变分模型与高效算法及其在图像处理中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变分模型和优化技术是数字图像处理领域的研究热点之一。本文主要研究灰度值图像的恢复和分割问题,针对当前方法的缺点以及面临的困难,提出了一些有效的模型和算法,所使用的方法主要有:局部或非局部全变分,增广Lagrange方法,低秩矩阵恢复等。本文的研究工作以及创新点主要体现在下面几个方面:
     1.分析了当前图像恢复的二阶段方法的局限和缺点,提出了一种图像去模糊的TV-Stokes模型。在提出的模型中,首先利用卷积算子的可交换性,根据Bayesian公式建立了去模糊图像切向量场估计的TV-Stokes模型;然后,定义新的方向匹配的正则项来建立图像恢复的TV模型,该模型克服了先前方法第二阶段中根据估计的切向量场恢复图像的变分模型的缺点。提出的模型可以用增广Lagrange方法有效地求解。
     2.经典的TV恢复模型通常使用标量正则化参数,而统一的参数值无法满足同质区域去噪和纹理区域保持细节两方面的要求。本文在非高斯噪声条件下,提出了两种图像恢复的自适应TV模型和算法。首先,定义一个与Gamma噪声有关的随机变量来区分图像的同质和纹理区域,在此基础上建立了Gamma噪声去噪的局部约束的TV模型和调节TV模型矢量参数的迭代算法。其次,针对Poisson噪声下图像去模糊问题,使用Poisson局部差异函数来区分图像的不同区域,进而建立相应的局部约束的TV模型和空间自适应的TV算法。试验结果表明提出模型能够准确识别图像区域,进而自适应调节正则化参数来达到同时消除图像噪声和保持纹理细节的目的。
     3.非局部TV模型相比TV恢复模型而言能够更好地保持图像的纹理和细节信息,然而求解方面具有较大计算量。本文基于变量分离和罚函数的思想提出了一种交替极小的快速迭代算法,该方法使用泰勒近似展开和连续性策略来加速算法执行,相比于PBOS算法具有较高的执行效率。先前的NL-TV模型是基于高斯噪声假设的,本文使用最小均方误差估计的方法,进一步建立了Gamma噪声的非局部TV模型和迭代算法,试验表明提出模型相比于TV模型具有更好的恢复效果。
     4.研究了图像处理中极小化问题的快速求解,提出了不动点迭代算法和基于子空间加速的增广Lagrange方法。一方面,将极小化问题转化为一个不动点方程,使用Picard迭代来得到相应的不动点,进而求得原问题的解。另一方面,在求解极小化问题的增广Lagrange方法的迭代公式中,使用子空间优化技术求解相应的子问题,从而得到一种基于子空间加速的增广Lagrange方法。数值试验表明提出的算法相比于先前提出的算法具有更高的执行效率。
     5.研究了空间域和小波域的图像修复问题,提出了两种新的图像修复模型。在图像域修复方面,基于PCA字典和未知图像信息,通过矩阵分解和PCA变换的方法将图像域修复问题转化为低秩和联合稀疏矩阵恢复问题,从而得到一种基于PCA字典的图像修复模型。在小波域修复方面,基于TV(NL-TV)的小波域修复模型对应算法的计算量较大,本文从图像分解的角度提出了新的小波域修复模型,相应迭代算法具有更加简单的形式,数值试验表明提出算法极大地提高了修复效率。
     6.图像分割的EWCVT模型具有结构简单,执行效率高的优点,然而它不能够较好地保持图像的微弱或者奇异边界,而且不适用于非高斯噪声。为了克服EWCVT模型的缺点,本文提出了基于标签函数匹配的正则化CVT模型,相比于EWCVT模型提出方法提高了图像分割精度,具有更好的分割效果。
Thestudyonvariationalmodelsandoptimizationtechniquesisanimportantresearchaspect in the field of digital image processing. This thesis mainly focuses on gray imagerestoration and segmentation problems, and proposes some efficient models and algo-rithms to overcome the shortcomings and difficulties of the previous works. The usedtools mainly include the local/non-local(NL) total variation(TV), augmented Lagrangianapproach, low-rank matrix restoration, etc. The main work and innovation are embodiedas follows.
     1. This thesis analyzes the limitations and shortcomings of the previous two-stepmethods in the field of image restoration, and proposes a TV-Stokes model for image de-convolution. In the new model, we first utilize the commuting property of the convolutionoperators and the Bayesian formula to establish the TV-Stokes model for the tangentialfield estimation of the deblurred image. Then a new defined regularization term which isonly orientation-matching is included in the TV model for image restoration, and it over-comes the defects of the variational models which utilize the estimated tangential vectorto reconstruct the image in the second step of previous two-step methods. The proposedmodel can be solved efficiently by the augmented Lagrangian approach.
     2. The classical TV restoration models always use scalar regularization parameters,but they are unable to meet the demand of removing the noise in the homogeneous regionsand preserving the details in the texture areas meanwhile with the uniform parameter val-ues. This thesis proposes two adapted TV models and corresponding algorithms. Firstly,some random variable with respect to Gamma noise is defined for the distinguishment ofthe homogeneous regions and texture areas. Then the local constrained TV model andthe corresponding iterative algorithm of adjusting the vector parameter of the TV modelare established for the Gamma noise removal. Next, the problem of poissonian image de-blurring is considered. The (Poisson) local discrepancy function is used to distinguish thehomogeneous and texture regions, and then the local constrained TV model and spatiallyadapted TV algorithm are proposed. Experimental results demonstrate that the proposedmodel can recognize the image regions exactly, and then adjust the regularization param-eters adaptively to remove the noise and retain the image details simultaneously.
     3. Compared with the TV models, the nonlocal TV models are able to better preservethe texture and details of images. However, the computational amount of the nonlocalmodels is very large. This thesis proposes a fast alternative minimization algorithm basedon the the idea of variable splitting and penalty techniques in optimization. The proposedalgorithm uses Taylor series approximation and a continuation scheme to accelerate itsimplementation,andisprovedtobemoreefficientthanthePBOSalgorithm. ThepreviousNL-TV models are based on the assumption of Gaussian noise. This thesis further usesthe minimize mean-square error (MMSE) estimator to establish the nonlocal TV modeland corresponding iterative algorithm for Gamma noise removal. Experiments show thatthe proposed NL-TV model outperforms the corresponding TV model.
     4. This thesis researches the fast computation of the minimization problem in thefield of image processing, and proposes a fixed point algorithm and a subspace optimiza-tion accelerating augmented Lagrangian approach. On the one hand, we transform theminimization problem into a fixed point equation, and use the Picard iteration to obtainthe corresponding fixed point. Then the solution of the original problem can be obtainedby the fixed point; on the other hand, a subspace optimization technique is adopted tosolve the sub-minimization problem in each iteration of the augmented Lagrangian ap-proach, and then a subspace optimization accelerating augmented Lagrangian approach isproposed for solving the TV deblurring model. Numerical experiments demonstrate thatthe proposed algorithms are very efficient.
     5. The inpainting problems in the space and wavelet domains are investigated, andtwo inpainting models are proposed in this thesis. In the field of image inpainting, weconsider the PCA dictionaries and the unknown image information, and transform the in-painting problem into low-rank and joint-sparse matrix recovery based on matrix decom-position and PCA transform. Then a new inpainting model based on the PCA dictionariesis obtained. In the field of wavelet domain inpainting, the computational amount of thealgorithms corresponding to TV(NL-TV) wavelet inpainting models is very large. Thisthesisproposesanewwaveletinpaintingmethodbasedonimagedecomposition. Thecor-responding iterative algorithm has a simpler structure, and it can improve the efficiencyof wavelet inpainting dramatically.
     6. TheEWCVTmodelforimagesegmentationisverysimpleandefficient, however,it is unable to preserve irregular edges such as some thin and slight edges, and is not suit- able for the non-Gaussian noise. In order to overcome the shortcomings of the EWCVTmodel,thisthesisproposesanovellabel-matchingregularizationCVT(centroidalVoronoitessellation) model. Compared with the EWCVT model, the proposed methods can im-prove the image segmentation accuracy, and therefore obtain the superior segmentationperformance.
引文
[1]孙即祥.图像处理[M].2004,北京:科学出版社,图像信息处理丛书.
    [2] Chan T, Shen J. Image Processing and Analysis: Variational, PDE, Wavelet, andStochastic Methods[M]. New York: SIAM,2005.
    [3] Scherzer O, Grasmair M, Grossauer H, et al. Variational methods in imaging[M].Applied Mathematical Sciences. New York: Springer,2008.
    [4] Tikhonov A, Arsenin Y. Solution of Ill-Posed Problems[M]. New York: Wiley,1977.
    [5] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algo-rithms[J]. Phys. D,1992,60:259--268.
    [6] Chambolle A. Inverse problems in Image processing and Image segmentation:some mathematical and numerical aspects[M]. Trieste, Italy: ICTP Lecture Notes,2000.
    [7] Chambolle A, Lions P L. Image recovery via total variation minimization andrelated problems[J]. Numer. Math.,1997,76(2):167--188.
    [8] Chan T, Marquina A, Mulet P. High-order total variation-based image restora-tion[J]. SIAM J. Sci. Comput,2000,22:503--516.
    [9] Steidl G. A note on the dual treatment of higher-order regularization functionals[J].Computing,2006,76:135--148.
    [10] YouYL,KavehM. Fourth-orderpartialdifferentialequationsfornoiseremoval[J].IEEE Trans. Image Process.,2000,9(10):1723--1730.
    [11] LysakerM,TaiXC. Iterativeimagerestorationcombiningtotalvariationminimiza-tion and a second-order functional[J]. Int. J. Computer Vision,2006,66:5--18.
    [12] Lefkimmiatis S, Bourquard A, Unser M. Hessian-Based Norm Regularization forImage Restoration With Biomedical Applications[J]. IEEE Trans. Image Process.,2012,21(3):983--995.
    [13] Hu Y, Jacob M. Higher Degree Total Variation (HDTV) Regularization for ImageRecovery[J]. IEEE Trans. Image Process.,2012,21(5):2559--2571.
    [14] Bredies K, Kunisch K, Pock T. Total generalized variation[J]. SIAM J. ImagingSci.,2010,3(3):492--526.
    [15] Knoll F, Bredies K, Pock T, et al. Second order total generalized variation (TGV)for MRI[J]. Magnetic Resonance in Medicine,2011,65(2):480--491.
    [16] Lysaker M, Osher S, Tai X C. Noise removal using smoothed normals and surfacefitting[J]. IEEE Trans. Image Process.,2004,13(10):1345--1357.
    [17] Louchet C, Moisan L. Total Variation as a Local Filter[J]. SIAM J. Imaging Sci.,2011,4(2):651--694.
    [18] Buades A, Coll B, Morel J M. On image denoising methods[J]. SIAM MultiscaleModel. Simul,2005,4(2):490--530.
    [19] Criminisi A, Pérez P, Toyama K. Region filling and object removal by exemplar-based image inpainting[J]. Image Processing, IEEE Transactions on,2004,13(9):1200--1212.
    [20] Aujol J, Ladjal S, Masnou S. Exemplar-based inpainting from a variational pointof view[J]. SIAM Journal on Mathematical Analysis,2010,42(3):1246--1285.
    [21] Kindermann S, Osher S, Jones P W. Deblurring and denoising of images by non-local functionals[J]. SIAM Multiscale Model. Simul,2005,4(4):1091--1115.
    [22] BougleuxS,ElmoatazA,MelkemiM. DiscreteRegularizationonWeightedGraphsforImageandMeshFiltering[C].1stInt.Conf.onScaleSpaceandVariationalMeth-ods in Computer Vision (SSVM2007). Ischia, Italy: Spring,2007:128--139.
    [23] Gilboa G, Osher S. Nonlocal operators with applications to image processing[J].SIAM Multiscale Model. Simul,2008,7(3):1005--1028.
    [24] Peyre G. Image Processing with Non-local Spectral Bases[J]. SIAM MultiscaleModel. Simul,2008,7(2):703--730.
    [25] Peyre G. Manifold models for signals and images[J]. Computer Vision and ImageUnderstanding,2009,113:249--260.
    [26] Hammond D K, Vandergheynst P, Gribonval R. Wavelets on graphs via spectraltheory[J]. Appl. Comput. Harmon. Anal.,2011,30(2):129--150.
    [27] Lezoray O, Grady L. Image Processing and Analysis with Graphs: Theory andPractice[M]. Boca Raton, FL, USA: CRC Press,2012.
    [28] Engan K, Aase S O, Husoy J H. Method of optimal directions for frame de-sign[C]. In: Proceedings of ICASS’P99. Washington: IEEE Computer Society,1999:2443–2446.
    [29] Aharon M, Elad M, Bruckstein A. The K-SVD: an algorithm for designing ofovercompletedictionariesforsparserepresentation[J]. IEEETrans.SignalProcess.,2006,54(11):4311--4322.
    [30] Aharon M. Sparseness and Over-completeness in Signal Representation[D]. Israel:Department of Computer Science, University of Haifa,2005.
    [31] Chatterjee P, Milanfar P. Clustering-based Denoising with Locally Learned Dic-tionaries (K-LLD)[J]. IEEE Trans. Image Process.,2009,18(7):1438--1451.
    [32] Mairal J, Bach F, Ponce J, et al. Non-local sparse models for image restora-tion[C]. Computer Vision,2009IEEE12th International Conference on. Kyoto,Japan: IEEE,2009:2272--2279.
    [33] Ji H, Huang S, Shen Z, et al. Robust video restoration by joint sparse and low rankmatrix approximation[J]. SIAM Journal on Imaging Sciences,2011,4(4):1122--1142.
    [34] Wang Y, Szlam A, Lerman G. Robust locally linear analysis with applications toimage denoising and blind inpainting[J]. submitted for publication,2012.
    [35] Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse3-D transform-domain collaborative filtering[J]. Image Processing, IEEE Transactions on,2007,16(8):2080--2095.
    [36] Dabov K, Foi A, Katkovnik V,等. BM3D Image Denoising with Shape-AdaptivePrincipal Component Analysis[C]. SPARS'09-Signal Processing with AdaptiveSparse Structured Representations. Saint-Malo, France: inria,2009:1--6.
    [37] Dong W, Li X, Zhang L, et al. Sparsity-based image denoising via dictionary learn-ing and structural clustering[C]. Computer Vision and Pattern Recognition (CVPR),2011IEEE Conference on. USA: IEEE,2011:457--464.
    [38] Yu G S, Sapiro G, Mallat S. Solving Inverse Problems With Piecewise LinearEstimators: From Gaussian Mixture Models to Structured Sparsity[J]. IEEE Trans.Image Process.,2012,21(5):2481--2499.
    [39] Kass M, Witkin A, Terzopoulos D. Snakes Active contour models[J]. Int. J. Com-put. Vis.,1988,1:321--331.
    [40] Caselles V, Kimmel R, Sapiro G. On geodesic active contours[J]. Int. J. Comput.Vis.,1997,22(1):61--79.
    [41] Mumford D, Shah J. Optimal approximation by piecewise smooth functions andassociated variational problems[J]. Commun. Pure Appl. Math.,1989,42:577--685.
    [42] Vese L A, Chan T F. A Multiphase Level Set Framework for Image SegmentationUsingtheMumfordandShahModel[J]. Int.J.Comput.Vis.,2002,50(3):271--293.
    [43] ChanTF,VeseLA. Activecontourswithoutedges[J]. IEEETrans.ImageProcess.,2001,10(2):266--277.
    [44] Osher S, Fedkiw R P. Level Set Methods: An Overview and Some Recent Re-sults[J]. J. Comput. Phys.,2001,169(2):463--502.
    [45] Dong B, Chien A, Shen Z W. Frame based segmentation for medical images[J].Commun. Math. Sci.,2010,9(2):551--559.
    [46] Bae E, Tai X C. Graph Cut Optimization for the Piecewise Constant Level SetMethod Applied to Multiphase Image Segmentation[C]. In Proc. SSVM. Voss, Nor-way: Springer,2009:1--13.
    [47] Felzenszwalb P, Huttenlocher D. Effient graph-based image segmentation[J]. Int.J. Comput. Vis.,2004,59(2):167--181.
    [48] Shi J, Malik J. Normalized cuts and image segmentation[J]. IEEE Trans. PatternAnal. Mach. Intell.,2000,22:888--905.
    [49] Bresson X, Esedoglu S, Vandergheynst P, et al. Fast global minimization of theactive contour/snake model[J]. Journal of Mathematical Imaging and vision,2007,28(2):151--167.
    [50] Chan T F, Golub G H, Mulet P. A Nonlinear Primal-Dual Method for TotalVariation-Based Image Restoration[J]. SIAM J. Sci. Comput,1999,20(6):1964--1977.
    [51] Dong Y Q, Hintermuller M, Neri M. An Efficient Primal-Dual Method for L1-TVImage Restoration[J]. SIAM J. Imaging Sci.,2009,2(4):1168--1189.
    [52] Krishnan D, Lin P, Yip A M. A primal-dual active-set method for non-negativityconstrained total variation deblurring problems[J]. IEEE Trans. Image Process.,2007,16(11):2766--2777.
    [53] Moreau J J. Proximit′et dualit′dans un espace hilbertien[J]. Bull. Soc. Math.France,93.
    [54] Figueiredo M, Nowak R. An EM algorithm for wavelet-based image restoration[J].IEEE Trans. Image Process.,2003,12:906--916.
    [55] Daubechies I, Defrise M, Mol C D. An iterative thresholding algorithm for linearinverse problems with a sparsity constraint[J]. Commun. Pure Appl. Math.,2004,57:1413--1457.
    [56] Combettes P, Wajs V. Signal recovery by proximal forward-backward splitting[J].SIAM Multiscale Model. Simul,2005,4:1168--1200.
    [57] Hale E, Yin W, Zhang Y. A fixed-point continuation method for l1-regularizedminimization with applications to compressed sensing[R]. Rice University: De-partment of Computational and Applied Mathematics,2007.
    [58] Wright S, Nowak R, Figueiredo M. Sparse reconstruction by separable approxima-tion[J]. IEEE Trans. Signal Process.,2009,57(7):2479--2493.
    [59] DiasJB,FigueiredoM. AnewTwIST:two-stepiterativeshrinkage/thresholdingal-gorithms for image restoration[J]. IEEE Trans. Image Process.,2007,16(12):2992--3004.
    [60] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linearinverse problems[J]. SIAM J. Imaging Sci.,2009,2(1):183--202.
    [61] Friedman J, Hastie T, H fling H, et al. Pathwise coordinate optimization[J]. TheAnnals of Applied Statistics,2007,1(2):302--332.
    [62] Tseng P. Convergence of a block coordinate descent method for nondifferentiableminimization[J]. J Optimiz. Theory app.,2001,109:475--494.
    [63] GoldfarbD,YinWT. Second-orderconeprogrammingmethodsfortotalvariation-based image restoration[J]. SIAM J. Sci. Comput.,2005,27(2):622--645.
    [64] Becker S, Bobin J, Candes E. NESTA: A Fast and Accurate First-Order Methodfor Sparse Recovery[J]. SIAM J. Imaging Sci.,2011,4(1):1--39.
    [65] Goldstein T, Osher S. The Split Bregman Method for L1Regularized Problems[J].SIAM J. Imaging Sci.,2009,2(2):323--343.
    [66] Osher S, Burger M, Goldfarb D, et al. An iterative regularization method for totalvariation-based image restoration[J]. Multiscale Modeling&Simulation,2005,4(2):460--489.
    [67] Setzer S. Operator Splittings, Bregman Methods and Frame Shrinkage in ImageProcessing[J]. Int. J. Comput. Vis.,2011,92(3):265--280.
    [68] Wu C, Tai X C. Augmented Lagrangian method, dual methods, and split Bregmaniteration for ROF, vectorial TV, and high order models[J]. SIAM J. Imaging Sci.,2010,3(3):300--339.
    [69] Esser E. Applications of Lagrangian-based alternating direction methods and con-nections to split Bregman[R]. UCLA: Department of Mathematics,2009.
    [70] Goldstein T, O’Donoghue B, Setzer S. Fast Alternating Direction OptimizationMethods[R]. UCLA: Department of Mathematics,2012.
    [71] Zhu M Q, Chan T. An Efficient Primal-Dual Hybrid Gradient Algorithm for TotalVariation Image Restoration[R]. UCLA: Department of Mathematics,2008.
    [72] Esser E, Zhang X Q, Chan T F. A General Framework for a Class of First OrderPrimal-Dual Algorithms for Convex Optimization in Imaging Science[J]. SIAM J.Imaging Sci.,2010,3(4):1015--1046.
    [73] Bonettini S, Ruggiero V. On the Convergence of Primal-Dual Hybrid GradientAlgorithms for Total Variation Image Restoration[J]. J. Math. Imaging Vis.,2012,44(3):236--253.
    [74] Wang Y, Yang J, Yin W, et al. A new alternating minimization algorithm for to-tal variation image reconstruction[J]. SIAM Journal on Imaging Sciences,2008,1(3):248--272.
    [75] Goldfarb D, Ma S Q, Scheinberg K. Fast alternating linearization methods forminimizingthesumoftwoconvexfunctions[J]. MathematicalProgramming,2012,to appear.
    [76] Rudin L, Osher S. Total variation based image restoration with free local con-straints[C].1994IEEE International Conference on Image Processing. Austin:IEEE,1994:31--35.
    [77] Durand S, Nikolova M. Denoising of frame coefficients using1datafidelityterm and edge preserving regularization[J]. SIAM Multiscale Model. Simul,2007,6(2):547--576.
    [78] Lysaker M, Lundervold A, Tai X C. Noise removal using fourth-order partial dif-ferential equation with applications to medical magnetic resonance images in spaceand time[J]. IEEE Trans. Image Process.,2003,12(12):1579--1590.
    [79] LiF,ShenC,FanJ,etal. Imagerestorationcombiningatotalvariationalfilterandafourth-order filter[J]. Journal of Visual Communication and Image Representation,2007,18(4):322--330.
    [80] OhtakeY,BelyaevA,BogaevskiI. Meshregularizationandadaptivesmoothing[J].Comput.-Aided Design,2001,33(11):789--800.
    [81] WuT,SunJ,TangC,etal. Interactivenormalreconstructionfromasingleimage[J].ACM Transactions on Graphics (TOG),2008,27(5):119.
    [82] Basri R, Jacobs D, Kemelmacher I. Photometric stereo with general, unknownlighting[J]. Int. J. Comput. Vis.,2007,72(3):239--257.
    [83] Rahman T, Tai X, Osher S. A TV-Stokes denoising algorithm[J]. Scale space andvariational methods in computer vision,2007:473--483.
    [84] Litvinov W, Rahman T, Tai X. A modified TV-Stokes model for image process-ing[J]. SIAM Journal on Scientific Computing,2011,33(4):1574--1597.
    [85] Hahn J, Wu C, Tai X. Augmented Lagrangian method for generalized TV-Stokesmodel[J]. Journal of Scientific Computing,2012,50(2):235--264.
    [86] Tai X, Borok S, Hahn J. Image denoising using TV-Stokes equation with anorientation-matching minimization[J]. Scale Space and Variational Methods inComputer Vision,2009:490--501.
    [87] HahnJ,TaiX,BorokS,etal. Orientation-matchingminimizationforimagedenois-ing and inpainting[J]. International Journal of Computer vision,2011,92(3):308--324.
    [88] CandesE,WakinM,BoydS. Enhancingsparsitybyreweightedl1minimization[J].Journal of Fourier Analysis and Applications,2008,14(5):877--905.
    [89] Dong F, Liu Z, Kong D, et al. An improved LOT model for image restoration[J].Journal of Mathematical Imaging and Vision,2009,34(1):89--97.
    [90] Boyd S, Vandenberghe L. Convex optimization[M]. New York: Cambridge uni-versity press,2004.
    [91] AfonsoM, Bioucas-Dias J, Figueiredo M. Fast imagerecovery using variable split-ting and constrained optimization[J]. Image Processing, IEEE Transactions on,2010,19(9):2345--2356.
    [92] Goossens B, Luong Q, Pizurica A, et a. l.An improved non-local denoising algo-rithm[C]. International Workshop on Local and Non-Local Approximation in ImageProcessing (LNLA2008). Lausanne, Switzerland: IEEE,2008.
    [93] Elad M, Aharon M. Image denoising via sparse and redundant representationsover learned dictionaries[J]. Image Processing, IEEE Transactions on,2006,15(12):3736--3745.
    [94] Takeda H, Farsiu S, Milanfar P. Kernel regression for image processing and recon-struction[J]. Image Processing, IEEE Transactions on,2007,16(2):349--366.
    [95] Oliver C, Quegan S. Understanding synthetic aperture radar images[M]. Norwood,MA: SciTech Publishing,2004.
    [96] HermanG. Fundamentalsofcomputerizedtomography: imagereconstructionfromprojections[M]. New York: Springer,2009.
    [97] Sawatzky A, Brune C, Wubbeling F, et al. Accurate EM-TV algorithm in PETwith low SNR[C]. Nuclear Science Symposium Conference Record,2008. NSS'08.Dresden, Germany: IEEE,2008:5133--5137.
    [98] Dey N, Blanc-Feraud L, Zimmer C, et al. Richardson--Lucy algorithm with totalvariation regularization for3D confocal microscope deconvolution[J]. Microscopyresearch and technique,2006,69(4):260--266.
    [99] Rudin L, Lions P, Osher S. Multiplicative Denoising and Deblurring: Theory andAlgorithms[M]. Geometric Level Set Methods in Imaging, Vision, and Graphics.New York: Springer,2003:103--119.
    [100] Shi J, Osher S. A nonlinear inverse scale space method for a convex multiplicativenoise model[J]. SIAM Journal on imaging sciences,2008,1(3):294--321.
    [101] Aubert G, Aujol J. A variational approach to removing multiplicative noise[J].SIAM Journal on Applied Mathematics,2008,68(4):925--946.
    [102] Huang Y, Ng M, Wen Y. A new total variation method for multiplicative noiseremoval[J]. SIAM Journal on Imaging Sciences,2009,2(1):20--40.
    [103] Shen J. On the foundations of vision modeling: I. Weber’s law and WeberizedTV restoration[J]. Physica D: Nonlinear Phenomena,2003,175(3):241--251.
    [104] Woo H, Yun S. Alternating minimization algorithm for speckle reduction with ashifting technique[J]. Image Processing, IEEE Transactions on,2012,21(4):1701--1714.
    [105] Yun S, Woo H. A New Multiplicative Denoising Variational Model Based onm-th Root Transformation[J]. Image Processing, IEEE Transactions on,2012,21(5):2523--2533.
    [106] Csiszar I. Why least squares and maximum entropy? An axiomatic approach toinference for linear inverse problems[J]. The annals of statistics,1991:2032--2066.
    [107] Steidl G, Teuber T. Removing multiplicative noise by Douglas-Rachford splittingmethods[J]. Journal of Mathematical Imaging and Vision,2010,36(2):168--184.
    [108] Grasmair M. A Coarea Formula for Anisotropic Total Variation Regularisation[R].Vienna, Austria: Univ. Vienna,2009.
    [109] Deledalle C, Denis L, Tupin F. Iterative weighted maximum likelihood denoisingwith probabilistic patch-based weights[J]. Image Processing, IEEE Transactionson,2009,18(12):2661--2672.
    [110] Bertalmio M, Caselles V, Rougé B, et al. TV based image restoration with localconstraints[J]. Journal of scientific computing,2003,19(1):95--122.
    [111] Gilboa G, Sochen N, Zeevi Y. Variational denoising of partly textured images byspatially varying constraints[J]. Image Processing, IEEE Transactions on,2006,15(8):2281--2289.
    [112] Almansa A, Ballester C, Caselles V, et al. A TV based restoration model with localconstraints[J]. Journal of Scientific Computing,2008,34(3):209--236.
    [113] DongY,HintermüllerM,Rincon-CamachoM. Automatedregularizationparameterselection in multi-scale total variation models for image restoration[J]. Journal ofMathematical Imaging and Vision,2011,40(1):82--104.
    [114] HintermüllerM,Rincon-CamachoM. Expectedabsolutevalueestimatorsforaspa-tially adapted regularization parameter choice rule in L1-TV-based image restora-tion[J]. Inverse Problems,2010,26(8):085005.
    [115] Grasmair M. Locally Adaptive Total Variation Regularization[M]. Scale Space andVariational Methods in Computer Vision. Berlin/Heidelberg: Springer,2009.Lecture Notes in Computer Science.
    [116] Acar R, Vogel C. Analysis of bounded variation penalty methods for ill-posedproblems[J]. Inverse problems,1999,10(6):1217.
    [117] Limaye B. Functional Analysis[M]. New Delhi: New Age International (P),1996.
    [118] Attouch H, Buttazzo G, Michaille G. Variational analysis in Sobolev and BVspaces: applications to PDEs and optimization[M]. Vol.6.(Philadelphia, PA:Society for Industrial Mathematics,1987.
    [119] Chambolle A. An algorithm for total variation minimization and applications[J].Journal of Mathematical imaging and vision,2004,20(1):89--97.
    [120] Li F, Ng M, Shen C. Multiplicative noise removal with spatially varying regular-ization parameters[J]. SIAM Journal on Imaging Sciences,2010,3(1):1--20.
    [121] Bioucas-DiasJ,FigueiredoM. Multiplicativenoiseremovalusingvariablesplittingand constrained optimization[J]. Image Processing, IEEE Transactions on,2010,19(7):1720--1730.
    [122] Golub G, Heath M, Wahba G. Generalized cross-validation as a method for choos-ing a good ridge parameter[J]. Technometrics,1979,21(2):215--223.
    [123] Dupé F, Fadili J, Starck J. A proximal iteration for deconvolving Poisson noisyimages using sparse representations[J]. Image Processing, IEEE Transactions on,2009,18(2):310--321.
    [124] Hansen P, O'Leary D. The use of the L-curve in the regularization of discrete ill-posed problems[J]. SIAM Journal on Scientific Computing,1993,14(6):1487--1503.
    [125] SteinC. Estimationofthemeanofamultivariatenormaldistribution[J]. Theannalsof Statistics,1981:1135--1151.
    [126] Zanella R, Boccacci P, Zanni L, et al. Efficient gradient projection meth-ods for edge-preserving removal of Poisson noise[J]. Inverse Problems,2009,25(4):045010.
    [127] Bardsley J, Goldes J. Regularization parameter selection methods for ill-posedPoissonmaximumlikelihoodestimation[J]. InverseProblems,2009,25(9):095005.
    [128] Figueiredo M, Bioucas-Dias J. Restoration of Poissonian images using alternat-ing direction optimization[J]. Image Processing, IEEE Transactions on,2010,19(12):3133--3145.
    [129] Gilboa G, Osher S. Nonlocal linear image regularization and supervised segmen-tation[J]. Multiscale Modeling&Simulation,2007,6(2):595--630.
    [130] Lou Y, Zhang X, Osher S, et al. Image recovery via nonlocal operators[J]. Journalof Scientific Computing,2010,42(2):185--197.
    [131] Peyré G, Bougleux S, Cohen L, et al. Non-local regularization of inverse prob-lems[J]. Inverse Problems and Imaging,2011,5(2):511--530.
    [132] Zhang X, Burger M, Bresson X, et al. Bregmanized nonlocal regularization fordeconvolution and sparse reconstruction[J]. SIAM Journal on Imaging Sciences,2010,3(3):253--276.
    [133] Yang J, Zhang Y, Yin W. An efficient TVL1algorithm for deblurring multichannelimages corrupted by impulsive noise[J]. SIAM Journal on Scientific Computing,2009,31(4):2842--2865.
    [134] Daubechies I, DeVore R, Fornasier M, et al. Iteratively reweighted least squaresminimization for sparse recovery[J]. Communications on Pure and Applied Math-ematics,2009,63(1):1--38.
    [135] Clarke F. Optimization and nonsmooth analysis[M]. Vol.5. Society for Indust-rial Mathematics,1987.
    [136] Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variationimagedenoisinganddeblurringproblems[J]. ImageProcessing, IEEETransactionson,2009,18(11):2419--2434.
    [137] Ng M, Qi L, Yang Y, et al. On semismooth Newton’s methods for total variationminimization[J]. Journal of Mathematical Imaging and Vision,2007,27(3):265--276.
    [138] Zhu M. Fast numerical algorithms for total variation based image restoration[D].California, USA: UCLA Department of Mathematics,2008.
    [139] Krishnan D, Pham Q, Yip A. A primal-dual active-set algorithm for bilaterallyconstrained total variation deblurring and piecewise constant Mumford-Shah seg-mentationproblems[J]. AdvancesinComputationalMathematics,2009,31(1):237--266.
    [140] Jia R, Zhao H. A fast algorithm for the total variation model of image denoising[J].Advances in Computational Mathematics,2010,33(2):231--241.
    [141] Micchelli C, Shen L, Xu Y. Proximity algorithms for image models: denoising[J].Inverse Problems,2011,27(4):045009.
    [142] Elad M, Matalon B, Zibulevsky M. Coordinate and subspace optimization methodsfor linear least squares with non-quadratic regularization[J]. Applied and Compu-tational Harmonic Analysis,2007,23(3):346--367.
    [143] Elad M, Zibulevsky M. Iterative shrinkage algorithms and their acceleration forL1-L2signal and image processing applications[J]. IEEE Signal Process. Mag,2010,27(3):78--88.
    [144] Nirenberg L. Topics in nonlinear functional analysis[M]. Vol.6. Amer Mathe-matical Society,2001.
    [145] Opial Z. Weak convergence of the sequence of successive approximations for non-expansive mappings[J]. Bull. Amer. Math. Soc,1967,73(4):591--597.
    [146] Cai J, Osher S, Shen Z. Split Bregman methods and frame based image restora-tion[J]. Multiscale modeling&simulation,2009,8(2):337--369.
    [147] Goldstein T, Bresson X, Osher S. Geometric applications of the split bregmanmethod: Segmentation and surface reconstruction[J]. Journal of Scientific Com-puting,2010,45(1):272--293.
    [148] NarkissG,ZibulevskyM. Sequentialsubspaceoptimizationmethodforlarge-scaleunconstrained problems[M]. Technion-IIT, Department of Electrical Engineering,2005.
    [149] Chouzenoux E, Idier J, Moussaoui S. A Majorize--Minimize Strategy for SubspaceOptimization Applied to Image Restoration[J]. Image Processing, IEEE Transac-tions on,2011,20(6):1517--1528.
    [150] Eckstein J, Bertsekas D. On the Douglas—Rachford splitting method and the prox-imal point algorithm for maximal monotone operators[J]. Mathematical Program-ming,1992,55(1):293--318.
    [151] Combettes P, Pesquet J. A Douglas--Rachford splitting approach to nonsmoothconvex variational signal recovery[J]. Selected Topics in Signal Processing, IEEEJournal of,2007,1(4):564--574.
    [152] Efros A, Leung T. Texture synthesis by non-parametric sampling[C]. ComputerVision,1999. The Proceedings of the Seventh IEEE International Conference on.Kerkyra: IEEE,1999,2:1033--1038.
    [153] Ashikhmin M. Synthesizing natural textures[C]. Proceedings of the2001sympo-sium on Interactive3D graphics. New York: ACM,2001:217--226.
    [154] Wexler Y, Shechtman E, Irani M. Space-time completion of video[J]. Pattern Anal-ysis and Machine Intelligence, IEEE Transactions on,2007,29(3):463--476.
    [155] Komodakis N. Image completion using global optimization[C]. Computer Visionand Pattern Recognition,2006IEEE Computer Society Conference on. New York:IEEE,2006,1:442--452.
    [156] EladM,StarckJ,QuerreP,etal. Simultaneouscartoonandtextureimageinpaintingusing morphological component analysis (MCA)[J]. Applied and ComputationalHarmonic Analysis,2005,19(3):340--358.
    [157] Xu Z, Sun J. Image inpainting by patch propagation using patch sparsity[J]. ImageProcessing, IEEE Transactions on,2010,19(5):1153--1165.
    [158] Wohlberg B. Inpainting by Joint optimization of linear combinations of exem-plars[J]. IEEE Signal Processing Letters,2011,18(1):75--78.
    [159] Bertalmio M, Sapiro G, Caselles V, et al. Image inpainting[C]. Proceedings ofthe27th annual conference on Computer graphics and interactive techniques. ACMPress/Addison-Wesley Publishing Co.,2000:417--424.
    [160] Chan T, Shen J. Local inpainting models and tv inpainting[J]. SIAM J. Appl. Math,2001,62(3):1019--1043.
    [161] Chan T, Shen J. Nontexture inpainting by curvature-driven diffusions[J]. Journalof Visual Communication and Image Representation,2001,12(4):436--449.
    [162] Shen J, Kang S, Chan T. Euler's elastica and curvature-based inpainting[J]. SIAMJournal on Applied Mathematics,2003,63(2):564--592.
    [163] Bugeau A, Bertalmío M, Caselles V, et al. A comprehensive framework for imageinpainting[J]. Image Processing, IEEE Transactions on,2010,19(10):2634--2645.
    [164] Zepeda J, Guillemot C, Kijak E. Image compression using sparse representationsand the iteration-tuned and aligned dictionary[J]. Selected Topics in Signal Pro-cessing, IEEE Journal of,2011,5(5):1061--1073.
    [165] Mairal J, Bach F, Ponce J. Task-driven dictionary learning[J]. Pattern Analysis andMachine Intelligence, IEEE Transactions on,2012,34(4):791--804.
    [166] Zhou M, Chen H, Paisley J, et al. Nonparametric Bayesian dictionary learning foranalysis of noisy and incomplete images[J]. Image Processing, IEEE Transactionson,2012,21(1):130--144.
    [167] Peng Y, Ganesh A, Wright J, et al. RASL: Robust Alignment by Sparse and Low-rank Decomposition for Linearly Correlated Images[J]. IEEE Transactions on Pat-tern Analysis and Machine Intelligence,2012,34(11):2233--2246.
    [168] Zhang Z, Ganesh A, Liang X, et al. TILT: Transform Invariant Low-Rank Tex-tures[J]. International journal of computer vision,2012,99(1):1--24.
    [169] Taubman D, Marcellin M,魏江力. JPEG2000图像压缩基础,标准和实践[M].北京:电子工业出版社,2004.
    [170] Zhang X, Chan T. Wavelet inpainting by nonlocal total variation[J]. Inverse prob-lems and Imaging,2010,4(1):191--210.
    [171] Durand S, Froment J. Reconstruction of wavelet coefficients using total variationminimization[J]. SIAM Journal on Scientific computing,2003,24(5):1754--1767.
    [172] Chan T, Shen J, Zhou H. Total variation wavelet inpainting[J]. Journal of Mathe-matical imaging and Vision,2006,25(1):107--125.
    [173] ZHANG H, PENG Q, WU Y. Wavelet Inpainting Based on p-Laplace Operator[J].Acta Automatica Sinica,2007,33(5):546--549.
    [174] Yau A, Tai X C, Ng M. L0-Norm and Total Variation for Wavelet Inpaint-ing[M]. Scale Space and Variational Methods in Computer Vision. Berlin/Hei-delberg: Springer,2009. Lecture Notes in Computer Science.
    [175] Shen Y, Wen Z, Zhang Y. Augmented Lagrangian alternating direction method formatrix separation based on low-rank factorization[J].2012.
    [176] Yu G, Sapiro G, Mallat S. Image modeling and enhancement via structured sparsemodel selection[C]. Image Processing (ICIP),201017th IEEE International Confer-ence on. Hong Kong: IEEE,2010:1641--1644.
    [177] Golbabaee M, Vandergheynst P, et al. Guaranteed recovery of a low-rank andjoint-sparse matrix from incomplete and noisy measurements[C]. Workshop on Sig-nal Processing with Adaptive Sparse Structured Representations (SPARS11). Ed-inburgh, Scotland, UK:2011.
    [178] Chan R, Wen Y, Yip A. A fast optimization transfer algorithm for image inpaintinginwaveletdomains[J]. ImageProcessing,IEEETransactionson,2009,18(7):1467--1476.
    [179] Wen Y, Chan R, Yip A. A Primal--Dual Method for Total-Variation-Based WaveletDomain Inpainting[J]. Image Processing, IEEE Transactions on,2012,21(1):106--114.
    [180] Du Q, Gunzburger M, Ju L, et al. Centroidal voronoi tessellation algorithms for im-age compression, segmentation, and multichannel restoration[J]. Journal of Math-ematical Imaging and Vision,2006,24(2):177--194.
    [181] Wang J, Ju L, Wang X. An edge-weighted centroidal Voronoi tessellation modelfor image segmentation[J]. Image Processing, IEEE Transactions on,2009,18(8):1844--1858.
    [182] Li C, Kao C, Gore J, et al. Minimization of region-scalable fitting energy for imagesegmentation[J]. Image Processing, IEEE Transactions on,2008,17(10):1940--1949.
    [183] WangJ,JuL,WangX. Imagesegmentationusinglocalvariationandedge-weightedcentroidal Voronoi tessellations[J]. Image Processing, IEEE Transactions on,2011,20(11):3242--3256.
    [184] Chambolle A, Pock T. A first-order primal-dual algorithm for convex problemswithapplicationstoimaging[J]. JournalofMathematicalImagingandVision,2011,40(1):120--145.
    [185] Liu J, Tai X C, Huang H Y, et al. A fast segmentation method based on constraintoptimization and its applications: Intensity inhomogeneity and texture segmenta-tion[J]. Pattern Recognition,2011,44(9):2093--2108.
    [186] Lloyd S. Least squares quantization in PCM[J]. Information Theory, IEEE Trans-actions on,1982,28(2):129--137.
    [187] Kanungo T, Mount D, Netanyahu N, et al. An efficient k-means clustering algo-rithm: Analysisandimplementation[J]. PatternAnalysisandMachineIntelligence,IEEE Transactions on,2002,24(7):881--892.
    [188] PhillipsS. Accelerationofk-meansandrelatedclusteringalgorithms[M].AlgorithmEngineering and Experiments. Berlin/Heidelberg: Springer,2002. Lecture Notesin Computer Science.
    [189] Arias-Castro E, Donoho D. Does median filtering truly preserve edges better thanlinear filtering?[J]. The Annals of Statistics,2009,37(3):1172--1206.
    [190] Alpert S, Galun M, Basri R, et al. Image segmentation by probabilistic bottom-upaggregationandcueintegration[C]. ComputerVisionandPatternRecognition,2007.CVPR'07. IEEE Conference on. Minneapolis, Minnesota, USA: IEEE,2007:1--8.
    [191] Martin D, Fowlkes C, Tal D, et al. A database of human segmented natural imagesand its application to evaluating segmentation algorithms and measuring ecolog-ical statistics[C]. Computer Vision,2001. ICCV2001. Proceedings. Eighth IEEEInternational Conference on. Vancouver, British Columbia, Canada: IEEE,2001,2:416--423.
    [192] Rother C, Kolmogorov V, Blake A. Grabcut: Interactive foreground extractionusing iterated graph cuts[C]. ACM Transactions on Graphics (TOG). New York:ACM,2004,23:309--314.