肝癌侧群细胞的特性及其在肝癌转移复发中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝细胞肝癌(Hepatocellular carcinoma,HCC,简称肝癌)是我国最常见的恶性肿瘤之一(1,2)。虽经几十年的努力,肝癌研究已取得很大进展,但由于肝癌极高的转移/复发率,肝癌病人总体5年生存率仍只有5%左右(2)。因此,探索肝癌转移/复发的机制,寻找有效的抑制途径,已成为进一步提高肝癌生存率的关键(1,3)。
     干细胞(stem cell)是一类具有自我更新、无限增殖和多向分化潜能的原始细胞(4)。研究发现,干细胞和肿瘤细胞有很多共同特点(5),肿瘤很可能是干细胞在自我更新过程中由于基因突变导致生长失控的疾病。有学者(5)提出肿瘤中存在含量极少、具有无限增殖潜能的肿瘤干细胞,这些高致瘤性细胞亚群在肿瘤中充当干细胞的角色,是肿瘤的发生、转移和治疗失败的根源。这些细胞已经在白血病(6)和一些实体肿瘤,如乳腺癌(7)、结肠癌(8,9)和前列腺癌(10)中得到证实。虽然研究发现CD133~+肝癌细胞能在体内引起肿瘤,然后在大多数细胞株和肝癌临床标本不存在这种细胞(11-13)。因此,CD133不适合于大多数肝癌肿瘤样本分离肿瘤干细胞,这阻碍了肝癌形成和复发机制的研究。幸运的是,干细胞的其他特性,如能外排化疗药物和Hoechst 33342能力,可以作为肝癌样本中始祖细胞和肿瘤干细胞样细胞分离的另一种选择。
     侧群细胞(side populmion,SP)是指能将细胞核染料Hoechst33342泵出细胞外,而使自身着色较浅或不着色的一类细胞(14)。研究发现胶质母细胞瘤(15)、卵巢癌(16)、甲状腺癌(17)和肝癌(18)等细胞株中存在SP细胞,这类细胞常高表达ATP-binding cassette transporter family G2(ABCG_2/BCRP_1)和肿瘤干细胞标记,拥有肿瘤干细胞样的高成瘤能力,并可将大多数细胞毒化疗药排出细胞外而耐药。大多学者认为SP细胞富含肿瘤干细胞,在缺乏肿瘤干细胞特异表面标记情况下SP细胞可以作为研究肿瘤干细胞的重要手段(19)。
     临床观察和实验研究资料显示,临床肿瘤和肿瘤细胞株在成瘤和侵袭能力存在异质性(1),意味着不同肝癌组织和细胞株中SP细胞可能存在质和量的差异。然而,不同转移潜能肝癌细胞株SP细胞在成瘤能力及其在肝癌侵袭、转移中的作用尚未明确。
     本研究借助于流式细胞仪对4种不同转移潜能的肝癌细胞株HCCLM3、MHCC97-H、MHCC97-L和Hep3B中的SP细胞进行分选,应用分子生物学和动物模型探索不同转移潜能肝癌细胞株SP细胞在干细胞特性方面的异同及其在肝癌侵袭和转移中的作用,应用临床新鲜肝癌组织测定SP细胞比例,研究SP细胞比例作为判断肝癌侵袭性和患者预后的价值。
     第一部分肝癌侧群细胞的分选及其特性研究
     本研究旨在探索不同转移潜能人肝癌细胞株是否存在SP细胞及不同来源SP细胞在表型、增殖潜能、自我更新和成瘤能力等生物学特性方面的差异。
     借助于流式细胞仪对4种不同转移潜能肝癌细胞株HCCLM3、MHCC97-H、MHCC97-L和Hep3B中SP细胞进行检测和分选;利用免疫组化、免疫印迹和定量PCR研究ABCG_2在维持SP细胞表型中的作用;借助于流式细胞仪分析SP细胞与常见干细胞标记的关系:借助克隆形成实验和体外培养观察不同SP细胞体外增殖和自我更新能力;利用MTT法观察常用化疗药物对其生长抑制影响;利用Non-obese Diabetic/Severe Combined Immunodeficiency(NOD/SCID)小鼠接种实验观察SP细胞成瘤和自我更新能力。
     结果发现4种肝癌细胞株HCCLM3、MHCC97-H、MHCC97-L和Hep3B中SP细胞比例分别为(28.7±1.6)%,(14.5±0.6)%,(4.2±0.4)%和(0.9±0.1)%;SP细胞高表达ABCG_2;SP细胞表达部分干细胞标记;克隆形成实验显示SP细胞具有较强克隆形成能力,在体外培养时,SP细胞能产生SP和主群(main population,MP)细胞,体外培养到第五代,SP细胞比例逐渐恢复到分选前水平;MTT实验显示不同来源SP细胞具有相似的抵抗化疗药物作用:成瘤实验显示2000个SP细胞即能在NOD/SCID小鼠内成瘤。
     本实验证明了不同转移潜能的肝癌细胞株SP细胞比例不同,可能与肝癌侵袭转移潜能相关,不同来源SP细胞具有相似增殖潜能、自我更新、化疗抵抗和高成瘤能力等肝癌干细胞样作用,ABCG_2是决定SP细胞表型的重要因素之一。
     第二部分肝癌侧群细胞与肝癌侵袭性的关系研究
     前研究明确了不同转移潜能人肝癌细胞株SP细胞具有相似成瘤能力。本部分探索肝癌SP细胞在肝癌侵袭和转移中的作用,并初步探讨其可能的分子机制。应用Matrigel实验观察不同来源肝癌SP细胞体外侵袭能力:借助酶联免疫吸附实验(enzyme linked immunosorbem assay,ELISA)分析不同来源SP细胞条件培养上清液中血管内皮生长因子(Vascular endothelial growth factor,VEGF)、基质金属蛋白酶2(matrix metallopeptidase 2,MMP_2)、基质金属蛋白酶9(matrixmetallopeptidase 9,MMP_9)含量;通过原位接种实验观察不同来源SP细胞转移能力,并利用HCCLM3 SP-GFP(green fluorescent protein)细胞和小动物活体成像系统动态观察其形成和转移情况。
     Matrigel侵袭实验显示MHCC97-L SP细胞、MHCC97-H SP细胞和HCCLM3SP细胞组侵袭细胞数分别为(18.7±2.1)%,(35.7±5.1)%和(48.0±3.6)%,显著高于对应的MP细胞(9.3±4.2)%,(15.0±2.0)%和(15.7±1.1)%(p<0.05),然而Hep3B SP细胞与MP细胞组侵袭细胞数无明显差异(3.0±1.0%vs.1.3±0.6%,p=0.068)。各组SP细胞保持原细胞株的侵袭能力(p<0.05);ELISA检测显示Hep3B细胞、MHCC97-L细胞、MHCC97-H细胞和HCCLM3细胞来源的各组SP细胞培养上清液VEGF分别为40±16 pg/ml,87±4 pg/ml,135±32 pg/ml和170±31pg/ml,统计学检验显示除MHCC97-H SP和HCCLM3 SP组间未见显著差异外,其余各组均有显著差异(p<0.05);而各组SP细胞上清液中MMP_2和MMP_9未见显著差异;原位接种实验显示HCCLM3 SP细胞、MHCC97-H SP细胞、MHCC97-L SP细胞和Hep3B SP细胞肺转移率和肺转移灶分别是100%(5/5)和2168.2±926.1,100%(5/5)和726.4±446.5,40%(2/5)和132.0±195.7,20%(1/5)和22.0±49.2,各组SP细胞间存在显著差异(p<0.05);小动物活体成像系统动态观察显示HCCLM3 SP-GFP细胞平均原位接种后21天出现肺转移。
     本实验结果提示,肝癌SP细胞与肝癌体内、外侵袭能力密切相关,不同来源肝癌SP细胞侵袭潜能有显著差异。
     第三部分肝癌侧群细胞与临床肝癌预后的关系研究
     本部分实验观察肝癌临床标本中是否存在SP细胞,探讨肝癌SP细胞与临床病理、肝癌侵袭性和预后间的关系。
     选取2007年3月~2007年7月间在复旦大学附属中山医院肝外科行肝癌切除术,经组织病理学检查证实为肝细胞肝癌的95例病例的新鲜肿瘤标本,用胶原酶消化法分离肿瘤细胞,用不连续的Percoll~(TM)梯度离心纯化肿瘤细胞后行SP细胞分析,SP细胞分析方法进行标准化处理;统计学分析肝癌SP细胞比例与肝癌临床病理特征及预后的关系。
     结果发现,约88.4%(84/95)肝癌组织存在SP细胞,平均比例1.1%(0-23.0%),SP细胞比例与肝癌侵袭表型,如TNM分期(p=0.037),肿瘤包膜(p=0.011)、血管/胆管侵犯(p=0.002)密切相关。患者总体生存率和无瘤生存率分别为82.5%和57.4%;单因素分析显示SP细胞比例与无瘤生存时间有关,高SP组无瘤生存率显著低于低SP组(46.2%vs.68.1%,p=0.035),肿瘤大小、血管/胆管侵犯和TNM分期也与无瘤生存率相关;采用Cox比例风险模型多因素分析显示血管/胆管侵犯、肿瘤大小是影响无瘤生存的独立预后指标,而只有血管/胆管侵犯是总体生存率的独立预后因素;预防性经肝动脉化疗栓塞(Transcatheter arterialchemoembolization,TACE)对低SP比例组的总体生存率有显著影响(p=0.033)。
     实验结果显示,肝癌临床标本中存在SP细胞,肝癌SP细胞比例与肝癌侵袭表型相关,可能是术后早期复发转移的重要原因。
     结论
     1不同转移潜能肝癌细胞株中均存在SP细胞,其比例与转移能力呈正相关。
     2不同来源肝癌SP细胞具有相似增殖潜能、自我更新、对抗化疗药物和高成瘤能力,而ABCG_2可能是决定肝癌SP细胞表型的主要因素。
     3肝癌SP细胞与肝癌侵袭转移密切相关,肝癌sP细胞可能可以作为判断肝癌侵袭能力的一个重要指标。
     4大部分肝癌临床标本中存在SP细胞,SP细胞比例与肝癌侵袭表型相关,可能是引起肝癌术后早期复发转移的重要原因。
     创新点
     1首次证明不同转移潜能肝癌细胞株SP细胞成瘤能力相似,但其侵袭性有显著差异。
     2首次证实肝癌临床标本中存在SP细胞,且SP细胞比例与肝癌侵袭表型和肝癌术后早期复发转移相关。
Hepatocellular carcinoma(HCC) is one of the most malignant tumors in terms of numbers of cases in China(1,2).Despite enormous progress made in the cancer research field,which have improved quality of life,the prognosis of HCC remains dismal with 5-year survival rate of 5%,which was mainly attributed to the high rate of distant metastases and therapy-resistant local recurrences(2).Therefore,it is of importance to further explore the mechanism of metastasis and recurrence,identify those patients with high recurrence and metastasis in advance and thus allow intervening timely.
     Stem cells are defined as cells that have the ability to perpetuate themselves through self-renewal,to extensively proliferate and to generate mature cells of a particular tissue through differentiation(4).Recent studies(5) have shown several common characteristics between stem cell and tumor cell,thus cancer presumably is a disease of irregulated self-renewal owing to transforming mutation.Recently,a growing body of evidences(4,5)have supported the notion that tumours contain "cancer stem cells(CSCs)"- rare cells with indefinitely proliferative potential that drive the formation and growth of tumors,which are the root of tumor-initiating, metastasis and failure of therapy through acting as the role of stem cells.These cells have been identified in leukemia(6)and some solid tumors,including breast cancer(7), colon cancer(8,9) and prostate cancer(10).Although CD133~+ HCC cells were also reported to initiate tumors in vivo,CD133 showed negative in several HCC cell lines and most HCC specimens(11-13).Therefore,this marker may not be successful for the isolation of CSCs in most HCC samples,which has hampered researches into the root of carcinogenesis and recurrence in HCC.Fortunately,other properties of stem cells,such as the ability of effiux to chemotherapeutic drugs and Hoechst 33342,can be used as an alternative mean to isolate cells with progenitors/CSCs-like cells from HCC samples.
     Side populations(SP) cells were coined as a subset of weak or negative staining cells with the ability to efflux Hoechst 33342 by flow cytometry(FCM)(14).Recently data have proved that some cancer cell lines and primary tumors,including glioma(15),ovarian cancer(16),head and neck cancer(17) and hepatocellular carcinoma(18),contain SP cells with high expression of ATP-binding cassette transporter family G2(ABCG_2/BCRP) and marker of CSCs.These cells possess the ability of high initiating-tumor and drug resistance through expulsion of most cytotoxic drugs.Some authors consider that SP cell is an enriched source of stem cells as well as an alternative source that is particularly useful in situation where stem cells molecular markers are unknown(19).
     Clinical observations and experimental data showed that primary tumors or cancer cell lines had the heterogeneous characteristics in term of tumorgenicity and aggressive potential(1),suggesting that SP cells might be different in terms of numbers or tumor-initiating abilities.However,up to date whether SP cells derived from different cell lines/tumors possess identically tumorgenie capability still remains elusive.
     The aim of our study is to explore similarities and disparities in biological characteristics of SP cells sorted from 4 HCC cell lines(HCCLM3,MHCC97-H, MHCC97-L and Hep3B) with different metastatic potentials,to investigate the roles of SP cells in invasion and metastasis of HCC using molecular biological technology and a xenograft model and to investigate the roles of SP cells in predicting the prognosis of HCC through analysis of SP cells in freshly clinical samples.
     PartⅠSorting and identification of side population cells in hepatocellular carcinoma cell lines
     The aim of this study is to determine whether HCC cell lines(HCCLM3, MHCC97-H,MHCC97-L and Hep3B) with different metastatic potentials contain SP cells and to investigate the disparities of phenotype and ability of proliferation, self-renewal and tumor-initiating in 4 SP cells.
     We sorted SP cells from 4 HCC cell lines by FCM,then investigated whether ABCG_2 expression was necessary for the SP phenotype by immunocytochemistry (ICC),Western blotting and real-time quantitative PCR(qRT-PCR),explored the relation between SP cell and putative stem cell markers by FCM,then identified the ability of proliferation and self-renewal by clonogenic and differentiation assay,of chemo-resistance by MTT assay and of initiating-tumor by tumorigenicity assay in non-obese diabetic/severe combined immunodeficiency(NOD/SCID) mice.
     In this study,we found that the proportions of SP cells from Hep3B,MHCC97-L, MHCC97-H and HCCLM3 were 0.9±0.1%,4.2±0.4%,14.5±0.6%and 28.7±1.6%, respectively,that SP cells had the characteristic of high expression of ABCG_2,high clonogenicity,and similarily remarkable chemoresistance.All these SP cells generated SP cells as well as MP cells.The ratio of SP to MP cells decreased to normal as in parent cell lines when cultured over five passages in vitro.As low as 2×10~3 SP cells could initiate tumors in NOD/SCID mice successfully.However,the expressions of putative stem cell markers appeared diverse in different SP cells.
     In conclusion,the proportion of SP cells was in lines with metastatic potential of their parent cell lines,which maybe correlate with invasive ability in HCC.Different SP cells harbored similarily CSCs-like characteristic of proliferation,self-renewal, chemoresistance and high tumor-initiating.ABCG_2 was a determinant of phenotype of HCC SP cells.
     PartⅡRoles of side population cells in invasion and metastasis of hepatoeellular carcinoma
     We have successfully identified that SP cells from HCC cell lines with different metastatic potentials have similarily tumor-initiating ability.In this study,our aim is to investigate the role and mechanism of SP cell in invasion and metastasis of HCC. We observed the invasive abilities of different SP and MP cells using Matrigel invasion assay,detected the concentration of vascular endothelial growth factor (VEGF),matrix metallopeptidase 2(MMP_2),matrix metallopeptidase 9(MMP_9) in supematant of SP cells culture by enzyme linked immunosorbent assay(ELISA), investigated the metastastic potential of SP cells using nude mice orthotropic transplantation and observed dynamic process of tumor-initiating and metastasis of HCC with the help of bioluminescence imaging after inoculation of HCCLM3-green fluorescent protein(GFP).
     According to the Matrigel invasion assay,the numbers of invaded SP cells from MHCC97-L,MHCC97-H and HCCLM3 increased stepwise in accordance with the metastatic potentials of their parent cell lines(18.7±2.1%,35.7±5.1%and 48.0±3.6% respectively,p<0.05),which were significantly higher than their corresponding MP cells(9.3±4.2%,15.0±2.0%and 15.7±1.1%respectively,p<0.05).However,there was no significant difference between SP and MP cells in Hep3B cells(3.0±1.0%vs. 1.3±0.6%,p=0.068).ELISA showed that the concentration of VEGF in Hep3B SP cells,MHCC97-L SP cells,MHCC97-H SP cells and HCCLM3 SP cells were 40±16 pg/ml,87±4 pg/ml,135±32 pg/ml and 70±31 pg/ml,with significant difference (p<0.05) other than between MHCC97-H cells and HCCLM3 cells.However,neither MMP_2 nor MMP_9 was found to be statistical significance among 4 HCC SP cells. Metastasis assays demonstrated that the pulmonary metastasis rates and metastatic tumor clusters per mouse were 100%(5/5) and 2168.2±926.1,100%(5/5) and 726.4±446.5,40%(2/5) and 132.0±195.7,20%(1/5) and 22.0±49.2 in HCCLM3 SP cells,MHCC97-H SP cells,MHCC97-L SP cells and Hep3B SP cells group respectively(p<0.05),which were in accordance with the metastatic potentials of their parent cell lines.Bioluminescence imaging showed metastatic pulmonary tumor clusters were found at 21 day after inoculation of HCCLM3-GFP.
     In conclusion,SP cells correlated with the invasive and metastatic potential of HCC in vivo and in vitro,while different derived SP cells remained significant difference in metastatic potentials,in line with that of their parent cells.
     PartⅢAnalysis of side population cells in hepatocellular carcinoma samples and their relationship with prognosis
     The purpose of the present study is to investigate whether hepatocellular carcinoma tissues contain SP cells as well and to assay relationships between SP cell and prognosis of HCC after curative resection.
     95 cases of patients with definite HCC diagnosis by pathology were enrolled in this study.They all underwent surgical resection from March 2007 to July 2007 in Zhongshan Hospital,Liver Cancer Institute,Fudan University.Freshly tumor specimen were digested with 0.1%ultrapure collagenase,then purified using uncontinuous gradient percoll~(TM) centrifugation and standardized protocol for SP analysis in HCC samples.Kaplan-Meier method,log-rank test and chi-square test were used to analyze the relationship of the percentage of SP cells with prognosis of HCC.Multivariate study with Cox's proportional hazard model was used to evaluate the prognosis-relative aspects.
     To avoid the bias from the process of SP sorting,we developed an optimized protocol for SP analysis in HCC samples.About 88.4%(84/95) of HCC samples contained SP cells(0-23.0%,mean 1.1%).The proportion of SP cells was found to be associated with aggressive phenotypes of HCC,such as TNM stage(p=0.037),tumor encapsulation(p=0.011) and vascular/bile duct invasion(p=0.002).The overall survival(OS) and disease-free survival(DFS) rate of all the patients were 82.5%and 57.4%,respectively.Univariate analysis showed that SP cells proportion correlated with DFS.The DFS of high SP group was significantly lower than that of low SP group(46.2%vs.68.1%,p=0.035).Tumor size,vascular/bile duet invasion and TNM stage were also found to be associated with DFS.Multivariate Cox proportional hazards model showed that vascular/bile duct invasion and tumor size were independent prognostic factors for DFS.Only vascular/bile duct invasion was independent predictor for OS.
     We further investigated the role of prophylactic TACE in HCC.There was no significant difference in OS and DFS between prophylactic TACE group and non-TACE group.When stratified all the patients with SP cells proportion,significant difference in OS between prophylactic TACE and non-TACE cases can only be found in low SP group,but not in high SP group(p=0.033).
     In conclusion,HCC samples contained SP cells that correlated with malignant phenotype and early recurrence/metastasis of HCC after operation.
     Conclusions
     1 Four HCC cell lines with different metastatic potentials contained SP cells.The proportion of SP cells was positively correlated with the invasive ability of HCC.
     2 Different SP cells harbored similar liver CSCs-like characteristics of proliferation, self-renewal,chemoresistance and high tumor-initiating ability.ABCG_2 may be a determinant phenotype of HCC SP cells.
     3 SP cells correlated with the metastatic potential of HCC,which may be a novel indicator of poor prognosis for HCC.
     4 Most HCC samples contained SP cells that correlated with malignant phenotype and attributed to early recurrence/metastasis of HCC.
     Novelty
     1 We firstly demonstrated that SP cells sorted from HCC cell lines with different metastatic potentials had similar tumor-initiating ability but significantly different invasive ability.
     2 We firstly confirmed that HCC samples contained SP cells which were correlated with malignant phenotype and early recurrence/metastasis of HCC.
引文
1. Tang ZY, Ye SL, Liu YK, Qin LX, Sun HC, Ye QH, Wang L, et al. A decade's studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol 2004;130:187-196.
    2. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108.
    3. Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA, Kammula US, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 2006;10:99-111.
    4. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med 2006;355:1253-1261.
    5. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001 ;414:105-111.
    6. Dick JE. Acute myeloid leukemia stem cells. Ann N Y Acad Sci 2005; 1044:1-5.
    7. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100:3983-3988.
    8. O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445:106-110.
    9. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007;445:111-115.
    10. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005;65:10946-10951.
    11. Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007; 132:2542-2556.
    12. Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 2007;120:1444-1450.
    13. Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD 133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 2006;351:820-824.
    14. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183:1797-1806.
    15. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A 2004;101:781-786.
    16. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci U S A2006; 103:11154-11159.
    17. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 2007; 104:973-978.
    18. Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 2006;44:240-251.
    19. Hadnagy A, Gaboury L, Beaulieu R, Balicki D. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 2006;312:3701-3710.
    20. Zhou XD, Tang ZY, Yu YQ, Yang BH, Lu JZ, Lin ZY, Ma ZC, et al. Recurrence after resection of alpha-fetoprotein-positive hepatocellular carcinoma. J Cancer Res Clin Oncol 1994;120:369-373.
    21. Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, Zanetti KA, et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 2008;47:897-907.
    22. Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC, Simon R, et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 2003;9:416-423.
    23. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 2007;25:2586-2593.
    24. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994;367:645-648.
    25. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Komblum HI. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 2003;100:15178-15183.
    26. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, et al. Identification of human brain tumour initiating cells. Nature 2004;432:396-401.
    27. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003;17:1253-1270.
    28. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006;439:993-997.
    29. Choi CH. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int 2005;5:30.
    30. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, et al. The ABC transporter Bcrpl/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001 ;7:1028-1034.
    31. Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 2002;20:l 1-20.
    32. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, et al. A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 2004;101.14228-14233.
    33. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 2005;65:6207-6219.
    34. Haraguchi N, Utsunomiya T, Inoue H, Tanaka F, Mimori K, Barnard GF, Mori M. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 2006;24:506-513.
    35. Zijlstra A, Lewis J, Degryse B, Stuhlmann H; Quigley JP. The Inhibition of Tumor Cell Intravasation and Subsequent Metastasis via Regulation of In Vivo Tumor Cell Motility by the Tetraspanin CD151. Cancer Cell 2008;13:221-234.
    36. Wicha MS. Cancer stem cells and metastasis: lethal seeds. Clin Cancer Res 2006;12:5606-5607.
    37. Tian J, Tang ZY, Ye SL, Liu YK, Lin ZY, Chen J, Xue Q. New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis. Br J Cancer 1999;81:814-821.
    38. Li Y, Tang ZY, Ye SL, Liu YK, Chen J, Xue Q, Chen J, et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J Gastroenterol 2001;7:630-636.
    39. Li Y, Tang Y, Ye L, Liu B, Liu K, Chen J, Xue Q. Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarray. J Cancer Res Clin Oncol 2003;129:43-51.
    40. Abbott A. Cancer: the root of the problem. Nature 2006;442: 742-743.
    41. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, et al. Identification of cells initiating human melanomas. Nature 2008;451:345-349.
    42. Dan YY, Riehle KJ, Lazaro C, Teoh N, Haque J, Campbell JS, Fausto N. Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. Proc Natl Acad Sci U S A 2006; 103:9912-9917.
    43. Masson NM, Currie IS, Terrace JD, Garden OJ, Parks RW, Ross JA. Hepatic progenitor cells in human fetal liver express the oval cell marker Thy-1. Am J Physiol Gastrointest Liver Physiol 2006;291:G45-54.
    44. Herrera MB, Bruno S, Buttiglieri S, Tetta C, Gatti S, Deregibus MC, Bussolati B, et al. Isolation and characterization of a stem cell population from adult human liver. Stem Cells 2006;24:2840-2850.
    45. Hoppo T, Fujii H, Hirose T, Yasuchika K, Azuma H, Baba S, Naito M, et al. Thy1-positive mesenchymal cells promote the maturation of CD49f-positive hepatic progenitor cells in the mouse fetal liver. Hepatology 2004;39:1362-1370.
    46. Robey RW, Polgar O, Deeken J, To KW, Bates SE. ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev 2007;26:39-57.
    47. de Paiva CS, Chen Z, Corrales RM, Pflugfelder SC, Li DQ. ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells 2005;23:63-73.
    48. Zen Y, Fujii T, Yoshikawa S, Takamura H, Tani T, Ohta T, Nakanuma Y. Histological and culture studies with respect to ABCG2 expression support the existence of a cancer cell hierarchy in human hepatocellular carcinoma. Am J Pathol 2007;170:1750-1762.
    49. Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, Chu PW, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 2008;13:153-166.
    50. Yang ZF, Ngai P, Ho DW, Yu WC, Ng MN, Lau CK, Li ML, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology 2008;47:919-928.
    51. Li F, Tiede B, Massague J, Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 2007; 17:3-14.
    52. Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, Mikaelyan A, et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 2006; 12:410-416.
    53. Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T, Sherlock G, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 2007;356:217-226.
    54. Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer 2006;6:449-458.
    55. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. "Sternness": transcriptional profiling of embryonic and adult stem cells. Science 2002;298:597-600.
    56. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science 2002;298:601-604.
    57. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997;18:4-25.
    58. Ho QT, Kuo CJ. Vascular endothelial growth factor: biology and therapeutic applications. Int J Biochem Cell Biol 2007;39:1349-1357.
    59. Poon RT, Ng IO, Lau C, Zhu LX, Yu WC, Lo CM, Fan ST, et al. Serum vascular endothelial growth factor predicts venous invasion in hepatocellular carcinoma: a prospective study. Ann Surg 2001;233:227-235.
    60. Poon RT, Ho JW, Tong CS, Lau C, Ng IO, Fan ST. Prognostic significance of serum vascular endothelial growth factor and endostatin in patients with hepatocellular carcinoma. Br J Surg 2004;91:1354-1360.
    61. Li XM, Tang ZY, Qin LX, Zhou J, Sun HC. Serum vascular endothelial growth factor is a predictor of invasion and metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res 1999; 18:511-517.
    62. Patrick C. Hermann SLH, Tanja Herrler, Alexandra Aicher, Joachim W. Ellwart, Markus Guba, Christiane J. Bruns, and Christopher Heeschen. Distinct Populations of Cancer Stem Cells Determine Tumor Growth and Metastatic Activity in Human Pancreatic Cancer. Cell Stem Cell 2007; 1:313-323.
    63. Fang X, Gaudette D, Furui T, Mao M, Estrella V, Eder A, Pustilnik T, et al. Lysophospholipid growth factors in the initiation, progression, metastases, and management of ovarian cancer. Ann N Y Acad Sci 2000;905:188-208.
    64. Ko S, Chu KM, Luk JM, Wong BW, Yuen ST, Leung SY, Wong J. Overexpression of LI-cadherin in gastric cancer is associated with lymph node metastasis. Biochem Biophys Res Commun 2004;319:562-568.
    65. Noritake J, Watanabe T, Sato K, Wang S, Kaibuchi K. IQGAP1: a key regulator of adhesion and migration. J Cell Sci 2005;118:2085-2092.
    66. Wang XQ, Luk JM, Leung PP, Wong BW, Stanbridge EJ, Fan ST. Alternative mRNA splicing of liver intestine-cadherin in hepatocellular carcinoma. Clin Cancer Res 2005; 11:483-489.
    67. Montanaro F, Liadaki K, Schienda J, Flint A, Gussoni E, Kunkel LM. Demystifying SP cell purification: viability, yield, and phenotype are defined by isolation parameters. Exp Cell Res 2004;298:144-154.
    68. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999;401:390-394.
    69. Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA. Myogenic specification of side population cells in skeletal muscle. J Cell Biol 2002;159:123-134.
    70. Majka SM, Jackson KA, Kienstra KA, Majesky MW, Goodell MA, Hirschi KK. Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. J Clin Invest 2003 ;111:71-79.
    71. McKinney-Freeman SL, Majka SM, Jackson KA, Norwood K, Hirschi KK, Goodell MA. Altered phenotype and reduced function of muscle-derived hematopoietic stem cells. Exp Hematol 2003; 31:806-814.
    72. Wang L, Tang ZY, Qin LX, Wu XF, Sun HC, Xue Q, Ye SL. High-dose and long-term therapy with interferon-alfa inhibits tumor growth and recurrence in nude mice bearing human hepatocellular carcinoma xenografts with high metastatic potential. Hepatology 2000;32:43-48.
    73. Sun HC, Tang ZY, Wang L, Qin LX, Ma ZC, Ye QH, Zhang BH, et al. Postoperative interferon alpha treatment postponed recurrence and improved overall survival in patients after curative resection of HBV-related hepatocellular carcinoma: a randomized clinical trial. J Cancer Res Clin Oncol 2006; 132:458-465.
    74. Fan J, Zhou J, Wu ZQ, Qiu SJ, Wang XY, Shi YH, Tang ZY. Efficacy of different treatment strategies for hepatocellular carcinoma with portal vein tumor thrombosis. World J Gastroenterol 2005;11:1215-1219.
    75. Lo CM, Liu CL, Chan SC, Lam CM, Poon RT, Ng IO, Fan ST, et al. A randomized, controlled trial of postoperative adjuvant interferon therapy after resection of hepatocellular carcinoma. Ann Surg 2007;245:831-842.
    76. Schwartz JD, Schwartz M, Mandeli J, Sung M. Neoadjuvant and adjuvant therapy for resectable hepatocellular carcinoma: review of the randomised clinical trials. Lancet Oncol 2002;3:593-603.
    77. Acunas B, Rozanes I. Hepatocellular carcinoma: treatment with transcatheter arterial chemoembolization. Eur J Radiol 1999;32:86-89.
    78. Poon RT, Ng IO, Lau C, Yu WC, Yang ZF, Fan ST, Wong J. Tumor microvessel density as a predictor of recurrence after resection of hepatocellular carcinoma: a prospective study. J Clin Oncol 2002;20:1775-1785.
    79. Pawlik TM, Poon RT, Abdalla EK, Zorzi D, Ikai I, Curley SA, Nagorney DM, et al. Critical appraisal of the clinical and pathologic predictors of survival after resection of large hepatocellular carcinoma. Arch Surg 2005;140:450-457; discussion 457-458.
    80. Minagawa M, Ikai I, Matsuyama Y, Yamaoka Y, Makuuchi M. Staging of hepatocellular carcinoma: assessment of the Japanese TNM and AJCC/UICC TNM systems in a cohort of 13,772 patients in Japan. Ann Surg 2007;245:909-922.
    81. Wu C, Wei Q, Utomo V, Nadesan P, Whetstone H, Kandel R, Wunder JS, et al. Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer Res 2007;67:8216-8222.
    82. Hermann PC, Huber SL, Heeschen C. Metastatic cancer stem cells: a new target for anti-cancer therapy? Cell Cycle 2008;7:188-193.
    83. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 2005;5:744-749.
    84. Takafuji V, Forgues M, Unsworth E, Goldsmith P, Wang XW. An osteopontin fragment is essential for tumor cell invasion in hepatocellular carcinoma. Oncogene 2007;26:6361-6371.
    85. Lara-Pezzi E, Serrador JM, Montoya MC, Zamora D, Yanez-Mo M, Carretero M, Furthmayr H, et al. The hepatitis B virus X protein (HBx) induces a migratory phenotype in a CD44-dependent manner: possible role of HBx in invasion and metastasis. Hepatology 2001;33:1270-1281.
    86. Nejjari M, Hafdi Z, Gouysse G, Fiorentino M, Beatrix O, Dumortier J, Pourreyron C, et al. Expression, regulation, and function of alpha V integrins in hepatocellular carcinoma: an in vivo and in vitro study. Hepatology 2002;36:418-426.
    87. Schiffer E, Housset C, Cacheux W, Wendum D, Desbois-Mouthon C, Rey C, Clergue F, et al. Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis. Hepatology 2005;41:307-314.
    88. Williams DA. A new mechanism of leukemia drug resistance? N Engl J Med 2007;357:77-78.
    89. Mishra L, Derynck R, Mishra B. Transforming growth factor-beta signaling in stem cells and cancer. Science 2005 ;310:68-71.
    90. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003;3:895-902.
    91. Pathak S. Organ- and tissue-specific stem cells and carcinogenesis. Anticancer Res 2002;22:1353-1356.
    92. Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer 2006;6:425-436.
    93. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005;5:275-284.
    94. Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ. Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 2005;5:899-904.
    95. Polyak K, Hahn WC. Roots and stems: stem cells in cancer. Nat Med 2006;12:296-300.
    96. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57-70.
    97. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730-737.
    98. Marshall CA, Suzuki SO, Goldman JE. Gliogenic and neurogenic progenitors of the subventricular zone: who are they, where did they come from, and where are they going? Glia2003;43:52-61.
    99. Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annu Rev Med 2007;58:267-284.
    100. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63:5821-5828.
    101. Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG. Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2betal+ cell population is enriched in tumor-initiating cells. Cancer Res 2007;67:6796-6805.
    102. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006;25:1696-1708.
    103. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, et al. Identification of pancreatic cancer stem cells. Cancer Res 2007 ;67:1030-1037.
    104. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005;121:823-835.
    105. Seigel GM, Campbell LM, Narayan M, Gonzalez-Fernandez F. Cancer stem cell characteristics in retinoblastoma. Mol Vis 2005;11:729-737.
    106. Meeson AP, Hawke TJ, Graham S, Jiang N, Elterman J, Hutcheson K, Dimaio JM, et al. Cellular and molecular regulation of skeletal muscle side population cells. Stem Cells 2004;22:1305-1320.
    107. Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, Goetsch SC, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 2004;265:262-275.
    108. Hussain SZ, Strom SC, Kirby MR, Burns S, Langemeijer S, Ueda T, Hsieh M, et al. Side population cells derived from adult human liver generate hepatocyte-like cells in vitro. Dig Dis Sci 2005;50:1755-1763.
    109. Shimano K, Satake M, Okaya A, Kitanaka J, Kitanaka N, Takemura M, Sakagami M, et al. Hepatic oval cells have the side population phenotype defined by expression of ATP-binding cassette transporter ABCG2/BCRP1. Am J Pathol 2003;163:3-9.
    110. Kim M, Morshead CM. Distinct populations of forebrain neural stem and progenitor cells can be isolated using side-population analysis. J Neurosci 2003 ;23:10703-10709.
    111. Yano S, Ito Y, Fujimoto M, Hamazaki TS, Tamaki K, Okochi H. Characterization and localization of side population cells in mouse skin. Stem Cells 2005;23:834-841.
    112. Wang J, Guo LP, Chen LZ, Zeng YX, Lu SH. Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res 2007;67:3716-3724.
    113. Ho MM, Ng AV, Lam S, Hung JY. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 2007;67:4827-4833.
    114. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term Proliferative ability in vitro and in vivo. Blood 1997;89:3104-3112.
    115. Blair A, Sutherland HJ. Primitive acute myeloid leukemia cells with long-term Proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol 2000;28:660-671.
    116. Feller N, van der Pol MA, Waaijman T, Weijers GW, Westra G, Ossenkoppele GJ, Schuurhuis GJ. Immunologic purging of autologous peripheral blood stem cell products based on CD34 and CD133 expression can be effectively and safely applied in half of the acute myeloid leukemia patients. Clin Cancer Res 2005;11:4793-4801.
    117. Peled A, Hardan I, Trakhtenbrot L, Gur E, Magid M, Darash-Yahana M, Cohen N, et al. Immature leukemic CD34+CXCR4+ cells from CML patients have lower integrin-dependent migration and adhesion in response to the chemokine SDF-1. Stem Cells 2002;20:259-266.
    118. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 2004;117:3539-3545.
    119. Xin L, Lawson DA, Witte ON. The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci U S A 2005; 102:6942-6947.
    120. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, Magdaleno S, et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 2005;8:323-335.
    121. Fiegel HC, Gluer S, Roth B, Rischewski J, von Schweinitz D, Ure B, Lambrecht W, et al. Stem-like cells in human hepatoblastoma. J Histochem Cytochem 2004;52:1495-1501.
    122. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 2007;104:10158-10163.
    123. Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M, Sayegh MH, et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 2005;65:4320-4333.
    124. Ghods AJ, Irvin D, Liu G, Yuan X, Abdulkadir IR, Tunici P, Konda B, et al. Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells 2007;25:1645-1653.
    125. Holyoake TL, Jiang X, Drummond MW, Eaves AC, Eaves CJ. Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia. Leukemia 2002; 16:549-558.
    126. Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A. Characterization of acute lymphoblastic leukemia progenitor cells. Blood 2004;104:2919-2925.
    127. Seaberg RM, van der Kooy D. Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci 2003;26:125-131.
    128. Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 2004;23:9392-9400.
    129. Alison MR. Liver stem cells: implications for hepatocarcinogenesis. Stem Cell Rev 2005; 1:253-260.
    130. Lowes KN, Brennan BA, Yeoh GC, Olynyk JK. Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am J Pathol 1999;154:537-541.
    131. Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res 2007; 13:4042-4045.
    132. Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM, Lagoo A, et al. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007; 12:528-541.
    133. Chen MS, Woodward WA, Behbod F, Peddibhotla S, Alfaro MP, Buchholz TA, Rosen JM. Wnt/beta-catenin mediates radiation resistance of Sca1 + progenitors in an immortalized mammary gland cell line. J Cell Sci 2007; 120:468-477.
    134. Katoh M. Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev 2007;3:30-38.
    135. Zhang XP, Zheng G, Zou L, Liu HL, Hou LH, Zhou P, Yin DD, et al. Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol Cell Biochem 2008;307:101-108.
    136. Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM, Eberhart CG. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 2006;66:7445-7452.
    137. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 2006;442:823-826.
    138. Hartmann W, Koch A, Brune H, Waha A, Schuller U, Dani I, Denkhaus D, et al. Insulin-like growth factor II is involved in the proliferation control of medulloblastoma and its cerebellar precursor cells. Am J Pathol 2005;166:l 153-1162.
    139. Dahmane N, Sanchez P, Gitton Y, Palma V, Sun T, Beyna M, Weiner H, et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 2001;128:5201-5212.
    140. Ruiz i Altaba A, Sanchez P, Dahmane N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2002;2:361-372.
    141. Datta S, Datta MW. Sonic Hedgehog signaling in advanced prostate cancer. Cell Mol Life Sci 2006;63:435-448.
    142. Romer JT, Kimura H, Magdaleno S, Sasai K, Fuller C, Baines H, Connelly M, et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/-)p53(-/-) mice. Cancer Cell 2004;6:229-240.
    143. Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P, Van Lohuizen M, et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 2004;428:337-341.
    144. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell 2006; 127:679-695.
    145. Geminder H, Sagi-Assif O, Goldberg L, Meshel T, Rechavi G, Witz IP, Ben-Baruch A. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 2001;167:4747-4757.