睫状神经营养因子及其受体系统在肝癌细胞中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癌症可能是现代社会面临的最严重的挑战之一。到2020年,由于癌症而死亡的患者将达到一千万人。所以现代医学的一项重要的目标就是提高癌症的诊断和治疗水平,从而减低癌症的发病率和死亡率。近期的研究提示癌症的进程可能是一种系统性疾病,其中涉及大量相关基因表达和功能的改变。多项研究表明,神经系统的组成成分和功能的改变参与到了多种类型癌症的发生或进展密切相关。
     肝癌(hepatic cancer)包括肝细胞肝癌(hepatocellular carcinoma,HCC)、胆管细胞癌(cholangiocarcinoma)和肝母细胞瘤(Hepatoblastoma),是一类恶性程度极高、预后极差的恶性肿瘤。本实验室前期大规模功能基因筛选中发现了一批与肝癌生长密切相关的基因,其中就包含一些与神经系统相关的细胞因子和相关受体。本文所展开的关于睫状神经营养因子(Ciliary Neurotrophic Factor,CNTF)及其受体(Ciliary Neurotrophic Factor Receptor,CNTFR)系统在肝癌细胞中的表达、信号转导和功能等方面的研究是对前期工作的延续和深入。
     睫状神经营养因子(CNTF)首次被发现是作为一种能促进鸡的睫状神经节生长的神经营养因子,其蛋白质结构属于白介素-6(IL-6)家族。早期研究发现,CNTF在神经系统中具有重要的作用,其功能包括:促进神经元的存活,促进神经元的分化以及防止受损神经元的退变等等。近期实验发现,CNTF能具有减肥作用,其机制可能是通过激活类似leptin信号途径:作用于中枢神经系统产生摄食抑制功能;作用于外周代谢器官来实现对能量代谢的调控。最新研究发现,睫状神经营养因子能够在ob/ob小鼠中起到促进脂肪酸的氧化,降低细胞胰岛素的抵抗的作用。
     睫状神经营养因子受体(CNTFR)作为CNTF的受体属于IL-6受体家族的一员,是由睫状神经营养因子受体α亚基(CNTFRα),白血病抑制因子受体(LIFR)的β亚基与gp130组成的。其中LIFR和gp130为细胞中广泛存在的跨膜蛋白,主要起传递跨膜信号的作用。CNTFRα为受体的核心亚基,能特异性地与CNTF结合,从而激活下游信号通路。在神经系统及其它外周组织中,CNTF激活的相关下游信号通路可能包括JAK/STAT,PI3K/Akt,MAPK和AMPK等。但是睫状神经营养因子及其受体系统在肝脏中的表达,下游信号通路和相关生物学功能等相关领域还尚为未知。
     我们的实验首先发现睫状神经营养因子受体α亚基在肝脏中表达的;CNTFRα在正常肝,肝癌组织和相对应的癌旁肝组织中存在异质性表达;并在肝细胞来源的肝癌细胞株中有表达。同时,我们也发现CNTFRα在胎肝组织,肝母细胞瘤组织,以及肝母细胞瘤来源的肝癌细胞株HepG2中不存在表达。此外,我们发现CNTFR的另两个亚基LIFR和gp130,以及广泛地分布于各类肝组织和肝癌细胞株中。根据以上结果我们分别选择了SMMC-7721(CNTFRα+/LIFR+/gp130+)和HepG2(CNTFRα-/LIFR+/gp130+)作为两种肝癌细胞模型来研究CNTFRα的作用及其下游的信号通路。我们分别检测了CNTFRα阳性、阴性细胞株和相应的siRNA-CNTFRα作用后,JAK/STAT,PI3K/Akt,MAPK和AMPK信号途径的激活水平。实验发现细胞受到CNTF刺激后,细胞CNTFRα的表达决定了下游四条信号通路不同的激活水平。结论是:PI3K/Akt和MAPK的激活依赖于CNTFRα的表达;JAK/STAT3的激活部分依赖于CNTFRα的表达;而AMPK的激活不依赖于CNTFRα的表达。
     我们的实验发现,CNTF能够促进肝细胞摄取葡萄糖,而且这个过程与CNTFRα的表达无关。同时CNTF与肝细胞的结合并不仅仅限于CNTFRα阳性细胞的结果也提示可能存在一种CNTFRα非依赖的机制来解释这种现象。进一步实验发现,PI3K/Akt和AMPK信号通路的激活可能参与到CNTF刺激引起的葡萄糖转运蛋白4(GLUT4)的细胞内转位,从而导致葡萄糖摄取的增加。在CNTFRα阳性细胞中,PI3K/Akt和AMPK的激活同时参与了这个过程;而在CNTFRα阴性细胞中,AMPK起了主要作用。
     另外,我们在对AMPK激活的过程的分析中发现,AMPK的激活受到了MAPK途径激活的抑制。这个过程是发生在CNTF刺激的早期。这里我们分别运用了MEK1的抑制剂和持续激活的MEK1质粒的转染来达到抑制或是激活MAPK途径的效果,从而来检测AMPK途径的激活水平。实验证明CNTF引起的AMPK的激活在刺激发生的初期受到了MAPK途径激活的抑制。
     我们在以前的实验基础上,进一步证明了敲除CNTFRα能够抑制肝癌细胞的生长。现在,我们进一步发现CNTF对于细胞生长的作用在对于细胞周期的调控。CNTF能够帮助细胞从G2/M期的阻滞中恢复进入细胞周期。这种现象只存在于CNTFRα阳性的细胞株。考虑到CNTF对于葡萄糖代谢的影响,我们意外地发现CNTF对于细胞周期的影响还依赖于培养环境中葡萄糖的水平:CNTF对于细胞周期方面的这种作用在正常血糖环境范围(3-6mM)中比较明显,而在高糖和低糖环境中的作用则不太明显。我们继续发现,细胞在不同浓度的葡萄糖培养环境中对CNTF的敏感性也不同,其中在高糖培养环境中CNTF对下游JAK/STAT3和PI3K/Akt途径的激活更为明显。由于常规培养基均含有较高浓度的葡萄糖,上述结果给予我们一些有意义的启示,提示我们培养条件中葡萄糖的水平在研究过程中的重要性,从而可以避免某些重要的生物学现象被忽略。关于这里的分子机制还需要以后进一步的深入研究。
     综上所述,我们的实验揭示了CNTFRα在肝癌细胞中的表达决定了CNTF所激活的下游多条相关信号通路的激活的调节及其相关的生物学功能,从而为研究CNTF和CNTFR系统对于肝脏的生理和病理过程的作用提供了研究基础,也为研究肝脏代谢疾病及肝癌的研究提供了新的启示。
Cancer represents one of the biggest problems for modern societies.By 2020,the global cancer deaths could reach 10 million.An important goal of life science research is to improve tumor diagnostics and anti-cancer treatment options to alleviate cancer-related morbidity and mortality.Recent studies revealed that cancer is a systemic disease due to an evolutionary process which involved in a large variety of deviations of oncogenes and tumor-suppressor genes.Moreover,some reports provided some evidences that the alterations of some neurotransmitter-related components might be associated with the process of cancer initiation and progression.
     Hepatic cancer,including hepatocellular carcinoma,cholangiocarcinoma and hepatoblastoma,is one of the most prevalent and lethal cancer in China.Our previous study of a large-scale complementary DNA transfection screening showed that some cytokines,neural transmitters or receptors are related to the proliferation of hepatocellular carcinoma cells.This work provided us some clues that ciliary neurotrophic factor receptorαsubunit(CNTFRα) might have some positive effect on hepatocellular carcinoma cell growth.In the present study,we investigated the existence of ciliary neurotrophic factor(CNTF) and its receptor(CNTFR) system in liver and liver cancer cells,explored its downstream signaling pathways and functional roles in hepatic cancer cells.
     Ciliary neurotrophic factor was first denoted as a neuron-nurturing factor in chick ciliary ganglion neurons more than two decades ago,and was subsequently defined as a member of the IL-6 cytokine family.In the past decades,CNTF has been shown to promote the differentiation of sympathetic neurons and glial progenitor cells into astrocytes,and promote the survival of a variety of neuronal cells such as sensory, motor,hippocampal and cerebral neurons.A recent study revealed that CNTF can suppress food intake and induce weight loss via a leptin-like mechanism in ob/ob mice.Moreover,CNTF increases metabolic rate and energy expenditure of peripheral metabolic organs,independent of the signaling from the brain.It was further demonstrated that CNTF can enhance fatty-acid oxidation in muscle and reduced insulin resistance in obese,diabetic mice.
     CNTF exerts its biological functions through its receptor CNTFR to activate multiple downstream signaling pathways.CNTFR is a tripartite complex composed of three subunits:CNTF receptorαsubunit(CNTFRα),gp130,and leukemia inhibitory factor receptor(LIFR).CNTFRα,the specificαsubunit for CNTF,is anchored to the membrane by a glycosyl-phosphatidylinositol linkage without a cytoplasmic domain. Binding of CNTF to CNTFRαinduces heterodimerization of the trans-membrane subunits(gp130 and LIFR) to transduce cell signals via the Janus kinase(JAK)/signal transducers of activated transcription(STAT) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase(ERK) signaling pathways.In addition, phosphotidyl inositol-3'-phosphate-kinase(PI3K)/Akt participates in the survival response of neurons to CNTE CNTF plays dual roles on the activation of AMP-activated protein kinase(AMPK).In the central neuronal system,CNTF inhibits AMPK activity in the hypothalamus to promote leptin-sensitive neurogenesis in the arcuate nuclei,and reduces neuropeptide Y(NPY) gene expression;in the periphery tissues,CNTF accelerates fat oxidation via an AMPK-dependent mechanism in skeletal muscle.However,the function of CNTF/CNTFRαin human liver cancer cells and their underlying molecular mechanisms have not been elucidated.
     In this study,we demonstrate that CNTFRαis expressed heterogeneously in normal human liver,hepatocellular carcinoma(HCC) and corresponding non-cancerous liver tissues,but not in fetal liver and hepatoblastoma specimens.Here,we chose the CNTFRα+/CNTFRα- cell models of hepatic origin to study multiple downstream pathways in hepatic cancer cells.The data presented here shows that exogenous CNTF can activate multiple signaling pathways in CNTFRα+ or CNTFRα- hepatic cancer cell lines,and we proposed a model to differentiate the four CNTF-induced signaling pathways into CNTFRαdependent or independent processes,including JAK/STAT3,MAPK/ERK,PI3K/Akt and AMPK signaling pathways(Fig.8).Based on our observations,the activation of MAPK/ERK,PI3K/Akt,and JAK/STAT3 pathways are dependent or partially dependent on the presence of CNTFRα,while the AMPK pathway is activated in a CNTFRαindependent manner.
     Moreover,our results demostrated that CNTF-triggered PI3K/Akt and AMPK signaling pathways also contribute to glucose uptake in hepatic cancer cells,and induce the translocation of GLUT4 from cytosol form pool to the plasma membrane.In CNTFRα~+ cells,the activation of PI3K/Akt was an immediate and persistent response; while AMPK activation had a lag phase.In the CNTFRα~- or CNTFRα-silenced cells, AMPK activation was immediate,whereas no activation of PI3K/Akt was observed.
     Furthermore,we found that CNTF-induced MAPK activation could suppress AMPK activity in the early phase of CNTF stimulation,as revealed by using specific inhibitors,RNA interference and constitutively active plasmids.
     Our previous study has provided some clues that knock-down of CNTFRαcould impair the proliferation of hepatocellular carcinoma cells.Here,we further demonstrated that the protective role of CNTF against cell-cycle arrest is dependent on the presence of CNTFRα,and is modulated by the glucose concentration of the culture medium.We also found that the relative higher glucose concentration could make CNTFRα~+ cells more sensitive to the CNTF stimulation in JAK/STAT3 and PI3K/Akt pathway.The reason for this phenomenon is presently unknown.Since the conventially used culture medium contains high concentration of glucose,these interesting results remind us of the importance of the glucose concentration in culture medium,which has been previously ignored for other in vitro studies of cytokines or growth factors involved in glucose metabolism in cancer biology.
     Conclusion:Our results demonstrate the importance of CNTFRα-mediated downstream signaling pathways and their functional implications in hepatic cancer cells,thus highlighting a better understanding of the biological roles of CNTFRαin human liver abnormalities,including metabolic diseases and hepatocarcinogenesis.
引文
1. Song PF, Sekhon HS, Jia HB, Keller JA, Blusztajn JK, Mark PG, Spindel ER. Acetylcholine Is Synthesized by and Acts as an Autocrine Growth Factor for Small Cell Lung Carcinoma. Cancer Res 2003 ;63;214-221.
    
    2. Wan D, Gong Y, Qin W, Zhang P, Li J, Wei L, Zhou X, et al. Large-scale cDNA transfection screening for genes related to cancer development and progression. Proc Natl Acad Sci U S A 2004; 101:15724-15729.
    
    3. Sleeman MW, Anderson KD, Lambert PD, Yancopoulos GD, Wiegand SJ. The ciliary neurotrophic factor and its receptor, CNTFR alpha. Pharm Acta Helv 2000;74:265-272.
    
    4. Febbraio MA. gp130 receptor ligands as potential therapeutic targets for obesity. J Clin Invest 2007; 117:841 -849.
    
    5. Lambert PD, Anderson KD, Sleeman MW, Wong V, Tan J, Hijarunguru A, Corcoran TL, et al. Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc Natl Acad Sci U S A 2001;98:4652-4657.
    
    6. Sleeman MW, Garcia K, Liu R, Murray JD, Malinova L, Moncrieffe M, Yancopoulos GD, et al. Ciliary neurotrophic factor improves diabetic parameters and hepatic steatosis and increases basal metabolic rate in db/db mice. Proc Natl Acad Sci U S A 2003; 100:14297-14302.
    
    7. Watt MJ, Dzamko N, Thomas WG, Rose-John S, Ernst M, Carling D, Kemp BE, et al. CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nat Med 2006;12:541-548.
    
    8. Lesser SS, Lo DC. CNTF II, I presume? Nat Neurosci 2000;3:851 -852.
    
    9. Man D, He W, Sze KH, Gong K, Smith DK, Zhu G, Ip NY. Solution structure of the C-terminal domain of the ciliary neurotrophic factor (CNTF) receptor and ligand free associations among components of the CNTF receptor complex. J Biol Chem 2003;278:23285-23294.
    
    10. Ozog MA, Bernier SM, Bates DC, Chatterjee B, Lo CW, Naus CC. The complex of ciliary neurotrophic factor-ciliary neurotrophic factor receptor alpha up-regulates connexin43 and intercellular coupling in astrocytes via the Janus tyrosine kinase/signal transducer and activator of transcription pathway. Mol Biol Cell 2004; 15:4761-4774.
    
    11. Alonzi T, Middleton G, Wyatt S, Buchman V, Betz UA, Muller W, Musiani P, et al. Role of STAT3 and PI 3-kinase/Akt in mediating the survival actions of cytokines on sensory neurons. Mol Cell Neurosci 2001; 18:270-282.
    
    12. Kokoeva MV, Yin H, Flier JS. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 2005;310:679-683.
    
    13. Vergara C, Ramirez B. CNTF, a pleiotropic cytokine: emphasis on its myotrophic role. Brain Research Reviews 2004;47:161- 173
    
    14. He C, Chen J, Ao S, Lu C. Preparation and a structure-function analysis of human ciliary neurotrophic factor. Neurosci Res 1995;23:327-333.
    
    15. Yamada E, Okada S, Saito T, Ohshima K, Sato M, Tsuchiya T, Uehara Y, et al. Akt2 phosphorylates Synip to regulate docking and fusion of GLUT4-containing vesicles. J Cell Biol 2005;168:921-928.
    
    16. Jia Y, Takimoto K. Mitogen-activated protein kinases control cardiac KChIP2 gene expression. Circ Res 2006;98:386-393.
    
    17. Zaheer A, Zhong W, Lim R. Expression of mRNAs of multiple growth factors and receptors by neuronal cell lines: detection with RT-PCR. Neurochem Res 1995;20:1457-1463.
    
    18. Guo M, Li J, Wan D, Gu J. KIAA0101 (OEACT-1), an expressionally down-regulated and growth-inhibitory gene in human hepatocellular carcinoma. BMC Cancer 2006;6:109.
    
    19. Huang P, Altshuller YM, Hou JC, Pessin JE, Frohman MA. Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1. Mol Biol Cell 2005; 16:2614-2623.
    
    20. Burgermeister E, Schnoebelen A, Flament A, Benz J, Stihle M, Gsell B, Rufer A, Ruf A, Kuhn B, Marki HP, Mizrahi J, Sebokova E, Niesor E, Meyer M. A novel partial agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma) recruits PPARgamma-coactivator-1alpha, prevents triglyceride accumulation, and potentiates insulin signaling in vitro. Mol Endocrinol. 2006;20:809-830.
    
    21. Bogan JS, McKee AE, Lodish HF. Insulin-responsive compartments containing GLUT4 in 3T3-L1 and CHO cells: regulation by amino acid concentrations. Mol Cell Biol 2001 ;21:4785-4806.
    
    22. lun-Favreau H, Elson G, Chabbert M, Froger J, deLapeyriere O, Lelievre E, Guillet C, Hermann J, Gauchat JF, Gascan H, Chevalier S. The ciliary neurotrophic factor receptor alpha component induces the secretion of and is required for functional responses to cardiotrophin-like cytokine. EMBO J. 2001 ;20:1692-703
    
    23. Auguste P, Robledo O, Olivier C, Froger J, Praloran V, Pouplard-Barthelaix A, Gascan H. Alanine substitution for Thr268 and Asp269 of soluble ciliary neurotrophic factor (CNTF) receptor alpha component defines a specific antagonist for the CNTF response. J Biol Chem 1996;271:26049-26056.
    
    24. Schuster B, Kovaleva M, Sun Y, Regenhard P, Matthews V, Grotzinger J, Rose-John S, Kallen KJ. Signaling of Human Ciliary Neurotrophic Factor (CNTF) Revisited J Biol Chem 2003;278: 9528-9535.
    
    25. Banerjee R, Caruccio L, Zhang YJ, McKercher S, Santella RM. Effects of carcinogen-induced transcription factors on the activation of hepatitis B virus expression in human hepatoblastoma HepG2 cells and its implication on hepatocellular carcinomas. Hepatology 2000;32:367-374.
    
    26. Chen X, Mao Z, Liu S, Liu H, Wang X, Wu H, Wu Y, Zhao T, Fan W, Li Y, Yew DT, Kindler PM, Li L, He Q, Qian L, Wang X, Fan M. Dedifferentiation of adult human myoblasts induced by ciliary neurotrophic factor in vitro. Mol Biol Cell. 2005 Jul; 16:3140-51.
    
    27. Marques JM, Belza I, Holtmann B, Pennica D, Prieto J, Bustos M. Cardiotrophin-1 is an essential factor in the natural defense of the liver against apoptosis. Hepatology. 2007;45:639-48
    
    28. Yamaguchi S, Katahira H, Ozawa S, Nakamichi Y, Tanaka T, Shimoyama T, Takahashi K, et al. Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2005;289:E643-649.
    
    29. De Vos J, Jourdan M, Tarte K, Jasmin C, Klein B. JAK2 tyrosine kinase inhibitor tyrphostin AG490 downregulates the mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) pathways and induces apoptosis in myeloma cells. Br J Haematol 2000; 109:823-828.
    
    30. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004;4:891-899.
    31.Riedl CC,Akhurst T,Larson S,Stanziale SF,Tuorto S,Bhargava A,Hricak H,et al.18F-FDG PET scanning correlates with tissue markers of poor prognosis and predicts mortality for patients after liver resection for colorectal metastases.J Nucl Med 2007;48:771-775.
    32.Di Marco A,Gloaguen I,Demartis A,Saggio I,Graziani R,Paonessa G,Laufer R.Agonistic and antagonistic variants of ciliary neurotrophic factor(CNTF) reveal functional differences between membrane-bound and soluble CNTF alpha-receptor.J Biol Chem.1997;272:23069-23075.
    33.Wilhelm SM,Carter C,Tang L,Wilkie D,McNabola A,Rong H,Chen C,et al.BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis.Cancer Res 2004;64:7099-7109.
    34.Garcia Z,Kumar A,Marques M,Cortes I,Carrera AC.Phosphoinositide 3-kinase controls early and late events in mammalian cell division.Embo J 2006;25:655-661.
    35.Hirano T,Ishihara K,Hibi M.Roles of STAT3 in mediating the cell growth,differentiation and survival signals relayed through the IL-6 family of cytokine receptors.Oncogene 2000;19:2548-2556.
    36.Schuster B,Kovaleva M,Sun Y,Regenhard P,Matthews V,Grotzinger J,Rose-John S,et al.Signaling of human ciliary neurotrophic factor(CNTF)revisited.The interleukin-6 receptor can serve as an alpha-receptor for CTNF.J Biol Chem 2003;278:9528-9535.
    37.Glund S,Deshmukh A,Long YC,Moller T,Koistinen HA,Caidahl K,Zierath JR,Krook A.Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle.Diabetes.2007;56:1630-1637.
    38.Carey AL,Steinberg GR,Macaulay SL,Thomas WG;Holmes AG,Ramm G,Prelovsek O,Hohnen-Behrens C,Watt MJ,James DE,Kemp BE,Pedersen BK,Febbraio MA.Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase.Diabetes.2006;55:2688-97
    39.Zhou T,Zimmerman W,Liu X,Erikson RL.A mammalian NudC-like protein essential for dynein stability and cell viability.Proc Natl Acad Sci U S A.2006;103:9039-44.
    1.J.J.Darnell,I.Kerr;Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins;Science;1994;264;1415-1421
    2.D.S.Aaronson,C.M.Horvath;A road map for those who don't know JAK-STAT;Science,2002;296;1653-1655
    3.X.Zhang,J.E.Darnell;Functional importance of Stat3 tetramerization in activation of the alpha 2-macroglobulin gene;J.Biol.Chem;2001;276;33576-33581
    4.T.Kisseleva,S.Bhattcharya;Signal through the Jak-STAT pathway,recentadvances and future challenges;Gene;2002;285;1-24
    5.P.T.Ram,R.Iyengar;G protein coupled receptor signaling through the Src and Stat3 pathway:role in proliferation and transformation;Oncogene;2001;20;1601
    6.T.Decker,P.Kovarik;Serine phosphorylation of STATs;Oncogene;2000;19;2628-2637
    7.H.Zhao,R Nakajima;Region 752-761 of STAT3 is critical for SRC-1 recruitment and Ser727 phosphorylation;Biochem Biophys Res Commun;2004;325(2);541-548.
    8.J.Turkson,T.Bowman;Requirement for Ras/Racl-mediated p38 and c-Jun N-terminal kinase signaling in Stat3 transcriptional activity induced by the Src oncoprotein;Mol.Cell.Biol;1999;19;7519-7528
    9.S.D.Kroll,J.Chen;The Q205LGo-alpha subunit expressed in NIH-3T3 cells induces transformation;J.Biol.Chem;1992;267;23183-23188
    10.Corre,H.Baumann;Regulation by Gi2 proteins of v-fins-induced proliferation and transformation via Src-kinase and STAT3;Oncogene;1999;18;6335-6342
    11.CL.Yu,YJ.Jin;Cytosolic tyrosine dephosphorylation of STAT5.Potential role of SHP-2 in STAT5 regulation;J.Biol.Chem;2000;275;599-604
    12.R.Catlett-Falcone,TH.Landiwski;Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells;Immunity;1999;10;105-115
    13.R.S.Chapman,PC.Lourenco;Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3;Genes Dev;1999;13;2604-2616
    14.M.Suzuki,H.Shiraha;Des-gamma -carboxy prothrombin is a potential autologous gowth factor for hepatocellular carcinoma;J Biol Chem.2005;280(8;6409-6415
    15.H.Toshio,I.Katsuhiko;Role of Stat3 in mediating the cell growth,differentiation and survival signals relayed through the IL-6 family of cytokine receptor;Oncogene;2000;19;2548-2556
    16.T.Fukada,T.ohtani;STAT3 orchestrates contradictory signals in cytokine-induced Gl to S cell-cycle transition;EMBO J;1998;17;6670-6677
    17.T.Shirogane,T.Fukada;Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis;Immunity;1999;11;709-719
    18.T.Mochizuki,C.Kitanaka;Physical and functional interactions between Pim-1kinase and Cdc25A phosphatase.Implications for the Pim-l-mediated activation of the c-Myc signaling pathway;J.Biol.Chem;1999;274;18659-18666