相山铀矿田地球物理特征及深部地质结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相山铀矿田位于赣杭构造带火山岩成矿带西段乐安——东乡成矿亚带内的相山火山塌陷盆地中,位于北东向深断裂和北西向断裂带的交汇部位。经过50多年的铀矿勘查,相山盆地已经发展为我国重要的陆相火山岩型铀矿田。近年来,我国在相山铀矿田开展了大量深部找矿工作,对相山火山塌陷盆地的基底构造、富大铀矿成矿规律、控矿因素取得了新认识,发现了“上铀下铅锌”的矿体分布规律,但由于对矿田地球物理特征和深部地质结构认识的缺乏,针对该区的找矿仍主要集中在500米以浅,严重制约了相山铀矿田深部找矿的突破。
     为研究相山铀矿田地球物理特征和深部地质结构,本文以中国地质调查局“相山火山盆地深部地质调查”项目为依托,开展了以探测主要岩体物性特征,变质基底、大型断裂、岩浆通道的基本格架等主要目标地质体的空间分布为目的的地球物理研究工作。
     论文相山铀矿田主要岩(矿)石物性特征入手,研究建立相山铀矿田地球物理特征,指导该矿区深部找矿物探方法技术选择和地球物理资料解释,共采集了相山铀矿田1400多块典型标本进行密度、磁化率和电阻率等物性参数测试,绘制了研究区主要岩石单元(流纹英安岩、碎斑熔岩、花岗斑岩和变质岩)的物性频率分布直方图,从图上可以看出四种岩性基本存在单峰正态分布特征,而花岗斑岩的磁化率和电阻率直方图存在双峰正态分布特征,花岗斑岩的电阻率和磁化率交汇图也存在两个明显交汇区域,表明研究区存在两类花岗斑岩,通过岩芯观察,发现高阻、高磁化率为浅肉红色花岗斑岩,低阻、低磁化率为灰色花岗斑岩。为了进一步通过物性测试结果对典型岩石单元进行分类,提出了逆质量磁化率(质量磁化率的倒数,质量磁化率为体积磁化率与密度的比值),通过逆质量磁化率与密度的交汇图更明显的将四种岩性区分开来。
     区域重磁数据既包括区域异常,又包括局部异常,从叠加异常中提取研究对象产生的异常,必须选择合理异常提取的方法,本文对异常提取方法进行了对比研究。首先收集了相山地区1∶2.5万地面高精度磁法测量和1∶5万重力测量的资料,选择匹配滤波、趋势分析、解析延拓和插值切割等多种数据处理技术对重磁异常进行分离处理,结果表明趋势分析方法划分异常比较单一;匹配滤波方法处理后的结果含有较多的低频成分,高频成分处理过多,使得局部异常包含了过多的深部异常信息,对于局部异常信息的反映相对较少;插值切割方法结果显示近地表的异常场成分较多,使得局部异常结果显得比较复杂,因此结合该研究区的地质资料,解析延拓法能合理的提取该研究区的重磁异常,因此选择解析延拓法作为该研究区的重磁异常提取方法。
     在异常分离的基础上,对重磁数据进行了三维反演研究,结合主要岩石的物性测试结果和已知的地质情况,对典型的重磁三维反演的图切剖面进行地质-地球物理解译,圈定了典型剖面变质岩、流纹英安岩、碎斑熔岩和花岗斑岩分布情况;通过重磁三维反演结果推测相山地区基底、高密度岩体和火山通道,得出青白口系的变质岩为测区内密度相对较大的岩层,与火山岩系存在一个密度界面,基底岩性的起伏状况与重力值的高低成对应关系,重力值越高,基底埋藏越浅,反之,埋藏越深;高密度体主要出露在盆地的北部和西部,推测高密度岩体为流纹英安岩;低密度体出现在相山盆地的中部、西部和盆地东南角上,总体上能体现了盆地的隆凹,盆地的中部为相山主火山机构,推测出在相山的西部和东南角存在两座侧火山机构。
     矿集区强电磁干扰严重影响着地球电磁法在深部找矿中的应用效果,为了克服电磁噪声的影响,提高大地电磁数据的质量,本文首先对研究区的噪声特征和噪声源进行分析,噪声根据其时域波形可以分为脉冲噪声、工频谐波噪声、方波噪声、三角波噪声、阶跃噪声、充放电模式噪声等6类;噪声源主要有:矿山干扰、无线通讯干扰、人文干扰、地质噪声等;同时分析这些噪声源对MT数据的影响。在研究区开展了噪声研究,对基于参考道的MT数据去噪技术进行研究,采用了不同参考距离下的本地电参考,本地磁参考,互参考磁道及互参考电道作为参考信号处理数据得出视电阻率相位曲线及信噪比曲线来综合评价不同参考道处理效果。通过对基于形态滤波和基于EMD的阈值去噪方法对研究区的噪声去噪结果进行对比分析,两种方法都适合用于提取该研究区有用信号,达到了信噪分离的目的。
     论文将电磁去噪研究成果应用于相山铀矿田两条大地电磁法剖面数据处理中,对经去噪后的数据进行了二维反演,反演结果较好圈定了沉积地层、变质岩基底及侵入岩体及断裂构造等深部地质结构。论文研究成果为研究区深部找矿和类似地区深部地质结构探测提供了技术支撑。
Xiang-shan uranium ore field is located in collapse basin of Le-an and Dong-xiangmetallogenic belt which belongs to a greater volcano rock tectonic metallogenic belt inGan-hang. The location is in combine zone of North East fracture and North West fracture.Xiang-shan basin already becomes an important continental volcanic type uranium ore fieldin China with more than50years exploration. Recent years, Xiang-shan ore field wasdevoted to much more works for deep mine exploration. New perspectives are gained aboutthe basal structure of collapse basin, mineralization regularity of great uranium deposits, andore controlling factors. The ore body distribution law is that uranium is distributed above thelead zincore. The ore body is mainly distributed500m above. And deep mine exploration isrestricted seriously in the Xiang-shan uranium deposit because without related data aboutgeophysical characteristics and deep geological knowledge in this ore field.
     In order to investigate the geophysical characteristics and deep geological structure forthe uranium orefield, thisthesis is mainly research the rock physics and spatial distributionof metamorphic rock basement, strikes of great faults and basic framework of magmachannels. This thesis is supported by the Xiang-shan deep geological survey project.
     For the study of the physical characteristics of the major rock (ore) onxiangshanuranium ore field,establish the geophysical characteristics of xiangshan uraniumorefield,guideto select the deep mining area for mineral exploration method and interpretegeophysical data,collectedand measured more than1400typical rock specimens,and obtaindensity, magnetic susceptibility and resistivity,drew main the histogram of rock unit(porphyroclastic Lava,rhyodacite, granite porphyryand metamorphic rocks),There are singlepeak characteristic from the histogram,but the existence of magnetic susceptibility andresistivity granite porphyry of double peaks phenomenon.There are two obvious connectionregion fromthe intersection chartof the density and magnetic susceptibility of thegraniteanalysis, indicates that there are two types of granite porphyry by analyzing rockcores, high resistance, high susceptibility to light red meat thick spot granite porphyry, lowresistance, low susceptibility to thick grey spot granite porphyry were found.In order tofurther classify the typical rock unit by the test results,the inverse magnetic susceptibility(density/susceptibility) and density crossplot map analysis can be obviously dividedphysical rendezvous regions more obvious, can provide ideas for joint inversion of gravityand magnetic.
     Regional gravity and magnetic data include both regional anomalies and local anomaly,extractethe abnormal of the research objectfrom the superimposed anomaly, choose a reasonable method of the anomaly extraction,this paper makes a comparative study on theanomaly extraction method.First ground high resolution magnetic data with1:25000andgravity data with1:50000were collected in Xiang-shan district. Gravity and magneticanomalies were separated by use of data processing methods (eg: matched filtering, trendanalysis, analytic continuation and interpolating cut and so on) and the trend analysismethod divide single anomaly successfully.The results of matched filtering method containsmore high frequency components, local anomaly contains much more deep abnormalinformation because the local anomaly information is relatively less. The interpolating cutmethod showed abnormal field components are the surface, the local abnormal results morecomplicated, in combination with geological data of the study area, carries on the contrastanalysis to the separation results extraction, that analytic continuation method canreasonably gravity and magnetic anomaly of the study area.
     Based on the anomaly separation,three dimensional gravity and magnetic inversionresults were combined with rock physics analysis and geological situation to deduce theunderground parameters distribution. The slice maps of3-D inversion results with typicalanomalieswere used to determine the geology and geophysics phenomena. Through analysis,we delineatethe distribution of metamorphic rocks, rhyodacite, Porphyroclastic Lava andgranite porphyryof the typical section;by the3D inversion of gravity and magneticanomaliessuggests substrate, high density and the volcano, show that this set ofmetamorphic rocks of Qingbaikou system for measuring the area density of rock, theexistence of a density interface and volcano rock series. Fluctuation and the gravitybasement lithology value into a corresponding relation, gravity value higher, basementburied shallower, versus, buried deeper. High density body is mainly exposed in the northernand Western basin,speculate the high density of rock is rhyodacite and low density bodyappear in central area, western and the southeast corner of basin. We deduce that the basinuplift,implemented in the middle of the main volcano in Xiangshan basin. Two volcanoesmaybe existed in the southeast and west of Xiangshan district, respectively.
     Srong electromagnetic interference effect electromagnetic method application in deepprospecting In the ore district,in order to overcome the influence of electromagneticnoise,andimprove the quality of magnetotelluric data,this paper are analyzed the noisecharacteristics and noise sources on the study area,results show that noise of the study areacan be divided into six types whichcomprise pulse noise, industrial frequency harmonicnoise, square-wavenoise, triangle wave noise, step noise, changed and discharged mode noise. The noise includes mine interference, wireless communication interference, humanbeings disturbance, geological noise etc. We have evaluated the influence of these noises onMT data. Evaluate the quality of MT data by the cross reference,the proposed EMD basedthreshold denoising and morphological filtering denoising method for comparative analysisof the results, two methods are implemented to remove noise, and extract the useful signal,the signal noise separation purposes.
     The electromagnetic noise research is applied to two magnetotelluric profile dataprocessing on the Xiangshan uranium orefield, the denoised data was conducted2Dinversion, the results delineate sedimentary, metamorphic basement and intrusive rock andfracture structure in deep geological structure better. The research results can providetechnical support for the deep prospectingand deep geological structure of the similar area.
引文
[1]胡恭任,章邦桐,王长华.中国区域地质.2008,16(2):222~224
    [2]邵飞,陈晓明等.江西省相山铀矿田成矿模式探讨[J].地质力学学报,2008,14(1):65~73
    [3]Chen Zhaobo.“Double mixing”genetic model of uranium deposits in volcanic rocks and relationshipbetween China’s Mesozoic veintype uranium deposits and pacific plate tectonics,Metallogensis of Uranium[J].In:Proceeding of the26th IGC, Geoinstitute,Beogard,1981,65~97
    [4]邓居智,刘庆成,陈辉.深部铀资源勘查地球物理方法的应用,全国铀矿大基地建设学术研究会论文集(下),2012年
    [5]毛孟才.相山铀资源基地勘查靶区研究.铀矿地质.2008,24(2):90~111.
    [6]相山地区1∶5万铀矿普查地质填图.608大队.内部报告,1966
    [7]1∶20万新干幅区域地质矿产调查.江西区域地质调查大队.1978
    [8]胡恭任,章邦桶,王长华.赣中相山新元古代变质岩的首次确定.中国区域地质,1997,16(2):222~224
    [9]张万良,刘德长,李子颖等.江西相山铀矿田遥感影像呈现的新构造运动及其意义.国土资源遥感,2005,3(65):52~56
    [10]邵飞邹茂卿何晓梅等.相山矿田斑岩型铀矿成矿作用及深入找矿.铀矿地质,2008,24(6):321~326
    [11]张万良,余西垂.相山铀矿田成矿综合模式研究.大地构造与成矿学,2011,35(2):249~258
    [12]陈肇博.显生宙脉型铀成矿理论的几个基本问题.铀矿地质,1985,1(1):1~16
    [13]杜乐天.中国热液铀矿基本成矿规律和一般热液成矿学,北京:原子能出版社,2001
    [14]范洪海,凌洪飞,王德滋等.相山铀矿田成矿机理研究.铀矿地质,2003,19(4):208~213
    [15]范洪海,凌洪飞,王德滋等.江西相山铀矿田成矿物质来源的Nd、Sr、Pb同位素证据.高校地质学报,2001,7(2):139~145
    [16]徐国庆.1220铀矿田成矿模式的研究.铀矿地质,1985,(1):1~8
    [17]温志坚,杜乐天,刘正义.相山铀矿田特富矿成矿模式.地质评论,1999,45(增刊):765~767
    [18]张万良,刘德长.相山铀矿西北部与东南部地学信息对比研究.铀矿地质,2007,23(5):316~320
    [19]徐增亮,隆盛银.铀矿找矿勘探地质学.北京:原子能出版社,1990.62~76
    [20]Zhang Wanliang,Li Ziying.Metallogenic Time-Space Evolution of Xiangsha Uranium Ore Field inChina[C]Jingwen Mao,frank P.Bierlein Editors:Mineral Deposit:Meeting the Global ChallengeSpringer.2005.1,339~341
    [21]邱爱金.江西相山铀矿田东西向隐伏构造的发现及其地质意义.地质评论,2001,47(6):637~641
    [22]冯必达.相山铀矿田地球物理场特征浅析及其找矿意义.铀矿地质,1991,7(1):41~48
    [23]魏祥荣,龙期华.遥感、重力资料在相山盆地铀控矿构造分析中的应用.国土资源遥感,1996,2(28):37~44
    [24]沈锋,陈然志,李方.华南相山铀矿田成矿条件及发展前景.铀矿地质,1995,11(5):257~265
    [25]张万良,刘德长,李子颖等.相山铀矿田多源地学信息示范应用.地质出版社,2009
    [26]李学礼,孙占学,周文斌.古水热系统与铀成矿作用[M].北京:地质出版社,2000
    [27]毛孟才,王圣祥,李梅等.江西火山岩型铀矿成矿特征及找矿背景.资源调查与环境,2003,24(2):96~100
    [28]邵飞,陈晓明,徐恒力等.相山铀矿田成矿物质来源探讨.东华理工大学学报(自然科学版),2008,31(1):39~44
    [29]孟小红,刘国峰,陈召曦等.基于剩余异常相关成像的重磁物性反演方法.地球物理学报,2012,55(1):304~309
    [30]祁光,吕庆田,严加永等.先验地质信息约束下的三维重磁反演建模研究-以安徽泥河铁矿为例.地球物理学报,2012,55(12):4194~4206
    [31]班丽.相关约束重磁三维定量反演方法研究.中国石油大学博士学位论文,2009
    [32]Fedi M,Rapolla A.,3~D inversion of gravity and magnetic data with depth resolution[J].Geophysics,1999,64(2):452~460
    [33]冯锐,严惠芬,张若水.三维位场的快速反演方法及程序设计.地质学报,1986,4:390~403
    [34]何灿高,孟小红,陈召曦.地质约束三维重磁反演试验研究.2011,中国地球物理学会第二十七届年会论文集
    [35]Nicolas Pinet,Denis Lavoie,Pierre Keating,Brouillette,Pierre.Gaspé belt subsurface geometry in thenorthern Québec Appalachians as revealed by an integrated geophysical and geological study:1~Potentialfield mapping[J].Tectonophysics,2008,460(1~4):34~54
    [36]K.Mert Onal,Aydin Buyuksarac,Attila Aydemir,Ates,Abdullah.Investigation of the deep structure ofthe Sivas Basin(innereast Anatolia,Turkey)with geophysical methods[J].Tectonophysics,2008,460(1~4):186~197
    [37]何兰芳,王绪本,何展翔等.MT时间序列的小波去噪分析.地震地质,2001,23(2):222~226
    [38]何兰芳,王绪本,王成祥等.应用小波分析提高MT资料信噪比.成都理工学院学报,26(3):299~301
    [39]李建平.小波分析与信号处理.重庆:重庆出版社,1997,229~233
    [40]张全胜,王家映.大地电磁测深资料的去噪方法.石油地球物理勘探,2004,39(增刊):17~23
    [41]Egbert G D and Booker J R.Robust estimation of geomagnetic transfer functions.Geophys J Roy AstrSoc,1986,87:175~194
    [42]Sutarno D and Vozoff K.Robust M-estimation of magnetotelluric impedance tensors.ExplGeophys,1989,22:383~398
    [43]Chave A D et al.On the robust estimation of power spectra,coherences and transfer functions.JGeophys Res,1987,92:633~648
    [44]杨生,鲍光淑,张全胜.远参考大地电磁测深应用研究.物探与化探,2002,26(1):27~31
    [45]张全胜,杨生.大地电磁测深资料去噪方法应用研究.石油物探,2002,41(4):493~499
    [46]陈乐寿,王光锷.大地电磁测深法[M].北京:地质出版社,1990
    [47]汤井田,化希瑞,曹哲民等.Hilbert-Huang变化与大地电磁噪声压制.地球物理学报,2008,51(2):603~610
    [48]王书明,王家映.大地电磁信号统计特征分析.地震学报,2004,26(6):669~674
    [49]Trad D O,Travassos J M.Wavelet filtering of magnetotelluric data.Geophysics,2000,65(4):482~491
    [50]Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum fornonlinear and non-station time series analysis.Proc R Soc London,1998,45(4):903~995
    [51]石春香,罗奇峰.时程信号的Hilbert-Huang变换与小波分析.地震学报,2003,25(4):398~405
    [52]蔡剑华,龚玉蓉,王先春等.基于Hilbert-Huang变化的大地电磁测深数据处理.石油地球物理勘探,2009,44(5):617~629
    [53]Huang N E et al.The empirical mode decopposition and the Hilbert spectrum for nonlinear andnon-stational time series analysis.Proc R So London,1998,45(3):903~995
    [54]Bradley Matthew Battista,Camelia Knapp.Application of the empirical mode decomposition andHibert-Huang transform to reflection seismic data.Geophysics,2007,72(3):29~37
    [55]Huang N E et al.A confidence limit for the empirical mode decomposition and the Hilbert spectralanalysis.Proc R Soc Lond Ser A2003,459:2317~2345
    [56]范翠松.矿集区强干扰大地电磁噪声特点及去噪方法研究.吉林大学硕士学位论文,2009
    [57]朱威,范翠松,姚大为等.矿集区大地电磁噪声场源分析及噪声特点.物探与化探,2011,35(5):658~662
    [58]倪鹏,邓居智,刘庆成等.基于经验模态分解(EMD)的小波域值大地电磁信号去噪方法研究.第十届中国国际地球电磁学术讨论会论文集,2011
    [59]M A Meju.Joint inversion of TEM and distorted MT sounding:some effective practicalconsideration[J],Geophysics,1996,61(1):56~65.
    [60]Kagiyama T,Utada H,Yamamoto T.1999.Magma ascent beneath Unzen Volcano,SWJapan,deduced from the electrical resisitivity structure.Journal of Volcanology and Geothernal Research,(89):35~42
    [61]Nobuo Matsushima,Hiromitsu Oshima,Yasuo Ogawa,Shinichi Takakura,Hideyuki Satoh,MitsuruUtsugi,Yasunori Nishida.2001.Magma prospecting in Usu volcano,Hokkaido,Japan,usingmagnetotelluric soundings.Journal of Volcanology and Geothermal Research,(109):263~277
    [62]Ingham M.2005.Deep electrical structure of the Central Volcanic Region and Taupo VolcanicZone,New Zealand.Earth planets Space,(57):591~603
    [63]Habibian BD,Brasse H,Oskooi B,Ernst T,Sokolova E,Varentsov I,EMTESZ WorkingGroup.2010.The conductivity structure across the Trans-European Suture Zone from magnetotelluricandmagnetovariational data modeling.Physics of the Earth and Planetary Interiors,(183):377~386
    [64]Kaya C.Deep crustal structure of northwestern part of Turkey.Tectonophysics,2010(489):227~239
    [65]Patro PK,Harinaryana T. Deep geoelectric structure of the Sikkim Himalayas(NE India)usingmagnetotelluric studies.Physics of the Earth and Planetary Interior,2009,(173):171~176
    [66]张万良,刘德长.相山铀矿田西北部与东南部地学信息对比研究.铀矿地质,2007,23(5):316~320
    [67]张万良,刘德长,李子颖.相山铀矿田侵蚀程度研究.铀矿地质,2009,25(4):208~213
    [68]蒋振频,吴雅梅,董永杰等.相山铀矿田变质基底的变质作用期次.铀矿地质,2008,25(1):32~37
    [69]章邦桐,胡恭任,王湘云等.相山地区变质基底新认识及其原岩归属的对比研究.铀矿地质,1997,13(1):1~7
    [70]范洪海,王德滋,沈渭洲等.江西相山火山—侵入杂岩及中基性脉岩形成时代研究.地质论评,2005,51(1):86~91
    [71]李邦达.江西相山碎斑熔岩成因及其控矿作用的讨论.地质论评,1993,39(2):101~110
    [72]章邦桐,胡恭任.赣中存在中元古代变质基底的岩石地球化学证据及其地质意义.高校地质学报,2006,12(4):466~474
    [73]张万良.相山火山侵入杂岩的反方向岩浆演化系列研究.中国地质,2005,32(4):548~556
    [74]窦小平.相山火山盆地岩石稀土元素分布特征及其成因探讨.铀矿地质,2005,21(6):338~346
    [75]何观生,戴民主,李建峰等.相山流纹英安斑岩锆石SHRIMP U-Pb年龄及地质意义.大地构造与成矿学,2009,33(2):299~303
    [76]孙占学.相山铀矿田铀源的地球化学证据.矿物学报,2004,24(1):19~24
    [77]杨水源,蒋少涌,姜耀辉等.江西相山流纹英安岩和流纹英安斑岩锆石U-Pb年代学和Hf同位素组成及其地质意义.中国科学:地球科学,2010,40(8):953~969
    [78]邵飞.相山矿田低温热水及其与铀矿化关系.地球科学,2005,30(2):206~210
    [79]邵飞.水-岩相互作用及其与铀成矿关系研究:以相山铀矿田为例[D].中国地质大学;2007年
    [80]龚晓春.相山火山岩盆地地磁异常特征分析.铀矿地质,1999,15(4):229~234
    [81]曹寿孙,龚晓春,吉高萍.相山铀矿田重磁场特征、成矿条件及找矿方向分析.铀矿地质,2007,23(4):234~238
    [82]许军才,黄临平.位场反演在相山火山岩型铀矿找矿中的应用研究.资源调查与环境,2006,27(1):18~24
    [83]许军才,黄临平,刘庆成等.土壤天然热释光法在相山火山岩型铀矿床中的应用研究.地质找矿论丛,2005,12(4):291~194
    [84]杨晓松,金振民.大陆科学钻探中岩石物理性质研究的意义.地学前缘,1998,5(4):338~346
    [85]高淑芳,崔军.地质找矿过程中如何提高物探工作质量.地球物理学进展,2005,20(1):97~103
    [86]郭友钊.矿物岩石物理性质在找矿勘探中的应用.国外地质勘探技术,1991,12(11-12):36~43
    [87]曾华霖.重力场与重力勘探.北京.地质出版社,2005
    [88]刘天佑.地球物理勘探概论[M].地质出版社,2007
    [89]童永春.一种提取重力局部异常的方法—九点差分格式异步迭代法.地质与勘探,1984,34(12):51~58
    [90]肖锋.重力数据处理方法的研究及其在钾盐矿勘探中的应用[D],2009,吉林大学
    [91]邢怡.重磁异常分离方法技术研究[D].北京:中国地质大学硕士学位论文,2008
    [92]刘彦严加永吴明安等.基于重力异常分离方法寻找深部隐伏铁矿——以安徽泥河铁矿为例[J].地球物理学报,2012,55(12):4181~4192
    [93]焦新华吴燕冈.重力与磁法勘探[M].地质出版社,2009
    [94]王四龙宁书年李彬等.用三维趋势分析分离位场异常.煤田地质与勘探,1993,21(5):60~64
    [95]SIMPSON S M., Jr. Least-squares polynomial fitting to gravitational data and density plotting bydigital computers[J]. Geophysics,1954.19(2):255~69.
    [96]OLDHAM C H G.SUTHERLAND D B. Orthogonal polynomials: their use in estimating the regionaleffect[J]. Geophysics,1955.20(2):295~306
    [97]FAJKLEWICZ Z. The use of cracovian computation in estimating the regional gravity[J].Geophysics,1959.24(3):465~478
    [98]张愉才.正交多项式趋势面分析[J].物探化探计算技术.1980.(2):84~87
    [99]羊春华.筛选-趋势分析法分离区域异常与局部异常[J].物探与化探计算技术,2005.29(2):167~169
    [100]栾文贵.场位解析延拓的稳定化算法[J].地球物理学报,1983,26(3):263~274
    [101]Peters L J.The direct approach to magnetic interpretation and its practical application.Geophysics,1949,14(3):290~320
    [102]曾华霖,许德树.最佳向上延拓高度的估算[J].地学前缘,2002,9(2):499~503
    [103]WANG B.2D and3D potential-field upward continuation using splines[J]. Geophysics,2006,54(2):199~209
    [104]刘祥重.区域重力波数域解释及找油效果[J]石油地球物理勘探[J],1988,23(1):110~118
    [105]韩兆红.利用重磁资料进行构造边界识别与弱异常提取的方法研究及应用[D].吉林大学,2011
    [106]程方道,刘东甲,姚汝信.划分重力区域场与局部场的研究[J].物化探计算技术,1987,9(1):1~9
    [107]董焕成李宗杰.重力异常匹配滤波法的原理和应用[J].物化探计算,1993,17(5):331~340
    [108]程方道.波数域重磁数据处理中的随机误差分析.石油物探,1985,24(1):70~90
    [109]刘祥重.区域重力波数域解释及找油效果.石油地球物理勘探,1988,23(1):110~118
    [110]董焕成,李宗杰.重力异常匹配滤波法的原理和应用.物探与化探,1993,17(5):331~340
    [111]PAWLOWSKI R S.HANSEN R O.Gravity anomaly separation by Wiener filtering[J].Geophysics,1990,55(5):539~548
    [112]RIDSDILL-SMITH T A.Separation filtering of aeromagnetic data using filter-banks[J].Exploration Geophysics,1998,29(4):577~583
    [113]文百红,程方道.用于划分磁异常的新方法——插值切割法[J].中南矿冶学院学报,1990,21(3):229~235
    [114]ABDELRAHMAN E M.,BAYOUMI A.I.,EL-ARABY H.M.A least-squares minimization approachto invert gravity data[J]:Geophysics,1991,56(1):115~118
    [115]汪炳柱,徐世浙,刘保华等.多次插值切割法分场的一个实例[J].石油地球物理勘探,1997,32(3):431~438
    [116]段本春,徐世浙,阎汉杰等.划分磁异常的插值切割法在研究火成岩体分布中的应用[J].石油地球物理勘探,1998,34(1):125~131
    [117]余钦范,姚长利,孟小红等.苏北大陆科学钻探靶区重磁异常反演解释.地球物理学报,2001,44(6):825~832
    [118]陈召曦,孟小红,郭良辉.重磁数据三维物性反演方法进展.地球物理学进展,2012,27(2):503~511
    [119]Nabighain M N,Ander M E,Grauch V J S,et al.75anniversary-Historical development of the gravitymethod in exploration.Geophysics,2005,70(6):63ND~89ND
    [120]Meng Xiao-Hong Guo Liang-hui Chen Zhao-xi,et al.A method for gravity anomaly separationbased on preferential continuation and its application and its application,AppliedGeophysics,2009,6(3):217~225
    [121]杨文采.地球物理反演的理论与方法.北京:地质出版社,1997
    [122]刘天佑,杨宇山,李媛媛等.大型积分方程降阶解法与重力资料曲面延拓.地球物理学报,2007,50(1):290~296
    [123]姚长利,郑元满,张聿文.重磁异常三维物性反演随机子域法方法技术.地球物理学报,2007,50(5):1576~1583
    [124]Li Y,Oldenburg D W.3-D inversion of magnetic data [J]. Geophysics,1996,6(1):394~408
    [125]Li Y,Oldenburg D W.3-D inversion of gravity data [J].Geophysics,1998,6(3):109~119
    [126]UBC-GIF,2005a,GRAV3D version3.0: A program library for forward modeling and inversionof gravity data over3D structures: The University of British Columbia-Geophysical InversionFacility,41p.
    [127]刘樱,孟贵祥,严加永等.重磁3D物性反演技术在金属矿勘探中的应用[J].地质与勘探,2011,47(3):448~455
    [128]严加永.长江中下游成矿带深部背景地球物理综合研究[D].北京:中国科学院地质与地球物理研究所:99~106
    [129]苏红旗,西华.北京地区重磁数据计算机图像处理及地质效果[J].地质与勘探,5(7):39~41
    [130]姚长利,郝天珧,管志宁.重磁反演约束条件机三维物性反演技术策略[J].物探与化探,1999,26(4):253~257
    [131]Boulanger O,Chouteau M.Constraints in3D gravity inversion.GeophysicalProspecting,2001,49(1):265~280
    [132]姚长利,郝天珧,管志宁等.重磁遗传算法三维反演中高速计算及有效存储方法技术.地球物理学报,2003,46(2):252~258
    [133]范翠松.矿集区强干扰大地电磁噪声特点及去噪方法研究[D].吉林大学,2009
    [134]陈知富,邓居智,陈辉等.基于小波变换的大地电磁信号去噪研究,工程地球物理学报,2012,9(6):732~737
    [135]孙洁,晋光文,白登海等.大地电磁测深资料的噪声干扰.物探与化探,2000,24(2):119~127
    [136]胡家华,陈清礼,严良俊等.MT资料的噪声源分析及减小观测噪声的措施.江汉石油学院学报,1999,21(4):69~71
    [137]戴前伟,陈勇雄,侯智超.大地电磁测深数据处理互参考处理的应用研究.物探化探计算技术,2013,35(2):147~154
    [138]祝福荣,邓居智,陈辉等.参考道方法在大地电磁测深数据处理中的应用研究,东华理工大学学报(自然科学版),2012,36(庆刊):73~78
    [139]陈高,金祖发,马永生等.大地电磁测深远参考技术及应用效果.石油地球物理勘探,2001,40(3):112~119
    [140]杨生,鲍光淑,张全胜.远参考大地电磁测深应用研究.物探与化探,2002,26(1):27~35
    [141]严良俊,胡文宝,陈清礼等.远参考MT方法及其在南方强干扰地区的应用.江汉石油学院学报,1998,20(4):34~42
    [142]胡星星,谢凡,滕云田.数学形态滤波在地磁数据干扰抑制中的作用[J].地球物理学进展2011,26(1):147~156
    [143]刘俊峰,邓居智,陈辉.基于多结构元素形态滤波的大地电磁去噪,物探与化探,2014,38(1):109~114
    [144]董鸿燕,李吉成,沈振康.基于形态滤波和顺序滤波的小目标检测[J].红外技术,2004,26(1):21~24
    [145]李季,潘孟春,唐莺等.基于形态滤波和HHT的地磁信号分析与预处理[J].仪器仪表学报,20112,33(10):2175~2180
    [146]王权,江桦,陈含欣.基于形态滤波的短波信号检测算法[J].信息与电子工程,2011,9(6):733~738
    [147]李双科,吴记群.基于数学形态滤波的电力系统采样信号降噪处理[J].工业仪表与自动化装,2012(3):88~94
    [148]张文斌,杨辰龙,周晓军.基于数学形态滤波的大地电磁强干扰分离方法[J].浙江大学学报(工学版),2009,43(11):2096~2099
    [149]N.E.Huang,Z S S R.A NEW VIEW OF NONLINEAR WATER WAVES:The Hilbert Spectrum[J].Annu.Rev.Fluid Mech.1999,31:417~466.
    [150]汤井田,化希瑞,曹哲民等.Hilbert-Huang变换与大地电磁噪声压制[J].地球物理学报.2008,51(2):603~610.
    [151]蔡剑华.基于Hilbert-Huang变换的大地电磁信号处理方法与应用研究[D].长沙:中南大学,2010.
    [152]杜修力,何立志,侯伟.基于经验模态分解(EMD)的小波闭值除噪方法[J].北京工业大学学报.2007,33(3):265~272.
    [153]Bradley Matthew Battista,Camelia Knapp.Application of the empirical mode decomposition andHilbert-Huang transform to seismic reflection data.Geophysics,2007,72(3):H29~H37
    [154]Donoho D L,J I.Wavelet shrinkage asymptopia[J].Journal of Royal Statistical Society.1995,57(2):301~369.
    [155]D D L.Denoising by soft-thresholding[J].IEEE Trans on Information theory.1995,41(3):613~627.
    [156]杨承志,邓居智,陈辉.采集参数对音频大地电磁法二维非线性共轭梯度反演结果的影响研究,地球物理学进展,2013,28(3):1347~1354
    [157]邓居智,李红星,杨海燕.高频大地电磁法在长大深埋隧道勘查中的应用研究,工程勘察,2010(9),85~89