Celecoxib通过NF-κB通路调控人三阴性乳腺癌细胞MDA-MB-231生物活性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是女性常见的一种高度异质性的恶性肿瘤。资料表明,目前我国乳腺癌发病率正以每年2%-3%的速度递增,10年间我国主要城市的乳腺癌发病率增长了37%。特别是在30-54岁年龄组中,乳腺癌已成为威胁女性健康的“头号杀手”。受体三阴性乳腺癌(triple-negative breast cancer, TNBC)是近些年学者提出的一个新的乳腺癌亚型,是指肿瘤细胞膜表面缺乏雌激素受体(estrogen receptor, ER)、孕激素受体(progesterone receptor,PR)和人表皮生长因子受体-2(human epidermal growth factor receptor-2,HER-2)的一类乳腺癌。TNBC的发病率占乳腺癌总发病率的11%-20%,尤其好发于年轻女性,且该类乳腺癌具有术后易复发、易远处转移和预后差的特点,对内分泌治疗和针对HER-2的靶向治疗无效,至今仍缺乏令人满意的综合治疗方案。
     近年来,非甾体类抗炎药物(nonsteroidal anti-inflammatory drugs,NSAIDs)在抑制肿瘤活性方面展示了很好的应用前景,大量体内外研究显示,常规服用NSAIDs可以大幅度降低乳腺癌等多种肿瘤的发病风险,因此,该类药物引起了广大学者的关注。Harris等研究发现,新一代特异性环氧合酶-2(cyclooxygenase-2,COX-2)抑制剂celecoxib,不仅能明显延迟肿瘤的发生,还可以降低乳腺癌的发病率及肿瘤体积。目前,有学者研究认为,celecoxib的抗肿瘤作用机制可能与降低肿瘤组织COX-2表达、抑制肿瘤细胞的增殖、诱导细胞凋亡有关。但也有学者认为celecoxib的抗肿瘤作用机制并不是依赖抑制COX-2途径,其具体作用机制目前尚存在争议。
     Kim和Subhashini等研究报道,celecoxib可通过NF-κB(nuclear factor kappa B, NF-κB)途径抑制宫颈癌、白血病等多种肿瘤细胞的增殖,诱导细胞凋亡。而NF-κB活性失控与肿瘤的形成密切相关,且TNBC中NF-κB异常活化,因此我们想阐明在TNBC中celecoxib是否主要通过下调异常活化的NF-κB而发挥作用。
     NF-κB是1986年发现的,从成熟的B淋巴细胞中抽提出的能与免疫球蛋白κ链基因增强子结合的核因子。抑制NF-κB活性可以抑制肿瘤细胞增长、促进细胞凋亡、增加肿瘤细胞对化疗药物的敏感性、抑制炎症反应、减少肿瘤血管生成等。作为NF-κB主要发挥转录调节功能的亚基p65,在肿瘤的发生、发展中发挥着关键性作用,下调p65的表达可以抑制多种肿瘤细胞在体内外的增殖及诱导细胞凋亡。因此,p65的靶向治疗可能在乳腺癌的临床治疗中拥有广泛的应用前景。
     目的:本实验中选取三阴性高侵袭性的人乳腺癌细胞系MDA-MB-231作为研究对象,通过不同的实验方法探讨celecoxib的抑癌作用,研究celecoxib在三阴性乳腺癌细胞中对NF-κB活性的影响;检测异常活化的NF-κB信号通路在MDA-MB-231细胞增殖、凋亡以及侵袭中发挥的作用;评价celecoxib是否能够成为TNBC个体化治疗的辅助用药,针对NF-κB信号通路的靶向治疗能否使乳腺癌的化学治疗更加完善,最终为预防、治疗TNBC提供新的治疗思路。
     方法:
     1以不同浓度的celecoxib作用人三阴性乳腺癌细胞MDA-MB-231,MTT比色法观察其对该细胞增殖的影响,并进一步探讨celecoxib抑制MDA-MB-231细胞的增殖与COX-2途径依赖关系。采用流式细胞仪技术(flow cytometry, FCM)、Hoechst 33258、DNA Ladder形成实验、western blot等方法,研究celecoxib对体外培养的MDA-MB-231细胞凋亡的影响。
     2采用伤口愈合实验、transwell侵袭小室实验等,观察celecoxib对MDA-MB-231细胞侵袭行为的影响。并通过RT-PCR法检测肿瘤细胞侵袭转移关键的细胞因子,如血管内皮生长因子(vascular endothelial growth factor, VEGF)、基质金属蛋白酶-2(matrix metalloproteinases-2, MMP-2)及IL-8(interleukin-8, IL-8)的表达变化,酶联免疫吸附试验(enzyme-linked immunosorbent assay,ELISA)检测IL-8的分泌水平。
     3为了研究celecoxib的抗凋亡、抑制细胞侵袭作用与NF-κB信号通路的关系,应用western blot方法检测了不同浓度celecoxib作用后MDA-MB-231细胞的p65、p50、IκBα(inhibitory kappaBα,IκBα)以及磷酸化IκBα(p-IκBα)蛋白的表达情况,并进一步通过western blot法检测p65的核转位变化。采用凝胶电泳迁移率改变分析(electrophoretic mobility shift assay,EMSA)检测用药前后NF-κB DNA结合活性的改变。
     4构建表达p65cDNA的真核表达载体,转染MDA-MB-231细胞,观察过表达p65基因对MDA-MB-231细胞增殖、凋亡及侵袭的影响,并通过与celecoxib联合作用,揭示celecoxib和NF-κB信号通路之间的联系。
     5利用微小RNA(microRNA,miRNA)技术,构建表达p65miRNA的真核表达载体,沉默p65基因的表达,观察NF-κB信号通路阻断对人乳癌细胞MDA-MB-231增殖、凋亡以及侵袭的影响。
     结果:
     1 Celecoxib对MDA-MB-231细胞生物学活性的影响
     1.1 Celecoxib对MDA-MB-231细胞增殖的影响
     MTT分析结果显示,经celecoxib作用24h、48h和72h后,与溶剂对照组相比,对MDA-MB-231细胞增殖有明显的抑制作用(P<0.05),作用效果呈时间、剂量依赖性。Celecoxib作用24h、48h和72h的IC50依次为139.76、68.39、48.27μM。
     前列腺素E2(prostaglandin E2,PGE2)是COX-2催化花生四烯酸产生PG的主要产物,细胞分泌PGE2的水平可以用来反映COX-2的活性。不同浓度PGE2与80μM的celecoxib联合作用细胞48h后,与单独应用celecoxib对MDA-MB-231细胞增殖的抑制作用无显著性差异(P>0.05)。提示celecoxib不是通过COX-2和PGE2途径来抑制细胞的增殖。
     1.2 Celecoxib对MDA-MB-231细胞凋亡的影响
     Celecoxib可以诱导MDA-MB-231细胞凋亡,使部分细胞出现形态不规则、细胞核固缩聚集、空泡样变性、核碎裂等凋亡的形态学变化。Hoechst 33258染色后荧光显微镜下观察,有些细胞核内可见到有浓染致密的荧光颗粒,细胞核呈碎块状、颜色发白。随着celecoxib浓度的增加,凋亡细胞的比例也在逐渐增加,不同浓度组之间有显著差异(P<0.05)。
     应用流式细胞技术检测结果显示,80、120μM celecoxib作用48h后,MDA-MB-231细胞凋亡率可达21.08±4.18%、43.51±6.06%,在DNA直方图上出现亚二倍体凋亡细胞峰,与对照组相比差异显著(P<0.05)。说明celecoxib诱导MDA-MB-231细胞凋亡呈现明显的剂量依赖效应。
     提取40、80、120μM celecoxib作用72h的MDA-MB-231细胞DNA进行凝胶电泳分析发现,随着celecoxib浓度的增加,DNA片段化更加明显,120μM celecoxib组呈现典型的DNA Ladder图。
     Western blot检测结果显示,经40、80、120μM celecoxib作用后,MDA-MB-231细胞呈浓度依赖性使凋亡相关因子caspase-3和聚腺苷酸二磷酸核糖转移酶(poly ADP-ribose polymerase,PARP)表达下调(P<0.05),裂解蛋白表达上调(P<0.05)。
     1.3 Celecoxib对MDA-MB-231细胞侵袭性的影响
     伤口愈合实验结果显示,celecoxib处理过的细胞向划痕边缘爬行的速度明显减慢,划痕缺损处修复缓慢。随着celecoxib浓度的增加,细胞的运动能力明显下降(P<0.05)。
     Transwell侵袭小室实验结果显示,与对照组相比,40、80、120μM celecoxib作用24h后,MDA-MB-231细胞平均穿膜细胞数明显减少(P<0.05)。各剂量组均显示具有抑制细胞穿过人工基底膜的能力,其作用具有剂量-效应相关性。提示celecoxib可以显著抑制MDA-MB-231细胞体外侵袭能力。
     RT-PCR检测结果显示,经不同浓度celecoxib处理24h后,MDA-MB-231细胞VEGF、MMP-2及IL-8 mRNA基因的相对表达水平显著低于对照组,差异具有统计学意义(P<0.05)。Celecoxib还可以抑制MDA-MB-231组成性自分泌IL-8(P<0.05),120μM celecoxib可以完全抑制肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)诱导的IL-8分泌效应(P<0.05)。
     2 Celecoxib诱导MDA-MB-231细胞凋亡、抑制细胞侵袭的分子机制
     第一部分研究证实,celecoxib可以抑制MDA-MB-231细胞增殖、诱导细胞凋亡以及抑制细胞侵袭等生物学行为。本部分研究通过应用不同信号通路抑制剂处理MDA-MB-231细胞,筛选调控该细胞增殖的可能的信号通路。
     2.1不同信号通路阻滞剂对MDA-MB-231细胞增殖的影响
     MTT实验结果显示,NF-κB抑制剂PDTC(pirrolidine dithiocarbamate,PDTC )和AKT ( protein kinase B/AKT )抑制剂LY294002作用MDA-MB-231细胞24h、48h和72h后,可以抑制细胞的增殖(P<0.05),但PDTC的抑制作用较LY294002的效果更显著。提示AKT和NF-κB信号通路可能是调控MDA-MB-231细胞增殖的主要通路。80μM celecoxib与PDTC、LY294002联用后对细胞的抑制效果更加明显(P<0.05),提示celecoxib可能是对AKT、NF-κB通路均具有抑制作用,从而使增强了每种抑制剂的作用效果。由于Basu等以往的研究证实,celecoxib可以通过抑制AKT信号通路从而抑制该细胞增殖,故我们进一步研究celecoxib是否也通过下调NF-κB信号通路对MDA-MB-231细胞的增殖、凋亡、侵袭等生物学行为发生影响。
    
     2.2 Celecoxib对MDA-MB-231细胞NF-κB p65/p50表达的影响
     RT-PCR和western blot结果显示,80μM的celecoxib可以明显降低NF-κB p65的mRNA和蛋白表达水平,与溶剂对照组相比具有显著性差异(P<0.05)。但celecoxib对NF-κB p50的mRNA和蛋白表达水平没有影响(P>0.05)。
     2.3 Celecoxib抑制MDA-MB-231细胞NF-κB p65的核转位
     Western blot结果显示,80μM celecoxib作用12h后,MDA-MB-231细胞核p65蛋白的表达量降低(P<0.05),提示celecoxib对p65从胞浆至胞核的转位过程具有明显的抑制作用。
     2.4 Celecoxib抑制MDA-MB-231细胞IκBα的磷酸化
     Western blot结果显示,80μM的celecoxib作用细胞24h后,细胞浆中p-IκBα蛋白表达水平显著下降(P<0.05)。但celecoxib对IκBα总蛋白的表达没有影响(P>0.05)。
     2.5 Celecoxib对MDA-MB-231细胞p65与DNA结合能力的影响
     EMSA结果显示,在探针冷竞争反应中,正常的标记探针和NF-κB的结合条带会被100倍过量的未标记探针抑制;而在突变探针冷竞争反应中,正常的标记探针和NF-κB结合的条带不会被100倍过量的未标记突变探针抑制。结果提示,MDA-MB-231细胞中NF-κB处于组成性活化状态。
     此外,与对照组相比,80μM的celecoxib作用24h后,MDA-MB-231细胞的DNA-蛋白质复合物区带明显变浅,提示celecoxib可以降低MDA-MB-231细胞中NF-κB DNA的结合活性。
     2.6 Celecoxib抑制MDA-MB-231细胞中凋亡相关分子Bcl-2的蛋白表达
     Western blot分析结果显示,80μM的celecoxib能够明显抑制MDA-MB-231细胞中NF-κB下游Bcl-2分子的表达(P<0.05)。
     3外源性p65基因对MDA-MB-231细胞凋亡及侵袭的影响
     前两部分的实验研究发现,celecoxib可以抑制p65的表达、核转位及IκBα磷酸化,降低NF-κB DNA结合活性。为了进一步明确celecoxib的作用靶点,我们通过构建p65基因真核表达质粒导入MDA-MB-231细胞,观察外源性p65基因对MDA-MB-231细胞凋亡、侵袭,以及对celecoxib药物作用效果的影响。
     3.1真核表达质粒p65cDNA转染MDA-MB-231细胞
     将携带有p65基因全长序列的pcDNA3.1质粒瞬时转染MDA-MB-231细胞,RT-PCR检测p65cDNA在转录水平影响靶基因效果。结果显示,p65 mRNA水平较control组和pcDNA3.1空载体组显著增加(P<0.05)。Western blot检测结果显示,瞬时转染p65cDNA后48h,MDA-MB-231细胞p65蛋白表达量较control组和pcDNA3.1空载体组显著增加(P<0.05),与RT-PCR结果的变化规律相一致。
     3.2过表达p65基因对MDA-MB-231细胞NF-κB DNA结合活性的影响
     EMSA实验结果显示,p65基因的过表达增加了NF-κB复合物结合细胞核内DNA调控元件的能力。
     3.3过表达p65基因对MDA-MB-231细胞增殖的影响
     过表达p65基因可以促进MDA-MB-231细胞的体外增殖,并可以逆转celecoxib对MDA-MB-231细胞体外增殖的抑制作用。
     3.4过表达p65基因对MDA-MB-231细胞周期分布的影响上调p65基因表达后,MDA-MB-231细胞DNA合成的S期细胞比例明显增加(P<0.05),相对静止阶段的G0/G1期细胞比例有所下降。提示过表达p65可以促进细胞由G0/G1期向S期的转化。RT-PCR和western blot结果显示,转染p65cDNA后,细胞的cyclinD1 mRNA水平和蛋白表达水平明显上调,与空载体对照组相比,差异具有统计学意义(P<0.05)。但转染前后细胞的CDK4 mRNA水平和蛋白表达水平,与空载体对照组相比,没有明显的变化(P>0.05)。
     3.5过表达p65基因对MDA-MB-231细胞凋亡的影响
     FCM检测结果发现,转染p65cDNA的MDA-MB-231细胞给予80μMcelecoxib共孵育48h后,细胞的凋亡率为18.53±2.51%,而空载体对照组细胞为31.21±3.29%,两者比较差异具有统计学意义(P<0.05)。提示p65基因在MDA-MB-231细胞中发挥了抑制细胞凋亡的作用。
     Western blot结果显示,转染p65cDNA后,MDA-MB-231细胞的caspase-3、PARP蛋白表达水平明显下降,但未检测到裂解片段,与空载体对照组相比,差异具有统计学意义(P<0.05)。提示过表达p65基因抑制了caspase-3、PARP蛋白的表达和裂解。转染p65cDNA后,MDA-MB-231细胞的Bcl-2蛋白表达水平与对照组相比没有显著的变化(P>0.05)。
     3.6过表达p65基因对MDA-MB-231细胞侵袭性的影响
     Transwell侵袭小室检测结果显示,转染p65cDNA的MDA-MB-231细胞培养6h后,基本没有细胞侵袭过matrigel胶,而在12h,实验组和对照组侵袭的细胞数无明显差异(P>0.05)。24h后可见转染p65cDNA的细胞克隆侵袭细胞数明显多于对照组,差异具有统计学意义(P<0.05)。
     3.7过表达p65基因对MDA-MB-231细胞VEGF、IL-8、MMP-2 mRNA表达的影响
     RT-PCR分析结果显示,转染p65cDNA后,MDA-MB-231细胞VEGF、MMP-2和IL-8 mRNA表达水平明显上调,与空载体对照组相比,差异具有统计学意义(P<0.05)。
     3.8过表达p65基因对MDA-MB-231细胞分泌IL-8的影响
     ELISA结果发现,上调p65基因后,可以促进MDA-MB-231细胞分泌IL-8,与空载体对照组相比,差异具有统计学意义(P<0.05)。
     4靶向沉默p65基因对MDA-MB-231细胞凋亡及侵袭的影响
     第三部分的实验结果提示,过表达p65基因可以逆转celecoxib诱导MDA-MB-231细胞凋亡,并可促进细胞的侵袭。本部分实验设计了miRNA用来特异性沉默p65基因,观察其对MDA-MB-231细胞生物学行为的影响,探讨其对人三阴性乳腺癌细胞增殖活性及侵袭能力的影响以及可能的临床应用价值。
     4.1 p65miRNA真核表达质粒转染MDA-MB-231细胞及效率鉴定
     转染p65miRNA质粒48h后,MDA-MB-231细胞内绿色荧光信号较强,转染72h后细胞中绿色荧光强度及出现荧光的细胞数量开始减少,转染效率达70%左右。RT-PCR检测转染效率结果显示,转染24h后,p65mRNA表达量下降,尤其72h时p65 mRNA的表达水平最低,与阴性对照组相比,差异显著(P<0.05)。Western blot检测发现,转染p65miRNA组细胞p65蛋白显著降低,比较差异有显著性(P<0.05)。
     4.2沉默p65基因对NF-κB DNA结合活性的影响
     EMSA实验结果显示,沉默p65基因后,MDA-MB-231细胞NF-κB DNA-蛋白质复合物区带较对照组明显减弱(P<0.05),说明核蛋白与探针的结合活性显著下降,沉默p65基因降低了NF-κB复合物结合细胞核内DNA调控元件的能力。
     4.3沉默p65基因对MDA-MB-231细胞增殖的影响
     p65miRNA转染24h、48h及72h后,经MTT检测结果显示, p65miRNA转染组MDA-MB-231细胞出现了生长抑制现象,与对照组相比,差异具有统计学意义(P<0.05)。
     4.4沉默p65基因对MDA-MB-231细胞凋亡的影响
     FCM检测结果发现,转染p65miRNA 48h、72h后,MDA-MB-231细胞G1峰前面出现亚二倍体峰,细胞凋亡率与阴性对照组比较显著增加,具有统计学意义(P<0.05)。而转染空载体组和转染p65miRNA 24h组未见或仅见微小的亚二倍体峰。
     4.5沉默p65基因对MDA-MB-231细胞凋亡相关分子caspase-3、PARP分子表达的影响
     Western blot结果显示,转染p65miRNA后,MDA-MB-231细胞caspase-3前体蛋白条带变细,裂解片段条带加深;PARP前体蛋白出现裂解片段。说明下调p65基因表达可以促进caspase-3和PARP前体蛋白表达下降,促进两者的裂解活化。
     4.6沉默p65基因对MDA-MB-231细胞IAPs(inhibitors of apoptosis proteins,IAPs)家族分子表达的影响
     Western blot结果显示,转染p65miRNA后,MDA-MB-231细胞survivin和XIAP蛋白表达水平,与阴性对照组相比显著下降,差异具有统计学意义(P<0.05)。
     4.7沉默p65基因对MDA-MB-231细胞侵袭性的影响
     Transwell侵袭小室实验结果显示,与阴性对照组相比,转染p65miRNA的MDA-MB-231细胞平均穿膜细胞数明显减少(P<0.05)。显示p65miRNA具有抑制细胞穿过人工基底膜的能力。
     4.8沉默p65基因对MDA-MB-231细胞VEGF、MMP-2、IL-8 mRNA表达的影响
     RT-PCR分析结果显示,转染p65miRNA后,MDA-MB-231细胞VEGF、MMP-2和IL-8表达水平明显下降,与空载体对照组相比,差异具有统计学意义(P<0.05)。
     4.9沉默p65基因对MDA-MB-231细胞分泌IL-8的影响
     ELISA实验结果显示,沉默p65基因后,可以减少MDA-MB-231细胞分泌IL-8的水平,与空载体对照组相比,差异具有统计学意义(P<0.05)。
     结论:
     1. Celecoxib能够有效地抑制人三阴性乳腺癌细胞MDA-MB-231的增殖,其抑制作用呈浓度及时间依赖性,该作用与COX-2途径无关。Celecoxib可以诱导MDA-MB-231细胞凋亡,作用途径可能与活化caspase-3、PARP分子有关。Celecoxib能够有效地抑制MDA-MB-231细胞的水平运动及侵袭行为,其抑制作用呈剂量-效应依赖性。Celecoxib可以降低MDA-MB-231细胞的VEGF、MMP-2、IL-8 mRNA表达以及IL-8的分泌水平。NF-κB信号通路可能是MDA-MB-231细胞增殖的主要调控通路。Celecoxib可能是通过抑制p65蛋白的合成及其核转位、减少IκB的磷酸化降解,进而抑制NF-κB活性,达到抑癌作用。
     2.瞬时转染外源p65基因,可以显著增加MDA-MB-231细胞p65表达水平,过表达p65基因可以增加MDA-MB-231细胞NF-κB DNA的结合活性,促进细胞增殖,逆转celecoxib对细胞活性的抑制作用,可以抑制细胞凋亡,促进细胞的体外侵袭能力,并伴随着VEGF、MMP-2和IL-8 mRNA的表达上调和IL-8分泌增加。
     3.转染p65miRNA后,MDA-MB-231细胞生长、增殖能力受到显著抑制,并可以增加凋亡细胞的比例,主要是通过下调survivin和XIAP的表达、裂解活化caspase-3和PARP蛋白而实现的。抑制p65表达可以显著降低MDA-MB-231细胞的体外侵袭能力,主要是通过下调VEGF、MMP-2和IL-8 mRNA的表达,减少IL-8的分泌而实现的。本实验结果为三阴性乳腺癌的分子靶向治疗提供了新靶点。
Objective: Breast cancer is a heterogeneous disease that encompasses several distinct entities with remarkably different biological characteristics and clinical behavior, and threatened to female public health. The incidence of breast cancer is increasing, and current therapy is unable to achieve clinical responses in patients with highly invasive metastatic disease. It is estimated that, in the past decade, Chinese urban cancer registries have documented increased incidence rates of between 20% and 30% for breast cancer. Breast cancer has acclaimed to be the first leading cause of death among 30 to 54 year old women. A new subtype of particular interest is triple-negative breast cancer, namely TNBC, which is characterized by estrogen receptor negative (ER), progesterone receptor negative (PR), and human epidermal growth factor receptor-2 (HER-2) negative using histochemical staining. Although TNBC accounts for 11%-20% of breast cancer cases, it is responsible for a disproportionate number of breast cancer deaths, especially in younger female before menopause. However, there is still absence of suitable treatment for this tumor.
     Currently, studies with nonsteroidal anti-inflammatory drugs (NSAIDs) have shown significant effects in reducing the incidence and progression of tumors in both animal models and in treatment of cancer patients. It was therefore of extreme interest when recent epidemiological studies suggested the presence of an inverse association between regular intake of NSAIDs and the relative risk of breast cancer. Celecoxib is a new NSAID that specifically inhibits cyclooxygenase-2 (COX-2). It has significant anti-inflammatory and analgesic properties but lesser side effects than other NSAIDs such as aspirin and ibuprofen, which inhibit both COX-1 and COX-2. Because of emerging evidence suggesting that NSAIDs inhibition of COX reduces the risk of breast cancer, Harris et al conducted a great deal of studies to evaluate the antitumor effects of a specific COX-2 blockade by this compound. Results showed that celecoxib produced striking reductions in the incidence of mammary cancer, tumor burden and tumor volume. Debates have raged continuously for a long period over whether the antitumor effects of celecoxib occur in COX-2-dependent or COX-2-independent manner. However, this mechanism has yet to be clearly defined.
     Nuclear factor kappaB (NF-κB) is a pleiotropic transcription factor which was initially found to bind enhancer of immunoglobinκchain extracted from mature B lymphocyte. Regulation of NF-κB activity plays a critical role in tumor development. Inactivation of NF-κB may lead to significant reduction in cancer cell proliferation, tumor angiogenesis, inflammation and enhancement of sensitivity to apoptosis and chemotherapeutics. Preclinical and laboratory data showed that constitutively activated NF-κB was preferentially involved in human breast cancer cell lines, mammary breast cancer tissue sample and carcinogen-induced animal models. Furthermore, highly constitutive NF-κB activation was categorized in the ER negative breast cancer cells compared with those ER positive counterparts, suggesting that NF-κB might become a useful therapeutic target for this subtype of cancer. The family of NF-κB comprises of five members, while p65 subunit contains an extremely active C-terminal transcriptional activation domain (TAD), required for its cellular function. Substantial evidence verified that blocking p65-mediated NF-κB activation could inhibit tumorigenic cancer cell line proliferation and promote apoptosis. Thus, these results showed that incapacitating NF-κB mediated by silencing p65 prevents xenograft tumor growth of cells that otherwise readily form tumors in recipient animals, suggesting that silencing p65 may have promising perspective in tumor clinical therapy.
     Methods: in the present studies, triple-negative and highly invasive breast cancer cell line MDA-MB-231 was selected as study object. Multiple experimental methods, such as flow cytometry (FCM), western blot, electrophoretic mobility shift assay (EMSA), were employed to investigate the possible antitumor mechanisms of celecoxib, and screen its potential signaling transduction pathway. To evaluate the underlying roles of constitutively activated NF-κB play in proliferation, apoptosis and invasion of MDA-MB-231 cells. Finally, our aim is to verify whether celecoxib could become an assistant candidate in synergy with chemotherapy to cure TNBC, and to inactivate NF-κB by interfering p65 could provide an additional target therapy to complement antineoplastic dosages of traditional medicine.
     Results:
     1 The effect of celecoxib on MDA-MB-231 cell biological behaviour
     In the initial part, we investigated the influential effect of celecoxib on proliferation, apoptosis and invasiveness behavior of MDA-MB-231 cells. The results were as follows:
     1.1 Celecoxib inhibits MDA-MB-231 cell proliferation
     Celecoxib at concentrations of 40, 80 and 120μM was used to treat MDA-MB-231 cell line for 24h, 48h and 72h,respectively. The rate of proliferation in response to celecoxib treatment was analyzed by measuring MTT assay. Significant inhibition of proliferation was observed in MDA-MB-231 cells in a dose- and time-dependent manner (P<0.05). The IC50 of celecoxib at 24h, 48h and 72h was 139.76、68.39、48.27μM.
     Prostaglandin E2 (PGE2) is the major prostaglandin that COX-2 derived arachidonic acid into, which can be used to determine the COX-2 activity in quantity. To determine whether celecoxib-induced growth inhibition could be reversed by exogenous PGE2, we added PGE2 to the culture of MDA-MB-231 cells treated with constant dose (80μM) of celecoxib for 48h. In MDA-MB-231 cells, growth inhibition induced by 80μM celecoxib could not be restored by addition of exogenous PGE2, thereby suggesting that celecoxib suppressed MDA-MB-231 cell growth was independent of PGE2 levels and COX-2 pathway (P>0.05).
     1.2 Celecoxib induces MDA-MB-231 cell apoptosis
     To investigate whether the observed growth inhibition mediated by celecoxib was associated with induction of programmed cell death. We used Hoechst 33258 staining, FCM analysis and DNA fragmentation assay to observe nuclear fragmentation, and monitor the changes of cells after celecoxib treatment. Under the phase contrast microscope, cells exhibited a dramatic morphologic change after 48h of drug treatment. Celecoxib at concentrations of 80μM and 120μM caused significant increase in the percentage apoptotic cells (21.08±4.18%, 43.51±6.06%, P<0.05, respectively). It is showed that celecoxib treatment results in the formation of DNA fragments in MDA-MB-231 cells, as determined by agarose gel electrophoresis at 72h. As the intrinsic mitochondrial apoptotic pathway is relatively more important than the death receptor pathway for the induction of apoptosis by chemotherapeutic drugs, we examined the executioners, caspase-3 and poly-ADP-ribose polymerase (PARP) by immunoblotting. Results showed that in celecoxib-treated cells, they were both cleaved into their specific active forms. The effector caspases-3 proteolytically cleaves and activates several other caspases as well as several other apoptotic proteins including PARP, which is rapidly activated during the cellular response to DNA damage, and is a part of safeguard mechanisms protecting cells from genotoxic damage. These results suggested that celecoxib-induced apoptosis in MDA-MB-231 cells is due to activation of caspases-3 and its subsequent cleaved apoptotic protein PARP.
     1.3 Celecoxib blocks MDA-MB-231 cell migration and invasion
     Cancer cell migration and invasion play very important roles in cancer metastasis. Consequently, we further studied the effects of celecoxib on migration and invasion as well as the related angiogenic factors, such as vascular endothelial growth factor (VEGF), matrix metalloproteinases-2 (MMP-2) and interleukin-8 (IL-8) mRNA expression of MDA-MB-231 cells.
     In vitro, wound healing assay results showed that the migration of MDA-MB-231 mock cells and celecoxib-treated cells differ at 24h after wounding with mock cells migrating almost twice as slowly as 80μM celecoxib-treated cells (P<0.05). These data suggested that celecoxib could affect MDA-MB-231 cells on horizontal migratory activity induced by wound, which was consistent with the prognostic value of celecoxib in tumoural disease and metastatic potential.
     Next, we examined the motility of different concentration celecoxib-treated cells with transwell cell invasion assay. Results revealed that with the presence of 120μM celecoxib significantly reduced the invasion of MDA-MB-231 cells (P<0.05). The level of celecoxib-induced cell invasion was significantly reduced by 67% of control level (P<0.05). These experiments indicated that treatment of celecoxib in MDA-MB-231 cells inhibits cell motility and invasion activity in vitro.
     The expression of VEGF, MMP-2 and IL-8 mRNA in MDA-MB-231 cells was examined by RT-PCR analysis. As shown, all cells expressed the same level ofβ-actin without difference (P>0.05), but celecoxib could significantly lower these cytokines mRNA expression (P<0.05).
     The secretion of IL-8 was further confirmed by enzyme-linked immunosorbent assay (ELISA). The expression level of celecoxib-treated cells was significantly lower than those in control groups (P<0.05). Besides, celecoxib could abrogate the potential of TNF-α-induced IL-8 secretion (P<0.05).
     2 Study on the underlying mechanism of celecoxib inhibiting MDA-MB-231 cell growth, invasion and promoting apoptosis
     In previous study, we knew that celecoxib had strong inhibition on MDA-MB-231 cell growth and invasion, and could induce cell apoptosis. To explore the underlying mechanism of these phenomena, various pathway signaling inhibitors were employed to screen its possible targets.
     2.1 Various signaling pathway inhibitors to screen the potential target of celecoxib
     Signaling pathway inhibitors including SP600125 (JNK inhibitor, Jun N-terminal kinase inhibitor), PD98059 (ERK inhibitor, extracellular signal-regulated kinase inhibitor), SB203580 (p38 inhibitor), PDTC (pirrolidine dithiocarbamate, NF-κB inhibitor) and LY294002 (AKT inhibitor, protein kinase B/AKT inhibitor) were employed to treat cells alone or in combination with celecoxib. MTT assay results showed that PDTC and LY294002 could cause inhibition of MDA-MB-231 cell proliferation (P<0.05). Especially, combinations of PDTC and celecoxib at different concentrations showed a strong synergistic effect on cell proliferation. Basu et al reported that the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of AKT. Hence, we want to figure out whether NF-κB aberrant activation played a crucial part in highly invasive breast carcinoma cell line MDA-MB-231, and whether celecoxib exerted its antitumor effect through inactivation of NF-κB.
     2.2 Celecoxib inhibits NF-κB p65 expression but not p50
     Unstimulated MDA-MB-231 cells demonstrated somewhat higher levels of constitutive NF-κB p65 and p50 expression. However, treatment with 80μM celecoxib resulted in additional reduction in p65 expression (P<0.05), but no influence on p50 expression (P>0.05).
     2.3 Celecoxib inhibits NF-κB p65 nuclear translocation
     Cytoplasmic p65 level was slightly decreased after celecoxib stimulation. In contrast, celecoxib significantly suppressed p65 nuclear translocation after 24h treatment (P<0.05). The data clearly demonstrated that celecoxib could influence the process of p65 from cytoplasm to nucleus.
     2.4 Celecoxib inhibits IκBαphosphorylation
     Phosphorylation and degradation of IκBαis the initiating event in NF-κB activation and translocation, and upregulation of IκBαexpression constrains p65/p50 to the cytosol and inhibits in?ammatory NF-κB activity. Accordingly, we also tested the hypothesis that celecoxib acted on p65 localization via effects on IκBαprotein expression. Results showed that celecoxib inhibited IκBαphosphorylation, indicating that intact IκBαcould suppress p65 translocation (P<0.05).
     2.5 Celecoxib causes inactivation of NF-κB DNA Binding activity
     To investigate whether celecoxib modulated NF-κB DNA binding activity in MDA-MB-231 breast cancer cells, EMSA was performed. Autoradiography revealed that NF-κB DNA Binding activity was constitutively activated in unstimulated cells. However, NF-κB DNA binding activity was decreased in cells treated with celecoxib for 24h. Besides, in competition assay, mutant oligonucleotide failed to compete with the specific binding, while unlabeled specific oligonucleotide counteracted the effects of the labeled. The above results indicated that the induction of apoptosis by celecoxib may be potentially mediated by the downregulation of NF-κB transcription factor activity which, in turn, may be responsible for both cell growth inhibition and induction of apoptotic processe.
     2.6 Celecoxib inhibits the expression levels of Bcl-2
     To explore the possible role of Bcl-2 family members in celecoxib -induced apoptosis, the effects of celecoxib on the expression level of Bcl-2 by western blot analysis was examined. Exposure of cells to 80μM of celecoxib resulted in downregulation of Bcl-2 significantly (P<0.05).
     3 Study on the effect of overexpression p65 on cell apoptosis and invasion in MDA-MB-231 cells in vitro
     Previous studies showed that celecoxib could inhibit p65 expression, translocation and IκBαphosphorylation, therefore inactivation of NF-κB DNA binding activity. We hypothesized that NF-κB p65 signaling in breast cancer cells MDA-MB-231 could be a selective target of celecoxib treatment. In this part, we conducted p65cDNA transfection into MDA-MB-231 cells and observed the effects of endogenous p65 on cell apoptosis, invasion and its potential influence on celecoxib treatment.
     3.1 NF-κB p65cDNA transfection
     The recombinant plasmid, designated as pcDNA3.1-p65, eukaryotic expression plasmid encoding p65 gene coding region was constructed. The recombinant p65cDNA transfected into breast cancer cells MDA-MB-231 by the vector of lipofectamine 2000. Then total cell RNA, the cytoplasmic proteins and nuclear proteins were extracted. NF-κB p65 mRNA and protein expression were detected by RT-PCR and western blot analyses, respectively. Results showed that MDA-MB-231 cells which have been transfected p65cDNA recombination plasmids could significantly enhance the mRNA and protein level of p65 gene expression (P<0.05).
     3.2 p65cDNA transfection enhanced NF-κB DNA binding activity
     Importantly, EMSA results showed that NF-κB p65cDNA transfection enhanced the NF-κB DNA binding activity significantly in vitro (P<0.05).
    
     3.3 p65cDNA transfection promotes cell growth
     We applied MTT to detect the proliferation capability of MDA-MB-231 cells after transfection. The results suggested the growth and proliferation of MDA-MB-231 cells transfected with the recombinant of p65cDNA were promoted than those not transfected. Moreover, the growth and proliferation of MDA-MB-231 cells transfected with the recombinant of p65cDNA in combination of celecoxib treatment were faster than those without transfection.
     3.4 p65cDNA transfection promotes S phase progression of MDA-MB-231 cells
     FCM was done to further define the mechanism by which p65cDNA transfection promoted the growth of MDA-MB-231 cells. p65cDNA transfection led to an increase in the percentage of cells in S and a corresponding decrease in the percentage of cells in G0/G1 phase (P<0.05). Results showed that overexpression p65 gene might alter the progression to S phase of MDA-MB-231 cells.
     Cyclin D1 is involved in the early- to mid- G1 phase of the cell cycle in association with its catalytic partner CDK4. Emerging evidence indicated that cyclin D1 was essential for G1 progression in this breast cancer cell line. Our results showed that overexpression p65 gene could increase both cyclinD1 mRNA and protein expression (P<0.05), but little effects on CDK4 (P>0.05).
     3.5 p65cDNA transfection inhibits cell apoptosis
     FCM results revealed that the rate of apoptosis decreased in p65cDNA transfected MDA-MB-231 cells compared with control cells after 80μM celecoxib treatment. It indicated that the constructed recombination plasmids can suppress the apoptosis effect of MDA-MB-231 cells induced by celecoxib. Using western blot analysis, we observed that celecoxib downregulated the expression of caspase-3 and PARP in NF-κB p65cDNA-transfected or parental breast cancer cells (P<0.05). However, there was little change found in Bcl-2 expression (P>0.05). These results are consistent with the cell growth inhibition assay, suggesting that greater cell growth inhibition resulting from the celecoxib treatment is partly mediated through the induction of greater apoptosis in breast cancer cells. These results provide mechanistic support in favor of our claim that the apoptosis-inducing effect of celecoxib is partly mediated through the NF-κB pathway.
     3.6 p65cDNA transfection promotes cell invasion
     The result from transwell cell invasion assay indicated that p65cDNA transfection significantly promoted the invasion of MDA-MB-231 cells, as compared with mock-transfected and control vector–transfected cells (P<0.05). Furthermore, the mRNA levels of VEGF、IL-8 and MMP-2 mRNA were showed great enhancement in MDA-MB-231 cells transfected p65cDNA (P<0.05). MDA-MB-231 cells constitutively expressed a high level of IL-8, however, p65cDNA transfection can significantly accelerate the secretion (P<0.05).
     4 Study on the effect of p65miRNA by targeting p65 gene on cell apoptosis and invasion in MDA-MB-231 cells in vitro
     In the third part, overexpression p65 could abrogate the ability of celecoxib-induced cell apoptosis and promote the invasiveness and metastasis of MDA-MB-231 cells. Accordingly, we investigated the down-modulation of p65 expression and function by artificial microRNA (miRNA) by measuring mRNA and protein levels in the breast cancer cell line MDA-MB-231, which has a high level of p65 expression.
     4.1 NF-κB p65miRNA transfection
     Primarily, the recombinant expressive plasmid p65miRNA in pcDNATM6.2-GW/EmGFP-miR-based miRNA with a pre-microRNA sequence was constructed and transfected to MDA-MB-231 cells. Fluorescene microscope was applied to observe green fluorescence, which suggested cells transfected successfully. RT-PCR and western blot analyses were used to detect the expression of p65 at mRNA and protein level. The results showed that the MDA-MB-231 cells which have been transfected the p65miRNA recombination plasmids could significantly inhibit the mRNA and protein level of p65 expression (P<0.05).
     4.2 NF-κB p65miRNA transfection reduced NF-κB DNA binding activity
     EMSA results clearly demonstrated that NF-κB p65miRNA transfection decreased the NF-κB DNA binding activity significantly (P<0.05), suggesting that silencing p65 gene led to inactivation of NF-κB.
     4.3 Silencing p65 inhibits MDA-MB-231 cell growth
     MTT results showed that p65miRNA transfection inhibited cell proliferation of MDA-MB-231 cells in vitro as compared with mock-transfected and control vector–transfected cells (P<0.05).
     4.4 Silencing p65 sensitizes MDA-MB-231 cells apoptosis
     FCM results showed that rate of apoptosis increased in cells transfected with the recombinant of p65miRNA than those not transfected. To examine whether silencing p65 promoted caspase activation, we used western blot to detect the changes of caspase-3 and PARP. In consistent with previous data, p65miRNA transfection profoundly reduced the level of precatalytic caspase-3 and PARP (P<0.05). To determine the definite mechanisms by which targeting p65 promoted apoptosis, we examined the effect of p65miRNA transfection on IAPs gene expression. Results revealed that downregulation p65 could lead to reduction in survivin and XIAP protein level as well (P<0.05).
     4.5 Silencing p65 inhibits MDA-MB-231 cells migration and invasion
     Transwell cell invasion assay was used to determine invasion capability change of breast cancer cells transfected p65miRNA. Our results demonstrated that lowering levels of p65 mRNA and protein inhibited cell invasion considerably (P<0.05). Our previous investigation has demonstrated that p65 overexperssion could lead to upregulate angiogenic cytokines, which were related to tumor metastasis and angiogenesis. Herein, to verify whether VEGF, MMP-2 and IL-8 were blocked due to silence of p65 expression with this artificial miRNA, RT-PCR for detecting of mRNA was performed. Results revealed that VEGF, MMP-2 and IL-8 were downregulated in the breast cancer cell line MDA-MB-231 transfected with p65miRNA after 24h (P<0.05). Control-miRNA-transfected MDA-MB-231 cells still expressed the same levels. Besides, ELISA assay showed that IL-8 secretion was reduced significantly after blocking p65 expression (P<0.05).
     Conclusions:
     1. Celecoxib inhibits MDA-MB-231 cell proliferation in a dose- and time-dependent manner, whereas probably independent of COX-2 pathway. Celecoxib induces apoptosis in MDA-MB-231 cells by increasing DNA ladder formation and the activity of caspase-3 and PARP. The mechanism may be involved in inhibition of the expression, nuclear translocation of p65 and IκBαphosphorylation, which lead to inactivation of NF-κB DNA binding activity and reduction its downstream Bcl-2 expression. Furthermore, celecoxib could suppress the migration and invasion of MDA-MB-231 cells, the mechanism of which might be concerned with downregulation of VEGF, MMP-2 and IL-8 mRNA levels, and reduction in IL-8 secretion.
     2. Overexpression of p65 promotes p65 expression in both mRNA and protein levels, and results in enhancement of NF-κB DNA binding activity. p65cDNA transfection abrogates the rate of apoptosis induced by celecoxib and promotes the invasiveness ability of MDA-MB-231 cells. Overexpression of p65 overrode caspase-3 and PARP activation, whereas no influence on Bcl-2 expression. Besides, VEGF, MMP-2 and IL-8 mRNA levels plus IL-8 secretion were upregulated caused by p65cDNA transfection.
     3. Reduction of endogenous p65 by miRNA treatment significantly impaired NF-κB activation, induced apoptosis, and reduced invasion of MDA-MB-231 cells. The mechanism may be related to activation of caspase-3 and PARP. p65miRNA transfection significantly reduced the levels of XIAP and survivin compared with control. Furthermore, p65miRNA suppressed invasive ability of MDA-MB-231 cells, in level with VEGF, MMP-2 and IL-8 downregulation, and reduced IL-8 secretion.
引文
1 Autier P, Hery C, Haukka J, et al. Advanced breast cancer and breast cancer mortality in randomized controlled trials on mammography screening. J Clin Oncol, 2009,27(35):5919~5923
    2 McCracken M, Olsen M, Chen MS Jr, et al. Cancer incidence, mortality, and associated risk factors among Asian Americans of Chinese, Filipino, Vietnamese, Korean, and Japanese ethnicities. CA Cancer J Clin, 2007,57(4):190~205
    3 Lee SM, Park JH, Park HJ. Breast cancer risk factors in Korean women: a literature review. Int Nurs Rev, 2008,55(3):355~359
    4 Vona-Davis L, Rose DP. Adipokines as endocrine, paracrine, and autocrine factors in breast cancer risk and progression. Endocr Relat Cancer, 2007,14(2):189~206
    5 Vona-Davis L, Rose DP. The influence of socioeconomic disparities on breast cancer tumor biology and prognosis: a review. J Womens Health (Larchmt), 2009,18(6):883~893
    6 Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A, 2001,98(19):10869~10874
    7 Telli ML, Carlson RW. First-line chemotherapy for metastatic breast cancer. Clin Breast Cancer, 2009,9 Suppl 2:S66~S72.
    8 Guarneri V, Conte PF. The curability of breast cancer and the treatment of advanced disease. Eur J Nucl Med Mol Imaging, 2004,31 Suppl 1:S149-61.
    9 Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res, 2007,13(15 Pt 1):4429~4434
    10 Irvin WJ Jr, Carey LA. What is triple-negative breast cancer. Eur J Cancer, 2008,44(18):2799~2805
    11 Reis-Filho JS, Tutt AN. Triple negative tumours: a critical review. Histopathology, 2008,52(1):108~118
    12 Harris RE, Chlebowski RT, Jackson RD, et al. Breast cancer andnonsteroidal anti-inflammatory drugs: prospective results from the Women's Health Initiative. Cancer Res, 2003,63(18):6096~60101
    13 Harris RE, Alshafie GA, Abou-Issa H, et al. Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res, 2000,60(8):2101~2103
    14 Pepper C, Hewamana S, Brennan P, et al. NF-kappaB as a prognostic marker and therapeutic target in chronic lymphocytic leukemia. Future Oncol, 2009,5(7):1027~1037
    15 Chariot A. The NF-kappaB-independent functions of IKK subunits in immunity and cancer. Trends Cell Biol, 2009,19(8):404~413
    16 Sarkar FH, Li Y, Wang Z, et al. NF-kappaB signaling pathway and its therapeutic implications in human diseases. Int Rev Immunol, 2008,27(5):293~319
    17 Naugler WE, Karin M. NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev, 2008,18(1):19~26
    18 Wu JT, Kral JG. The NF-kappaB/IkappaB signaling system: a molecular target in breast cancer therapy. J Surg Res, 2005,123(1):158~169
    19 Nakshatri H, Goulet RJ Jr. NF-kappaB and breast cancer. Curr Probl Cancer, 2002,26(5):282~309
    20 Liu B, Fan Z, Edgerton SM, et al. Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle, 2009,8(13):2031~2040
    21 Rawson AE, McClellan WT. Current concepts in breast reconstruction. W V Med J, 2009,105 Spec No:16~22; quiz 23
    22 Visvader JE. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev, 2009,23(22):2563~2577
    23 Schlotter CM, Vogt U, Allgayer H, et al. Molecular targeted therapies for breast cancer treatment. Breast Cancer Res, 2008,10(4):211
    24 Portugal J, Bataller M, Mansilla S. Cell death pathways in response to antitumor therapy. Tumori, 2009,95(4):409~421
    25 Frampton JE, Keating GM. Celecoxib: a review of its use in themanagement of arthritis and acute pain. Drugs, 2007,67(16):2433~2472
    26 Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J Rare Dis, 2009,4:22
    27 Du Y, Zhang S, Wang Z, et al. Induction of apoptosis and cell cycle arrest by NS398 in oral squamous cell carcinoma cells via downregulation of E2 promoter-binding factor-1. Oncol Rep, 2008,20(3):605~611
    28 Li S, Tong Q, Zhang W, et al. Mechanism of growth inhibitory effects of cyclooxygenase-2 inhibitor-NS398 on cancer cells. Cancer Invest, 2008,26(4):333~337
    29 Cai Y, Lee YF, Li G, et al. A new prostate cancer therapeutic approach: combination of androgen ablation with COX-2 inhibitor. Int J Cancer, 2008,123(1):195~201
    30 Xu XF, Xie CG, Wang XP, et al. Selective inhibition of cyclooxygenase-2 suppresses the growth of pancreatic cancer cells in vitro and in vivo. Tohoku J Exp Med, 2008,215(2):149~157
    31 Yoshida S, Ujiki M, Ding XZ, et al. Pancreatic stellate cells (PSCs) express cyclooxygenase-2 (COX-2) and pancreatic cancer stimulates COX-2 in PSCs. Mol Cancer, 2005,4:27
    32 Ding XZ, Tong WG, Adrian TE. Blockade of cyclooxygenase-2 inhibits proliferation and induces apoptosis in human pancreatic cancer cells. Anticancer Res, 2000,20(4):2625~2631
    33 Naoi K, Sunagawa N, Yoshida I, et al. Enhancement of tongue carcinogenesis in Hras128 transgenic rats treated with 4-nitroquinoline 1-oxide. Oncol Rep, 2010,23(2):337~344
    34 Li W, Zhang HH, Xu RJ, et al. Effects of a selective cyclooxygenase-2 inhibitor, nimesulide, on the growth of ovarian carcinoma in vivo. Med Oncol, 2008,25(2):172~177
    35 Kim BM, Won J, Maeng KA, et al. Nimesulide, a selective COX-2 inhibitor, acts synergistically with ionizing radiation against A549 human lung cancer cells through the activation of caspase-8 and caspase-3. Int J Oncol, 2009,34(5):1467~1473
    36 Agrawal A, Fentiman IS. NSAIDs and breast cancer: a possible prevention and treatment strategy. Int J Clin Pract, 2008,62(3):444~449
    37 Howe LR. Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res, 2007,9(4):210
    38 Singh P, Mittal A. Current status of COX-2 inhibitors. Mini Rev Med Chem, 2008,8(1):73~90
    39 Bastos-Pereira AL, Lugarini D, de Oliveira-Christoff A, et al. Celecoxib prevents tumor growth in an animal model by a COX-2 independent mechanism. Cancer Chemother Pharmacol, 2009, [Epub ahead of print]
    40 Gunnarsson C, Jansson A, Holmlund B, et al. Expression of COX-2 and steroid converting enzymes in breast cancer. Oncol Rep, 2006,16(2):219~224
    41 Furse KE, Corcelli SA. The dynamics of water at DNA interfaces: computational studies of Hoechst 33258 bound to DNA. J Am Chem Soc, 2008,130(39):13103~13109
    42 Blankenberg FG, Tait J, Ohtsuki K, et al. Apoptosis: the importance of nuclear medicine. Nucl Med Commun, 2000,21(3):241~250
    43 Wu T, Leng J, Han C, et al. The cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt and induces apoptosis in human cholangiocarcinoma cells. Mol Cancer Ther, 2004,3(3):299~307
    44 Mazumder S, Plesca D, Almasan A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol, 2008,414:13~21
    45 Kuribayashi K, Mayes PA, El-Deiry WS. What are caspases 3 and 7 doing upstream of the mitochondria. Cancer Biol Ther, 2006,5(7):763~765
    46 Chalmers AJ. The potential role and application of PARP inhibitors in cancer treatment. Br Med Bull, 2009,89:23~40
    47 Rodon J, Iniesta MD, Papadopoulos K. Development of PARP inhibitors in oncology. Expert Opin Investig Drugs, 2009,18(1):31~43
    48 Ambrosini G, Adida C, Sirugo G, et al. Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J Biol Chem, 1998,273(18):11177~11182
    1 Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res, 2007, 13(15 Pt 1):4429~4434
    2 Rakha EA, El-Sayed ME, Green AR, et al. Prognostic markers in triple-negative breast cancer. Cancer, 2007, 109(1):25~32
    3 Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol, 2008, 26(8):1275~1281
    4 Smid M, Wang Y, Zhang Y, et al. Subtypes of breast cancer show preferential site of relapse. Cancer Res, 2008, 68(9):3108~3114
    5 Lin NU, Claus E, Sohl J, et al. Sites of distant recurrence and clinical outcomes in patients with metastatic triple-negative breast cancer: high incidence of central nervous system metastases. Cancer, 2008, 113(10):2638~2645
    6 Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev, 1989, 8(2):98~101
    7 Ribatti D, Mangialardi G, Vacca A. Stephen Paget and the“seed and soil”theory of metastatic dissemination. Clin Exp Med, 2006, 6(4):145~149
    8 Monzon FA, Koen TJ. Diagnosis of metastatic neoplasms: molecular approaches for identification of tissue of origin. Arch Pathol Lab Med, 2010, 134(2):216~224
    9 Haupt B, Ro JY, Schwartz MR. Basal-like breast carcinoma: a phenotypically distinct entity. Arch Pathol Lab Med, 2010, 134(1):130~133
    10 Crago AM, Azu M, Tierney S, Morrow M. Randomized clinical trials in breast cancer. Surg Oncol Clin N Am, 2010, 19(1):33~58
    11 Gluz O, Liedtke C, Gottschalk N, et al. Triple-negative breast cancer--current status and future directions. Ann Oncol, 2009, 20(12):1913~1927
    12 Hurvitz SA, Finn RS. What's positive about 'triple-negative' breast cancer? Future Oncol, 2009, 5(7):1015~1025
    13 Yip-Schneider MT, Wu H, Njoku V, et al. Effect of celecoxib and the novel anti-cancer agent, dimethylamino-parthenolide, in a developmental model of pancreatic cancer. Pancreas, 2008, 37(3):e45~53
    14 Szumi?o J, Burdan F, Szumi?o M, et al. [Cyclooxygenase inhibitors in chemoprevention and treatment of esophageal squamous cell carcinoma]. Pol Merkur Lekarski, 2009, 27(161):408~412
    15 Kwak YE, Jeon NK, Kim J, et al. The cyclooxygenase-2 selective inhibitor celecoxib suppresses proliferation and invasiveness in the human oral squamous carcinoma. Ann N Y Acad Sci, 2007, 1095:99~112
    16 Makrilia N, Kollias A, Manolopoulos L, et al. Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest, 2009, 27(10):1023~1037
    17 Kruizinga RC, Bestebroer J, Berghuis P, et al. Role of chemokines and their receptors in cancer. Curr Pharm Des, 2009, 15(29):3396~3416
    18 Suva LJ, Griffin RJ, Makhoul I. Mechanisms of bone metastases of breast cancer. Endocr Relat Cancer, 2009, 16(3):703~713
    19 Pantel K, Alix-Panabières C, Riethdorf S. Cancer micrometastases.Nat Rev Clin Oncol, 2009, 6(6):339~351
    20 Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 1983, 219(4587):983~985
    21 Lohela M, Bry M, Tammela T, et al. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol, 2009, 21(2):154~165
    22 Pourgholami MH, Morris DL. Inhibitors of vascular endothelial growth factor in cancer. Cardiovasc Hematol Agents Med Chem, 2008, 6(4):343~347
    23 Sánchez-Mu?oz A, Pérez-Ruiz E, Jiménez B, et al. Targeted therapy of metastatic breast cancer. Clin Transl Oncol, 2009, 11(10):643~650
    24 Anders C, Carey LA. Understanding and treating triple-negative breast cancer. Oncology (Williston Park), 2008, 22(11):1233~1239
    25 Tai W, Qin B, Cheng K. Inhibition of Breast Cancer Cell Growth and Invasiveness by Dual Silencing of HER-2 and VEGF. Mol Pharm, 2010, [Epub ahead of print]
    26 Wang S, Liu H, Ren L, et al. Inhibiting colorectal carcinoma growth and metastasis by blocking the expression of VEGF using RNA interference. Neoplasia, 2008, 10(4):399~407
    27 Turpeenniemi-Hujanen T. Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie, 2005, 87(3-4):287~297
    28 Jezierska A, Motyl T. Matrix metalloproteinase-2 involvement in breast cancer progression: a mini-review. Med Sci Monit, 2009, 15(2):RA32~40
    29 Luo J. Role of matrix metalloproteinase-2 in ethanol-induced invasion by breast cancer cells. J Gastroenterol Hepatol, 2006, 21 Suppl 3:S65~68
    30 Polette M, Birembaut P. Membrane-type metalloproteinases in tumor invasion. Int J Biochem Cell Biol, 1998, 30(11):1195~1202
    31 Ohbayashi H. Matrix metalloproteinases in lung diseases. Curr Protein Pept Sci, 2002, 3(4):409~421
    32 Wilson MJ, Sellers RG, Wiehr C, et al. Expression of matrix metalloproteinase-2 and -9 and their inhibitors, tissue inhibitor of metalloproteinase-1 and -2, in primary cultures of human prostatic stromal and epithelial cells. J Cell Physiol, 2002, 191(2):208~216
    33 Bachmeier BE, Iancu CM, Jochum M, et al. Matrix metalloproteinases in cancer: comparison of known and novel aspects of their inhibition as a therapeutic approach. Expert Rev Anticancer Ther, 2005, 5(1):149~163
    34 Yoshimura T, Matsushima K, Oppenheim JJ, et al. Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: partial characterization and separation from interleukin 1 (IL 1). J Immunol, 1987, 139(3):788~793
    35 Hong DY, Lee BJ, Lee JC, et al. Expression of VEGF, HGF, IL-6, IL-8,MMP-9, Telomerase in Peripheral Blood of Patients with Head and Neck Squamous Cell Carcinoma. Clin Exp Otorhinolaryngol, 2009, 2(4):186~192
    36 Malicki S, Winiarski M, Matlok M, et al. IL-6 and IL-8 responses of colorectal cancer in vivo and in vitro cancer cells subjected to simvastatin. J Physiol Pharmacol, 2009, 60(4):141~146
    37 Song B, Zhang D, Wang S, et al. Association of interleukin-8 with cachexia from patients with low-third gastric cancer. Comp Funct Genomics, 2009:212345
    38 Benoy IH, Salgado R, Van Dam P, et al. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res, 2004, 10(21):7157~7162
    39 Crohns M, Saarelainen S, Laine S, et al. Cytokines in bronchoalveolar lavage fluid and serum of lung cancer patients during radiotherapy - Association of interleukin-8 and VEGF with survival.Cytokine, 2010, 50(1):30~36
    40 Yang J, Wang Y, Gao Y, et al.Reciprocal regulation of 17beta-estradiol, interleukin-6 and interleukin-8 during growth and progression of epithelial ovarian cancer. Cytokine, 2009, 46(3):382~391
    41 Bo S, Dianliang Z, Hongmei Z, et al. Association of interleukin-8 gene polymorphism with cachexia from patients with gastric cancer. J Interferon Cytokine Res, 2010, 30(1):9~14
    42 Harimoto N, Shirabe K, Abe T, et al.Interleukin-8 producing hepatocellular carcinoma with pyrexia. HPB Surg, 2009:461492
    43 Yao C, Lin Y, Ye CS, et al. Role of interleukin-8 in the progression of estrogen receptor-negative breast cancer. Chin Med J (Engl), 2007, 120(20):1766~1772
    44 Yao C, Lin Y, Chua MS, et al. Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. Int J Cancer, 2007, 121(9):1949~1957
    1 Boersma MC, Meffert MK. Novel roles for the NF-kappaB signaling pathway in regulating neuronal function. Sci Signal, 2008, 1(6):pe7
    2 Chariot A. The NF-kappaB-independent functions of IKK subunits in immunity and cancer. Trends Cell Biol, 2009, 19(8):404~413
    3 Sovak MA, Bellas RE, Kim DW, et al. Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J Clin Invest, 1997, 100(12):2952~2960
    4 Biswas DK, Dai SC, Cruz A, et al. The nuclear factor kappa B (NF-kappa B): a potential therapeutic target for estrogen receptor negative breast cancers. Proc Natl Acad Sci U S A, 2001, 98(18):10386~10391
    5 Singh S, Shi Q, Bailey ST, et al. Nuclear factor-kappaB activation: a molecular therapeutic target for estrogen receptor-negative and epidermal growth factor receptor family receptor-positive human breast cancer. Mol Cancer Ther, 2007, 6(7):1973~1982
    6 Gionet N, Jansson D, Mader S, et al. NF-kappaB and estrogen receptor alpha interactions: Differential function in estrogen receptor-negative and -positive hormone-independent breast cancer cells. J Cell Biochem, 2009, 107(3):448~459
    7 Yamaguchi N, Ito T, Azuma S, et al. Constitutive activation of nuclear factor-kappaB is preferentially involved in the proliferation of basal-like subtype breast cancer cell lines. Cancer Sci, 2009, 100(9):1668~1674
    8 Kim SH, Song SH, Kim SG, et al. Celecoxib induces apoptosis in cervical cancer cells independent of cyclooxygenase using NF-kappaB as a possible target. J Cancer Res Clin Oncol, 2004, 130(9):551~560
    9 Subhashini J, Mahipal SV, Reddanna P. Anti-proliferative and apoptotic effects of celecoxib on human chronic myeloid leukemia in vitro. Cancer Lett, 2005, 224(1):31~43
    10 Amann R, Peskar BA. Anti-inflammatory effects of aspirin and sodium salicylate. Eur J Pharmacol, 2002, 447(1):1~9
    11 Loveridge CJ, MacDonald AD, Thoms HC, et al. The proapoptotic effectsof sulindac, sulindac sulfone and indomethacin are mediated by nucleolar translocation of the RelA(p65) subunit of NF-kappaB. Oncogene, 2008, 27(18):2648~2655
    12 Basu GD, Pathangey LB, Tinder TL, et al. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells. Breast Cancer Res, 2005, 7(4):R422~435
    13 Ohler U, Wassarman DA. Promoting developmental transcription. Development, 2010, 137(1):15~26
    14 2nd LDW, Bove K. The transcription factor Ets-1 in breast cancer. Front Biosci, 2005, 10:506~11
    15 Kushner PJ, Agard DA, Greene GL, et al. Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol, 2000, 74(5):311~317
    16 Sarnico I, Lanzillotta A, Benarese M, et al. NF-kappaB dimers in the regulation of neuronal survival. Int Rev Neurobiol, 2009, 85:351~362
    17 Mankan AK, Lawless MW, Gray SG, et al. NF-kappaB regulation: the nuclear response. J Cell Mol Med, 2009, 13(4):631~643
    18 Vogel CF, Matsumura F. A new cross-talk between the aryl hydrocarbon receptor and RelB, a member of the NF-kappaB family. Biochem Pharmacol, 2009, 77(4):734~745
    19 Royuela M, Rodriguez-Berriguete G, Fraile B, et al. TNF-alpha/IL-1/NF-kappaB transduction pathway in human cancer prostate. Histol Histopathol, 2008, 23(10):1279~1290
    20 Gossye V, Haegeman G, De Bosscher K. Therapeutic implications of the nuclear factor-kappaB/nuclear receptor cross-talk. Front Biosci, 2008, 13:4122-4143
    21 Hertlein E, Wang J, Ladner KJ, et al. RelA/p65 regulation of IkappaBbeta. Mol Cell Biol, 2005, 25(12):4956~4968
    22 Guo J, Verma UN, Gaynor RB, et al. Enhanced chemosensitivity to irinotecan by RNA interference-mediated down-regulation of the nuclear factor-kappaB p65 subunit. Clin Cancer Res, 2004, 10(10):3333~3341
    23 Liu M, Ju X, Willmarth NE, et al. Nuclear factor-kappaB enhancesErbB2-induced mammary tumorigenesis and neoangiogenesis in vivo. Am J Pathol, 2009, 174(5):1910~1920
    24 Basu GD, Pathangey LB, Tinder TL, et al. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells. Breast Cancer Res, 2005, 7(4):R422~435
    25 Chang MS, Lee HS, Jung EJ, et al. Cell-cycle regulators, bcl-2 and NF-kappaB in Epstein-Barr virus-positive gastric carcinomas. Int J Oncol, 2005, 27(5):1265~1272
    26 Wang C, Youle RJ. The role of mitochondria in apoptosis*. Annu Rev Genet, 2009, 43:95~118
    27 Lessard L, Karakiewicz PI, Bellon-Gagnon P, et al. Nuclear localization of nuclear factor-kappaB p65 in primary prostate tumors is highly predictive of pelvic lymph node metastases. Clin Cancer Res, 2006, 12(19):5741~5745
    28 Xiong HQ, Abbruzzese JL, Lin E, et al. NF-kappaB activity blockade impairs the angiogenic potential of human pancreatic cancer cells. Int J Cancer, 2004, 108(2):181~188
    29 Sakamoto K, Maeda S, Hikiba Y, et al. Constitutive NF-kappaB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res, 2009, 15(7):2248~2258
    30 Tang CH, Tan TW, Fu WM, et al. Involvement of matrix metalloproteinase-9 in stromal cell-derived factor-1/CXCR4 pathway of lung cancer metastasis. Carcinogenesis, 2008, 29(1):35~43
    1 Basak S, Hoffmann A. Crosstalk via the NF-kappaB signaling system. Cytokine Growth Factor Rev, 2008, 19(3-4):187~197
    2 Chen FE, Ghosh G. Regulation of DNA binding by Rel/NF-kappaB transcription factors: structural views. Oncogene, 1999, 18(49):6845~6852
    3 Jiang X, Takahashi N, Ando K, et al. NF-kappa B p65 transactivation domain is involved in the NF-kappa B-inducing kinase pathway. Biochem Biophys Res Commun, 2003, 301(2):583~590
    4 Bours V, Villalobos J, Burd PR, et al. Cloning of a mitogen-inducible gene encoding a kappa B DNA-binding protein with homology to the rel oncogene and to cell-cycle motifs. Nature, 1990, 348(6296):76~80
    5 Ghosh S, Gifford AM, Riviere LR, et al. Cloning of the p50 DNA binding subunit of NF-kappa B: homology to rel and dorsal. Cell, 1990, 62(5):1019~1029
    6 Kieran M, Blank V, Logeat F, et al. The DNA binding subunit of NF-kappa B is identical to factor KBF1 and homologous to the rel oncogene product. Cell, 1990, 62(5):1007~1018
    7 Nolan GP, Ghosh S, Liou HC, et al. DNA binding and I kappa B inhibition of the cloned p65 subunit of NF-kappa B, a rel-related polypeptide. Cell, 1991, 64(5):961~969
    8 van ED, Engist B, Natoli G, et al. Two modes of transcriptional activation at native promoters by NF-kappaB p65. PLoS Biol, 2009, 7(3):e73
    9 Beg AA, Sha WC, Bronson RT, et al. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature, 1995, 376(6536):167~170
    10 Doi TS, Marino MW, Takahashi T, et al. Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality. Proc Natl Acad Sci U S A, 1999, 96(6):2994~2999
    11 Yu HG, Yu LL, Yang Y, et al. Increased expression of RelA/nuclearfactor-kappa B protein correlates with colorectal tumorigenesis. Oncology, 2003, 65(1):37~45
    12 Visconti R, Cerutti J, Battista S, et al. Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFkappaB p65 protein expression. Oncogene, 1997, 15(16):1987~1994
    13 Ahmed KM, Dong S, Fan M, et al. Nuclear factor-kappaB p65 inhibits mitogen-activated protein kinase signaling pathway in radioresistant breast cancer cells. Mol Cancer Res, 2006, 4(12):945~955
    14 Vaira S, Alhawagri M, Anwisye I, et al. RelA/p65 promotes osteoclast differentiation by blocking a RANKL-induced apoptotic JNK pathway in mice. J Clin Invest, 2008, 118(6):2088~2097
    15 Ricca A, Biroccio A, Trisciuoglio D, et al. relA over-expression reduces tumorigenicity and activates apoptosis in human cancer cells. Br J Cancer, 2001, 85(12):1914~1921
    16 Chen X, Kandasamy K, Srivastava RK. Differential roles of RelA (p65) and c-Rel subunits of nuclear factor kappa B in tumor necrosis factor-related apoptosis-inducing ligand signaling. Cancer Res, 2003, 63(5):1059~1066
    17 Collett GP, Campbell FC. Overexpression of p65/RelA potentiates curcumin-induced apoptosis in HCT116 human colon cancer cells. Carcinogenesis, 2006, 27(6):1285~1291
    18 Chan HM, Smith L, La Thangue NB. Role of LXCXE motif-dependent interactions in the activity of the retinoblastoma protein. Oncogene, 2001, 20(43):6152~6163
    19 Musgrove EA, Lee CS, Buckley MF, et al. Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci U S A, 1994, 91(17):8022~8026
    20 Umekita Y, Ohi Y, Sagara Y, et al. Overexpression of cyclinD1 predicts for poor prognosis in estrogen receptor-negative breast cancer patients. Int J Cancer, 2002, 98(3):415~418
    21 Bindels EM, Lallemand F, Balkenende A, et al. Involvement of G1/S cyclins in estrogen-independent proliferation of estrogen receptor-positive breast cancer cells. Oncogene, 2002, 21(53):8158~8165
    22 Sethi G, Ahn KS, Xia D, et al. Targeted deletion of MKK4 gene potentiates TNF-induced apoptosis through the down-regulation of NF-kappa B activation and NF-kappa B-regulated antiapoptotic gene products. J Immunol, 2007, 179(3):1926~1933
    23 Toomey DP, Murphy JF, Conlon KC. COX-2, VEGF and tumour angiogenesis. Surgeon, 2009, 7(3):174~180
    24 Jezierska A, Motyl T. Matrix metalloproteinase-2 involvement in breast cancer progression: a mini-review. Med Sci Monit, 2009, 15(2):RA32~40
    25 Xie TX, Xia Z, Zhang N, et al. Constitutive NF-kappaB activity regulates the expression of VEGF and IL-8 and tumor angiogenesis of human glioblastoma. Oncol Rep, 2010, 23(3):725~732
    26 Yao C, Lin Y, Chua MS, et al. Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. Int J Cancer, 2007, 121(9):1949~1957
    1 Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol, 2008, 26(8):1275~1281
    2 Carey LA, Dees EC, Sawyer L, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res, 2007, 13(8):2329~2334
    3 Rody A, Karn T, Solbach C, et al. The erbB2+ cluster of the intrinsic gene set predicts tumor response of breast cancer patients receiving neoadjuvant chemotherapy with docetaxel, doxorubicin and cyclophosphamide within the GEPARTRIO trial. Breast, 2007, 16(3):235~240
    4 Higgins KA, Perez JR, Coleman TA, et al. Antisense inhibition of the p65 subunit of NF-kappa B blocks tumorigenicity and causes tumor regression. Proc Natl Acad Sci U S A, 1993, 90(21):9901~9905
    5 Kong R, Sun B, Jiang H, et al. Downregulation of nuclear factor-kappaB p65 subunit by small interfering RNA synergizes with gemcitabine to inhibit the growth of pancreatic cancer. Cancer Lett, 2009. [Epub ahead of print]
    6 Inoue M, Matsumoto S, Saito H, et al. Intraperitoneal administration of a small interfering RNA targeting nuclear factor-kappa B with paclitaxel successfully prolongs the survival of xenograft model mice with peritoneal metastasis of gastric cancer. Int J Cancer, 2008, 123(11):2696~2701
    7 Schmitz ML, Mattioli I, Buss H, et al. NF-kappaB: a multifaceted transcription factor regulated at several levels. Chembiochem, 2004, 5(10):1348~1358
    8 Lopez-Fraga M, Martinez T, Jimenez A. RNA interference technologies and therapeutics: from basic research to products. BioDrugs, 2009, 23(5):305~332
    9 Meinicke H, Darcan Y, Hamelmann E. Targeting allergic airway diseases by siRNA: an option for the future. Curr Mol Med, 2009, 9(4):483~494
    10 Dykxhoorn DM. RNA interference as an anticancer therapy: a patent perspective. Expert Opin Ther Pat, 2009, 19(4):475~491
    11 Goyal BR, Patel MM, Soni MK, et al. Therapeutic opportunities of small interfering RNA. Fundam Clin Pharmacol, 2009, 23(4):367~386
    12 Thompson AJ, Patel K. Antisense inhibitors, ribozymes, and siRNAs. Clin Liver Dis, 2009,13(3):375~390
    13 Paddison PJ, Hannon GJ. siRNAs and shRNAs: skeleton keys to the human genome. Curr Opin Mol Ther, 2003, 5(3):217~224
    14 Xia XG, Zhou H, Ding H, et al. An enhanced U6 promoter for synthesis of short hairpin RNA. Nucleic Acids Res, 2003, 31(17):e100
    15 Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol, 2003, 4(6):457~467
    16 Wang QZ, Xu W, Habib N, et al. Potential uses of microRNA in lung cancer diagnosis, prognosis, and therapy. Curr Cancer Drug Targets, 2009, 9(4):572~594
    17 Rao DD, Senzer N, Cleary MA, et al. Comparative assessment of siRNA and shRNA off target effects: what is slowing clinical development. Cancer Gene Ther, 2009, 16(11):807~809
    18 Li Z, Zhan W, Wang Z, et al. Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochem Biophys Res Commun, 2006, 348(1):229~237
    19 Liang Z, Wu H, Reddy S, et al. Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem Biophys Res Commun, 2007, 363(3):542~546
    20 Fewell GD, Schmitt K. Vector-based RNAi approaches for stable, inducible and genome-wide screens. Drug Discov Today, 2006, 11(21-22):975~982
    21 Timoshenko AV, Rastogi S, Lala PK. Migration-promoting role of VEGF-C and VEGF-C binding receptors in human breast cancer cells. BrJ Cancer, 2007, 97(8):1090~1098
    22 Kargozaran H, Yuan SY, Breslin JW, et al. A role for endothelial-derived matrix metalloproteinase-2 in breast cancer cell transmigration across the endothelial-basement membrane barrier. Clin Exp Metastasis, 2007, 24(7):495~502
    23 Yao C, Lin Y, Chua MS, et al. Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. Int J Cancer, 2007, 121(9):1949~1957
    1 Boersma MC, Meffert MK. Novel roles for the NF-kappaB signaling pathway in regulating neuronal function. Sci Signal, 2008, 1(6):pe7
    2 Chariot A. The NF-kappaB-independent functions of IKK subunits in immunity and cancer. Trends Cell Biol, 2009, 19(8):404~413
    3 Leung TH, Hoffmann A, Baltimore D. One nucleotide in a kappaB site can determine cofactor specificity for NF-kappaB dimers. Cell, 2004, 118(4):453~464
    4 Basak S, Hoffmann A. Crosstalk via the NF-kappaB signaling system. Cytokine Growth Factor Rev, 2008, 19(3-4):187~197
    5 Deloukas P, van LAP. Genomic organization of the gene encoding the p65 subunit of NF-kappa B: multiple variants of the p65 protein may be generated by alternative splicing. Hum Mol Genet, 1993, 2(11):1895~1900
    6 Narayanan R, Klement JF, Ruben SM, et al. Identification of a naturally occurring transforming variant of the p65 subunit of NF-kappa B. Science, 1992, 256(5055):367~370
    7 Lyle R, Valleley EM, Sharpe PT, et al. An alternatively spliced transcript, p65 delta 2, of the gene encoding the p65 subunit of the transcription factor NF-kappa B. Gene, 1994, 138(1-2):265~266
    8 Maxwell SA, Mukhopadhyay T. A novel NF-kappa B p65 spliced transcript lacking exons 6 and 7 in a non-small cell lung carcinoma cell line. Gene, 1995, 166(2):339~340
    9 Jiang X, Takahashi N, Ando K, et al. NF-kappa B p65 transactivation domain is involved in the NF-kappa B-inducing kinase pathway. Biochem Biophys Res Commun, 2003, 301(2):583~590
    10 Bours V, Villalobos J, Burd PR, et al. Cloning of a mitogen-inducible gene encoding a kappa B DNA-binding protein with homology to the rel oncogene and to cell-cycle motifs. Nature, 1990, 348(6296):76~80
    11 Ghosh S, Gifford AM, Riviere LR, et al. Cloning of the p50 DNA binding subunit of NF-kappa B: homology to rel and dorsal. Cell, 1990,62(5):1019~1029
    12 Kieran M, Blank V, Logeat F, et al. The DNA binding subunit of NF-kappa B is identical to factor KBF1 and homologous to the rel oncogene product. Cell, 1990, 62(5):1007~1018
    13 Nolan GP, Ghosh S, Liou HC, et al. DNA binding and I kappa B inhibition of the cloned p65 subunit of NF-kappa B, a rel-related polypeptide. Cell, 1991, 64(5):961~969
    14 van ED, Engist B, Natoli G, et al. Two modes of transcriptional activation at native promoters by NF-kappaB p65. PLoS Biol, 2009, 7(3):e73
    15 Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev, 2004, 18(18):2195~2224
    16 Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell, 2002, 109 Suppl:S81~96
    17 Chen FE, Huang DB, Chen YQ, et al. Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature, 1998, 391(6665):410~413
    18 Berkowitz B, Huang DB, Chen-Park FE, et al. The x-ray crystal structure of the NF-kappa B p50.p65 heterodimer bound to the interferon beta -kappa B site. J Biol Chem, 2002, 277(27):24694~24700
    19 Huxford T, Huang DB, Malek S, et al. The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell, 1998, 95(6):759~770
    20 Jacobs MD, Harrison SC. Structure of an IkappaBalpha/NF-kappaB complex. Cell, 1998, 95(6):749~758
    21 Malek S, Huang DB, Huxford T, et al. X-ray crystal structure of an IkappaBbeta x NF-kappaB p65 homodimer complex. J Biol Chem, 2003, 278(25):23094~23100
    22 Jang HD, Yoon K, Shin YJ, et al. PIAS3 suppresses NF-kappaB-mediated transcription by interacting with the p65/RelA subunit. J Biol Chem, 2004, 279(23):24873~24880
    23 Zhang J. Rates of conservative and radical nonsynonymous nucleotidesubstitutions in mammalian nuclear genes. J Mol Evol, 2000, 50(1):56~68
    24 Seyfert HM, Pitra C, Meyer L, et al. Molecular characterization of STAT5A- and STAT5B-encoding genes reveals extended intragenic sequence homogeneity in cattle and mouse and different degrees of divergent evolution of various domains. J Mol Evol, 2000, 50(6):550~561
    25 Laudet V, Hanni C, Coll J, et al. Evolution of the nuclear receptor gene superfamily. EMBO J, 1992, 11(3):1003~1013
    26 Kaczynski J, Cook T, Urrutia R. Sp1- and Kruppel-like transcription factors. Genome Biol, 2003, 4(2):206
    27 Hsia CC, McGinnis W. Evolution of transcription factor function. Curr Opin Genet Dev, 2003, 13(2):199~206
    28 Schmitz ML, Baeuerle PA. The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. EMBO J, 1991, 10(12):3805~3817
    29 Seipel K, Georgiev O, Schaffner W. Different activation domains stimulate transcription from remote ('enhancer') and proximal ('promoter') positions. EMBO J, 1992, 11(13):4961~4968
    30 Schmitz ML, dos SSMA, Altmann H, et al. Structural and functional analysis of the NF-kappa B p65 C terminus. An acidic and modular transactivation domain with the potential to adopt an alpha-helical conformation. J Biol Chem, 1994, 269(41):25613~25620
    31 Blair WS, Bogerd HP, Madore SJ, et al. Mutational analysis of the transcription activation domain of RelA: identification of a highly synergistic minimal acidic activation module. Mol Cell Biol, 1994, 14(11):7226~7234
    32 Savkur RS, Burris TP. The coactivator LXXLL nuclear receptor recognition motif. J Pept Res, 2004, 63(3):207~212
    33 Plevin MJ, Mills MM, Ikura M. The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends Biochem Sci, 2005, 30(2):66~69
    34 Moore PA, Ruben SM, Rosen CA. Conservation of transcriptionalactivation functions of the NF-kappa B p50 and p65 subunits in mammalian cells and Saccharomyces cerevisiae. Mol Cell Biol, 1993, 13(3):1666~1674
    35 Ballard DW, Dixon EP, Peffer NJ, et al. The 65-kDa subunit of human NF-kappa B functions as a potent transcriptional activator and a target for v-Rel-mediated repression. Proc Natl Acad Sci U S A, 1992, 89(5):1875~1879
    36 Schmitz ML, dos SSMA, Baeuerle PA. Transactivation domain 2 (TA2) of p65 NF-kappa B. Similarity to TA1 and phorbol ester-stimulated activity and phosphorylation in intact cells. J Biol Chem, 1995, 270(26):15576~15584
    37 Perkins ND. Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene, 2006, 25(51):6717~6730
    38 Harhaj EW, Sun SC. Regulation of RelA subcellular localization by a putative nuclear export signal and p50. Mol Cell Biol, 1999, 19(10):7088~7095
    39 Trecca D, Guerrini L, Fracchiolla NS, et al. Identification of a tumor-associated mutant form of the NF-kappaB RelA gene with reduced DNA-binding and transactivating activities. Oncogene, 1997, 14(7):791~799
    40 Campbell KJ, Witty JM, Rocha S, et al. Cisplatin mimics ARF tumor suppressor regulation of RelA (p65) nuclear factor-kappaB transactivation. Cancer Res, 2006, 66(2):929~935
    41 Rocha S, Garrett MD, Campbell KJ, et al. Regulation of NF-kappaB and p53 through activation of ATR and Chk1 by the ARF tumour suppressor. EMBO J, 2005, 24(6):1157~1169
    42 Nowak DE, Tian B, Jamaluddin M, et al. RelA Ser276 phosphorylation is required for activation of a subset of NF-kappaB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin T1 complexes. Mol Cell Biol, 2008, 28(11):3623~3638
    43 Arun P, Brown MS, Ehsanian R, et al. Nuclear NF-kappaB p65 phosphorylation at serine 276 by protein kinase A contributes to the malignant phenotype of head and neck cancer. Clin Cancer Res, 2009, 15(19):5974~5984
    44 Gao N, Asamitsu K, Hibi Y, et al. AKIP1 enhances NF-kappaB-dependent gene expression by promoting the nuclear retention and phosphorylation of p65. J Biol Chem, 2008, 283(12):7834~7843
    45 Guan H, Jiao J, Ricciardi RP. Tumorigenic adenovirus type 12 E1A inhibits phosphorylation of NF-kappaB by PKAc, causing loss of DNA binding and transactivation. J Virol, 2008, 82(1):40~48
    46 Takahashi N, Tetsuka T, Uranishi H, et al. Inhibition of the NF-kappaB transcriptional activity by protein kinase A. Eur J Biochem, 2002, 269(18):4559~4565
    47 Vermeulen L, De Wilde G, Van Damme P, et al. Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J, 2003, 22(6):1313~1324
    48 Joo JH, Jetten AM. NF-kappaB-dependent transcriptional activation in lung carcinoma cells by farnesol involves p65/RelA(Ser276) phosphorylation via the MEK-MSK1 signaling pathway. J Biol Chem, 2008, 283(24):16391~16399
    49 Anrather J, Csizmadia V, Soares MP, et al. Regulation of NF-kappaB RelA phosphorylation and transcriptional activity by p21(ras) and protein kinase Czeta in primary endothelial cells. J Biol Chem, 1999, 274(19):13594~13603
    50 Leitges M, Sanz L, Martin P, et al. Targeted disruption of the zetaPKC gene results in the impairment of the NF-kappaB pathway. Mol Cell, 2001, 8(4):771~780
    51 Kai M, Yasuda S, Imai S, et al. Diacylglycerol kinase alpha enhances protein kinase Czeta-dependent phosphorylation at Ser311 of p65/RelA subunit of nuclear factor-kappaB. FEBS Lett, 2009, 583(19):3265~3268
    52 Bird TA, Schooley K, Dower SK, et al. Activation of nuclear transcriptionfactor NF-kappaB by interleukin-1 is accompanied by casein kinase II-mediated phosphorylation of the p65 subunit. J Biol Chem, 1997, 272(51):32606~32612
    53 McElhinny JA, Trushin SA, Bren GD, et al. Casein kinase II phosphorylates I kappa B alpha at S-283, S-289, S-293, and T-291 and is required for its degradation. Mol Cell Biol, 1996, 16(3):899~906
    54 Wang D, Westerheide SD, Hanson JL, et al. Tumor necrosis factor alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem, 2000, 275(42):32592~32597
    55 Chantome A, Pance A, Gauthier N, et al. Casein kinase II-mediated phosphorylation of NF-kappaB p65 subunit enhances inducible nitric-oxide synthase gene transcription in vivo. J Biol Chem, 2004, 279(23):23953~23960
    56 Jang MK, Goo YH, Sohn YC, et al. Ca2+/calmodulin-dependent protein kinase IV stimulates nuclear factor-kappa B transactivation via phosphorylation of the p65 subunit. J Biol Chem, 2001, 276(23):20005~20010
    57 Bae JS, Jang MK, Hong S, et al. Phosphorylation of NF-kappa B by calmodulin-dependent kinase IV activates anti-apoptotic gene expression. Biochem Biophys Res Commun, 2003, 305(4):1094~1098
    58 Buss H, Dorrie A, Schmitz ML, et al. Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem, 2004, 279(48):49571~49574
    59 Schwabe RF, Sakurai H. IKKbeta phosphorylates p65 at S468 in transactivaton domain 2. FASEB J, 2005, 19(12):1758~1760
    60 Schmitz ML, Bacher S, Kracht M. I kappa B-independent control of NF-kappa B activity by modulatory phosphorylations. Trends Biochem Sci, 2001, 26(3):186~190
    61 Chew J, Biswas S, Shreeram S, et al. WIP1 phosphatase is a negative regulator of NF-kappaB signalling. Nat Cell Biol, 2009, 11(5):659~666
    62 Chen H, Tini M, Evans RM. HATs on and beyond chromatin. Curr OpinCell Biol, 2001, 13(2):218~224
    63 Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell, 1997, 90(4):595~606
    64 Glozak MA, Sengupta N, Zhang X, et al. Acetylation and deacetylation of non-histone proteins. Gene, 2005, 363:15~23
    65 Chen LF, Mu Y, Greene WC. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J, 2002, 21(23):6539~6548
    66 Kiernan R, Bres V, Ng RW, et al. Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem, 2003, 278(4):2758~2766
    67 Zeng L, Zhou MM. Bromodomain: an acetyl-lysine binding domain. FEBS Lett, 2002, 513(1):124~128
    68 Huang B, Yang XD, Zhou MM, et al. Brd4 coactivates transcriptional activation of NF-kappaB via specific binding to acetylated RelA. Mol Cell Biol, 2009, 29(5):1375~1387
    69 Buerki C, Rothgiesser KM, Valovka T, et al. Functional relevance of novel p300-mediated lysine 314 and 315 acetylation of RelA/p65. Nucleic Acids Res, 2008, 36(5):1665~1680
    70 Lf C, Fischle W, Verdin E, et al. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science, 2001, 293(5535):1653~1657
    71 Hoberg JE, Yeung F, Mayo MW. SMRT derepression by the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and survival. Mol Cell, 2004, 16(2):245~255
    72 Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol, 2005, 7(8):758~765
    73 Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J, 2004, 23(12):2369~2380