen LI and Skrede KK. Lamellar organization of hippocampal excitatory pathways. Acta Physiol Scand. 1969;76:4A-5A.
    [14] Andersen P, Soleng AF and Raastad M. The hippocampal lamella hypothesis revisited Brain Res. 2000;886: 165-71.
    [15] O_Reilly RC and McClelland JL. Hippocampal conjunctive encoding, storage, and recall: avoiding a tradeoff. Hippocampus. 1994;4: 661-82.
    [16] Rolls ET. A theory of hippocampal function in memory. Hippocampus. 1996;6: 601-20.
    [17] Marr D. Simple memory: a theory for archicortex. Phil. Trans R Soc Lond B Biol Sci. 1971;262:23-81.
    [18] Gilbert PE, Kesner RP and DeCoteau WE. Memory for spatial location: role of the hippocampus in mediating spatial pattern separation. J Neurosci. 1998;18: 804-10.
    [19] Gross CG. Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci. 2000;1:67-73.
    [20] Leuner B, Gould E and Shors TJ. Is there a link between adult neurogenesis and learning? Hippocampus. 2006;16:216-24.
    [21] Becker S. A computational principle for hippocampal learning and neurogenesis. Hippocampus. 2005;15:722-38.
    [22] McNaughton BL and Morris RGM. Hippocampal synaptic enhancement andinformation storage within a distributed memory system. Trends Neurosci. 1987;10:408-415.
    [23] Fyhn M, Molden S, Hollup S, Moser, MB and Moser E. Hippocampal neurons responding to first-time dislocation of a target object. Neuron. 2002;35:555-66.
    [24] Hasselmo ME and Wyble BP. Free recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function. Behav Brain Res. 1997;89:1-34.
    [25] Ang CW, Carlson GC and Coulter DA. Hippocampal CA1 circuitry dynamically gates direct cortical inputs preferentially at theta frequencies. J Neurosci. 2005; 25:9567-80.
    [26] Mizumori SJ, Barnes CA and McNaughton BL. Reversible inactivation of the medial septum: selective effects on the spontaneous unit activity of different hippocampal cell types. Brain Res. 1989;500:99-106.
    [27] Hollup SA, Kjelstrup KG, Hoff J, Moser MB and Moser EI. Impaired recognition of the goal location during spatial navigation in rats with hippocampal lesions. J Neurosci. 2001;21:4505-13.
    [28] Hafting T, Fyhn M, Molden S, Moser MB and Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436:801-6.
    [29] Fyhn M, Molden S, Witter MP, Moser EI and Moser MB. Spatial representation in the entorhinal cortex. Science. 2004;305:1258-64.
    [30] Teyler TJ, DiScenna P. Long-term potentiation. Annu Rev. 1987;10:131-61.
    [31] Xu L, Anwyl R and Rowan MJ. Spatial exploration induces a persistent reversal of long-term potentiation in rat hippocampus. Nature. 1998;394:891– 894.
    [32] Migaud M, Charlesworth P, Dempster M, Webster LC and Watabe AM. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature. 1998; 396:433-439.
    [33] Steele RJ and Morris RGM. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5.Hippocampus. 1999;9:118-36.
    [34] Lee I and Kesner RP. Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat Neurosci. 2002;5:162-8
    [35] Danysz W, Zajaczkowski W and Parsons CG. Modulation of learning processes by ionotropic glutamate receptor ligands. Behav Pharmacol. 1995;6:455-74.
    [36] Moser EI, Krobert KA, Moser MB and Morris RGM. Impaired spatial learning after saturation of long term potentiation. Science. 1998;281:2038-42.
    [37] Tsien JZ, Huerta PT and Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell. 1996;87: 1327-38.
    [38] Otnaess MK, Brun VH, Moser MB. and Moser EI. Pretraining prevents spatial learning impairment after saturation of hippocampal long-term potentiation. J Neurosci. 1999;19:RC49.
    [39] Nakazawa K, Sun LD, Quirk MC, Rondi-Reig L, Wilson MA, Tonegawa S. Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron. 2003;38(2):305-15.
    [40] Moser MB and Moser EI. Pretraining and the function of hippocampal long-term potentiation. Neuron. 2000;26:559–61.
    [41] Treves A and Rolls ET. Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus. 1992;2 :189– 99
    [42] Lisman JE and Otmakhova NA. Storage, recall, and novelty detection of sequences by the hippocampus: elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus. 2001;11: 551-568.
    [43] Brankack J, Stewar M and Fox SE. Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators. Brain Res. 1993;615:310-27.
    [44] Lisman JE and Grace AA. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron. 2005;46:703-13.
    [45] Murchison CF, Zhang XY, Zhang WP, Ouyang M, Lee A and Thomas, SA. A distinct role for norepinephrine in memory retrieval. Cell. 2004;117:131-43.
    [46] Zhang WP, Guzowski JF and Thoma SA. Mapping neuronal activation and the influence of adrenergic signaling during contextual memory retrieval. Learn Mem. 2005;12:239– 247.
    [47] Botreau F, El Massioui N, Cheruel F and Gisquet-Verrier P. Effects of medial prefrontal cortex and dorsal striatum lesions on retrieval processes in rats. Neuroscience. 2004;129:539-53.
    [48] McGaugh JL and Roozendaal B. Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol. 2002;12;205-10.
    [49] Gisquet-Verrier P, Botreau F, Venero C and Sandi C. Exposure to retrieval cues improves retention performance and induces changes in ACTH and corticosterone release. Psychoneuroendocrinology. 2004;29:529-56.
    [50] Bast T, da Silva BM and Morris RGM. Distinct contributions of hippocampal NMDA and AMPA receptors to encoding and retrieval of one-trial place memory. J Neurosci. 2005;25:5845-56.
    [51]Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA and Tonegawa S. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science. 2002;297:211-8.
    [52] Lee I, Yoganarasimha D, Rao G and Knierim JJ. Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature. 2004; 430:456-9.
    [53] Guzowski JF, Knierim JJ and Moser EI. Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron. 2004;44:581-4.
    [54] Hirsh R. The hippocampus and contextual retrieval of information from memory: a theory. Behav Biol. 1974;12:421-44.
    [55] Morris RGM and Frey U. Hippocampal synaptic plasticity: role in spatial learning or the automatic recording of attended experience? Phil. Trans R Soc Lond B BiolSci. 1997;352;1489-503.
    [56] Frey U and Morris RGM. Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci. 1998;21;181– 188.
    [57] Squire LR and Alvarez P. Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr Opin Neurobiol. 1995;5:169-77.
    [58] Packard MG and Teather LA. Double dissociation of hippocampal and dorsal-striatal memory systems by post training intracerebral injections of 2-amino-5-phosphonopentanoic acid. Behav Neurosci. 1997;111;543-51.
    [59] Izquierdo I, Izquierdo LA, Barros DM, Rodrigues C, Sant Anna MK, Madruga M and Medina JH. Differential involvement of cortical receptor mechanisms in working, short-term and long-term memory. Behav Pharmacol. 1998;9,421-7.
    [60] Tronel S and Sara SJ. Blockade of NMDA receptors in prelimbic cortex induces an enduring amnesia for odorreward associative learning. J Neurosci. 2003;23: 5472-76.
    [61] Levenson JM and Sweatt JD. Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell Mol Life Sci. 2006;63;1009–16.
    [62] Frey U and Morris RGM. Synaptic tagging and long-term potentiation. Nature. 1997;385:533-6.
    [63] Frey U and Morris RGM. Weak before strong: dissociating synaptic tagging and plasticity-factor accounts of late-LTP. Neuropharmacology. 1998;37:545-52.
    [64] Fonseca R, Nagerl UV, Morris RGM and Bonhoeffer T. Competing for memory: hippocampal LTP under regimes of reduced protein synthesis. Neuron. 2004;44: 1011-20.
    [65] Impey S, Smith DM, Obrietan K, Donahue R, Wade C and Storm DR. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat Neurosci. 1998;1:595-601.
    [66] Frey U, Schroeder H and Matthies H. Dopaminergic antagonists prevent long-termmaintenance of posttetanic LTP in the CA1 region of rat hippocampal slices. Brain Res. 1990;522:69-75.
    [67] Huang YY and Kandel ER. D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc Natl Acad Sci USA. 1995;92:2446-50.
    [68] Swanson-Park JL, Coussens CM, Mason-Parker SE, Raymond CR, Hargreaves EL, Dragunow M, Cohen AS, Abraham WC. A double dissociation within the hippocampus of dopamine D1/D5 receptor and beta-adrenergic receptor contributions to the persistence of long-term potentiation. Neuroscience. 1999;92:485-97.
    [69] Otmakhova NA, Lisman JE. D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses.J Neurosci. 1996;16:7478-86.
    [70] Mockett BG, Brooks WM, Tate WP, Abraham WC. Dopamine D1/D5 receptor activation fails to initiate an activity-independent late-phase LTP in rat hippocampus. Brain Res. 2004;1021(1):92-100.
    [71] Kentros CG, Agnihotri NT, Streater S, Hawkins RD and Kandel ER. Increased attention to spatial context increases both place field stability and spatial memory. Neuron. 2004;42:283-95.
    [72] Stanton PK, Sarvey JM. Depletion of norepinephrine, but not serotonin, reduces long-term potentiation in the dentate gyrus of rat hippocampal slices. J Neurosci. 1985;5(8):2169-76.
    [73] Thomas MJ, Moody TD, Makhinson M and O_Dell TJ. Activity-dependent beta-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron. 1996;17:475– 482.
    [74] Chaulk PC and Harley CW. Intracerebroventricular norepinephrine potentiation of the perforant path-evoked potential in dentate gyrus of anesthetized and awake rats: a role for both alpha- and beta-adrenoceptor activation. Brain Res. 1998;787:59-70.
    [75] Gelinas JN and Nguyen PV. Beta-adrenergic receptor activation facilitates induction of a protein synthesisdependent late phase of long-term potentiation. J Neurosci. 2005;25:3294-3303.
    [76] Packard MG and Cahill L. Affective modulation of multiple memory systems. Curr Opin Neurobiol. 2001;11;752-6.
    [77] Pare D. Role of the basolateral amygdala in memory consolidation. Prog Neurobiol. 2003;70:409-20.
    [78] Marr D. Atheory for cerebral neocortex. Proc R Soc Lond B Biol Sci. 1970;176: 161–234.
    [79] Ribot T H. The Diseases of Memory. 1883. Fitzgerald, New York.
    [80] Maren S, Aharonov G and Fanselow MS. Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav Brain Res. 1997;88: 261-74.
    [81] Clark RE, Broadbent NJ, Zola SM, Squire LR. Anterograde amnesia and temporally graded retrograde amnesia for a nonspatial memory task after lesions of hippocampus and subiculum. J Neurosci. 2002;22:4663-9.
    [82] Wiig KA, Cooper LN, Bear MF. Temporally graded retrograde amnesia following separate and combined lesions of the perirhinal cortex and fornix in the rat. Learn Mem. 1996;3(4):313-25.
    [83] Kim JJ, Clark RE, Thompson RF. Hippocampectomy impairs the memory of recently, but not remotely, acquired trace eyeblink conditioned responses. Behav Neurosci. 1995;109:195-203.
    [84] Ramos JM. Retrograde amnesia for spatial information: a dissociation between intra and extramaze cues following hippocampus lesions in rats. Eur J Neurosci. 1998;10:3295-301.
    [85] Izquierdo I, Cammarota M, Medina JH, Bevilaqua LR. Pharmacological findings on the biochemical bases of memory processes: a general view. Neural Plast. 2004;11:159-89.
    [86] Izquierdo I, Medina JH.Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures.Neurobiol Learn Mem. 1997;68:285-316.
    [87] Riedel G, Micheau J, Lam AG, Roloff EL, Martin SJ, Bridge H, de Hoz L, Poeschel B, McCulloch J, Morris RG. Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat Neurosci. 1999;2:898-905.
    [88] Frankland PW, O'Brien C, Ohno M, Kirkwood A, Silva AJ. Alpha-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature. 2001;411:309-13.
    [89] Maviel T, Durkin TP, Menzaghi F, Bontempi B. Sites of neocortical reorganization critical for remote spatial memory. Science. 2004;305(5680):96-9.
    [90] Teixeira CM, Pomedli SR, Maei HR, Kee N and Frankland PW. Involvement of the anterior cingulate cortex in the expression of remote spatial memory. J Neurosci. 2006;26:7555-64.
    [91] Walker MP and Stickgold R. Sleep, memory, and plasticity. Annu Rev Psychol. 2006;57:139-66.
    [92] Wilson MA and McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science. 1994;265:676-9.
    [93] Skaggs WE and McNaughton BL. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science. 1996;71:1870– 1973.
    [94] Qin YL, McNaughton BL, Skaggs WE and Barnes CA. Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Phil. Trans R Soc Lond B Biol Sci. 1997;352:1525-33.
    [95] Louie K and Wilson MA. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron. 2001;29:145-56.
    [96] Buzsaki G, Horvath Z, Urioste R, Hetke J and Wise K. High-frequency networkoscillation in the hippocampus. Science. 1992;256:1025-7.
    [97] Ylinen A, Bragin A, Nadasdy Z, Jando G, Szabo I, Sik A, Buzsaki G. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci. 1995;15:30-46.
    [98] Siapas AG and Wilson MA. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron. 1998;21:1123-8.
    [99] Sirota A, Csicsvari J, Buhl D and Buzsaki G. Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl Acad Sci USA. 2003;100:2065-9.
    [100] Battaglia FP, Sutherland GR, McNaughton BL. Hippocampal sharp wave bursts coincide with neocortical "up-state" transitions.Learn Mem. 2004;11:697-704.