复杂结构设计的优化方法和近似技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代航空推进系统中,涡轮盘是航空发动机的关键部件,其工作条件非常严酷。为了减少或避免涡轮盘破坏性故障的发生,亟需采用有效方法进行涡轮盘优化设计,以便改善涡轮盘内部的温度及应力分布状况,提高涡轮盘的设计品质。因此,本文以发动机涡轮盘结构优化设计问题为应用背景,对复杂结构设计的优化方法和近似技术进行了研究和探讨。
     在复杂结构设计的优化方法上,主要研究了现代智能优化算法中的遗传算法和差分进化算法,重点解决已有遗传算法和差分进化算法在求解复杂约束优化问题时存在的早熟收敛、局部收敛、优化后期收敛速度慢等问题,提出有效的解决方法和优化算法。在近似技术方面,主要研究函数全局近似方法中的Kriging响应面法近似技术,重点解决已有Kriging响应面法在近似求解复杂优化设计问题时存在的函数评价次数多和计算量大的问题。
     首先,在分析遗传算法原理的基础上,针对传统遗传算法不适合求解复杂约束优化问题的缺陷,提出一种能够处理复杂约束条件的约束分级与排序方法。基于该方法和改进的遗传算子,提出一种求解约束优化问题的基于约束分级与排序的遗传算法。数值试验表明,该算法具有较好的稳定性和全局寻优能力,能够有效求解连续变量约束优化问题和连续-离散混合变量约束优化问题。
     其次,在分析差分进化算法原理的基础上,针对原始差分进化算法在求解约束全局优化问题时存在陷入局部最优的缺陷,提出一种改进的差分进化算法。该算法采用基于规则的方法进行种群个体的比较及选择,实现复杂约束条件的处理;并利用种群相似度和最优变异操作改善种群进行全局范围搜索的多样性,提高算法跳出局部最优的能力。数值试验表明,该算法具有较好的稳定性、收敛速度和全局寻优能力,不仅能有效求解连续变量约束优化问题,也适用于离散变量或混合变量优化问题。
     再次,针对原始差分进化算法后期收敛速度慢和不适合求解约束全局优化问题的缺陷,提出一种鲁棒的存档差分进化算法。该算法利用柔性处理算子扩展对不同类型优化问题的适用性;利用存档算子、迭代控制以及效率处理算子避免在设计空间中不必要的重复搜索,从而提高算法的局部搜索效率和最终解的精确度。数值试验表明,该算法具有较好的稳定性、收敛速度和全局寻优能力,对不同类型优化问题的适用性好,不仅适用于无约束优化问题,而且适用于连续变量和连续-离散混合变量约束优化问题。
     然后,为了解决复杂工程优化设计中设计精度和计算代价之间的矛盾,针对已有的Kriging方法计算量较大的缺陷,从样本处理、试验样本选取和近似优化框架三个方面进行改进,并将改进的Kriging方法与现代智能优化方法相结合,提出一种基于Kriging的近似优化方法,为复杂结构优化问题的求解提供一种计算代价低且计算精度能够满足工程需要的有效途径。计算结果表明,基于Kriging的近似优化方法能够在优化计算结果满足工程精度要求的前提下,显著减少优化设计的仿真分析次数,降低计算代价。
     最后,针对具有热-惯性离心载荷耦合作用特点的涡轮盘结构优化问题,建立涡轮盘优化设计模型及载荷分析模型,用基于Kriging的近似优化方法进行涡轮盘的近似优化设计,并对所获得的近似最优设计方案采用有限元方法进行仿真分析和验证。结果表明,采用基于Kriging的近似优化方法所获得的涡轮盘优化设计方案是一种重量轻、应力分布合理、材料有效利用率高的可行设计方案;近似优化设计的计算精度能够满足工程需要,计算代价小。
In modern aviation propulsion systems, turbine discs usually working under extremely hard conditions are key parts of aero-engine. In order to improve the distribution of temperature and stresses in turbine discs, and better their quality so as to prevent them from being destroyed, effective method and technology are desirable for design optimization of them. Therefore, the optimization method and approximation technology for complex structural design are investigated in this work, which has the application background of the structural design optimization of the turbine disc.
     On the optimization method, genetic algorithms and differential evolution algorithms are mainly analyzed so as to bring forward some effective methods with good performance on convergence and global searching ability for complex optimization problems. On the approximation technology, kriging response surface method is mainly studied so as to solve the problems of function evaluations and calculations for complex design optimization.
     Firstly, based on the analysis of genetic algorithms, a constrained ranking and sorting method is proposed so as to deal with complex constraints that always hamper genetic algorithms. Furthermore, a genetic algorithm with constrained ranking and sorting is proposed by using the constrained ranking and sorting method and improved genetic operators. Numerical experimentation indicated that the proposed algorithm has good stability and global searching ability when it is used for solving constrained optimization problems with continuous or discrete variables.
     Secondly, based on the analysis of differential evolution algorithms, a modified differential evolution algorithm is provided for constrained global optimization problems instead of the original one that is probably trapped in local optima. The modified algorithm introduces a rule-based way to select comparatively the individuals from population and to handle complex constraints. The diversity of population in global search is improved via population similarity and best mutation operation, which enables the algorithm to jump over any local minimum trap. Experimental results demonstrated the stability, efficiency and global search ability of the proposed algorithm for constrained optimization problems with continuous or discrete variables.
     Thirdly, a robust archived differential evolution algorithm is put forward for efficiently solving various optimization problems. The proposed algorithm uses a flexibility processing operator for various type optimization problems. Furthermore, an archiving operator, an iterative control operator and an efficiency processing operator are designed and embedded in the algorithm, which can not only avoid unnecessary search in the optimization process, but also improve the local searching efficiency and the final searching quality. Experimental results based on a suite of six well-known optimization problems and comparisons with previously reported results revealed that the proposed algorithm is reliable, efficient, fast and robust in global optimization. It is able to solve not only unconstrained optimization problems, but also constrained optimization problems with continuous, discrete or mixed continuous-discrete variables.
     Fourthly, general kriging method is improved by means of experimental sample handling, experimental sample selection and approximate optimization strategy. Furthermore, a kriging based approximate optimization method is proposed by combining the improved kriging method and modern intelligent optimization method, which provides an effective approach to the solution of complex structural optimization problems. Numerical experimentation indicated that the proposed method can reduce simulations and computations with a sufficient precision for practical optimization problems.
     Finally, the design optimization model and design analysis model for the minimum-mass shape design of turbine discs under thermal and mechanical loads are built. The kriging based approximate optimization method is applied to the design optimization of the general turbine disc, and the final optimal design is analyzed and validated by means of finite element method. Experimental results demonstrated that the optimal solution obtained by the proposed method is a light and feasible design that has reasonable stress distribution and high material utilization; besides, the approximate optimization method achieves a sufficient precision with low computational cost.
引文
1.刘大响.对加快我国航空动力的思考[J].航空动力学报,2001,16(1):1-7.
    2.刘大响,程荣辉.世界航空动力技术的现状及发展动向[J].北京航空航天大学学报,2002,28(5):490-496.
    3.方昌德.航空发动机的发展前景.航空发动机[J],2004,30(1):1-5.
    4.刘大响.抓住机遇迎接挑战实现航空动力跨越发展[J].燃气涡轮试验与研究,2002,15(1):1-5.
    5.袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997.
    6. Park G J. Analytic methods for design practice[M]. Springer-Verlag London Limited,2007.
    7.孙焕纯,柴山,王跃方.离散变量结构优化设计(第1版)[M].大连:大连理工大学出版社,1995.
    8. Liu B, Haftka R T, Akgun M A. Two-level composite wing structural optimization using response surface[J]. Structural and Multidisciplinary Optimization,2000,20(2):87-96.
    9. Guo S, Chen W, Cui D. Aeroelastic tailoring of composite wing structures by laminate layup optimization[J]. AIAA Journal,2006,44(12):3146-3150.
    10.李芳,凌道盛.工程结构优化设计发展综述[J].工程设计学报,2002,9(5):229-235.
    11. Yang X Y. Bi-directional evolutionary method for stiffness and displacement optimization[D]. Melbourne, Australia:Victoria University of Technology,1999.
    12. Bendsoe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanical Engineering,1988,71(2):197-224.
    13. Yang R J, Chuang C H. Optimal topology design using linear programming[J]. Computers and Structures,1994,52(2):265-275.
    14. Hassani B, Hinton E. A review of homogenization and topology optimization (I) Homogenization theory for media with periodic structure[J]. Computers & Structures,1998,69(6):707-717.
    15. Chen Shi-Jie, Lin Li. Decomposition of interdependent task group for concurrent engineering[J]. Computers& Industrial Engineering,2003,44(3):435-459.
    16. Seol H, Kim C, Lee C, et al. Design process modularization:concept and algorithm[J]. Concurrent Engineering,2007,15(2):175-186.
    17. LeDoux S T, Herling W W, Fatta G J, et al. MDOPT-A multidisciplinary design optimization system using higher order analysis codes[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York,2004,5:2955-2975.
    18. Hung H F, Kao H P, Juang Y S. An integrated information system for product design planning[J]. Expert Systems with Applications,2008,35(1/2):338-349.
    19. Eldred M S, Adams B M, Gay D M, et al. DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis(version 4.1) users manual[R]. Sandia Technical Report SAND2006-6337, Oct.11,2007, Sandia National Laboratories, Albuquerque, NM,2007:1-308.
    20. Wang Y D, Shen W, Ghenniwa H. Semantic integration in distributed multidisciplinary design optimization environments[C]//CSCWD 2004, Xiamen, China,2004:127-136.
    21. Kong Y M, Choi S H, Song J D, et al. OPTSHIP:a new optimization framework and its application to optimum design of ship structure[J]. Structural and Multidisciplinary Optimization,2006,32(5): 397-408.
    22. Nikolaidis E, Long L, Ling Q. Neural networks and response surface polynomials for design of vehicle joints[J]. Computers & Structures,2000,75(6):593-607.
    23. Li G, Wang H, Aryasomayajula S R, et al. Two-level optimization of airframe structures using response surface approximation[J]. Structural and Multidisciplinary Optimization,2000,20(2): 116-124.
    24. Hosder S, Watson L T, Grossman B, et al. Polynomial response surface approximations for the multidisciplinary design optimization of a high speed civil transport[J]. Optimization and Engineering, 2001,2(4):431-452.
    25. Rodriguez J F, Perez V M, Padmanabhan D, et al. Sequential approximate optimization using variable fidelity response surface approximations[J]. Structural and Multidisciplinary Optimization,2001, 22(1):24-34.
    26. Robinson T D, Eldred M S, Willcox K E, et al. Strategies for multifidelity optimization with variable dimensional hierarchical models[C]//The 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, RI, USA,2006,4:2747-2765.
    27. Pektas S T, Pultar M. Modelling detailed information flows in building design with the parameter-based design structure matrix[J]. Design Studies,2006,27(1):99-122.
    28. Danilovic M, Browning T R. Managing complex product development projects with design structure matrices and domain mapping matrices[J]. International Journal of Project Management,2007,25(3): 300-314.
    29.孙焕纯,柴山,王跃方,等.离散变量结构优化设计(增订版)[M].大连:大连理工大学出版社,2002.
    30.孙靖民,梁迎春,陈时锦.机械结构优化设计[M].哈尔滨:哈尔滨工业大学出版社,2004.
    31.陈立周.机械优化设计方法[M].北京:冶金工业出版社,2005.
    32.王科社.机械优化设计[M].北京:国防工业出版社,2007.
    33.陈新度,王石刚,张新访,等.大型板结构的一种优化准则法[J].华中理工大学学报,1995,23(6):75-78.
    34.汪树玉,刘国华,包志仁.结构优化设计的现状与进展.基建优化,1999,20(4):3-14.
    35. Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization[J]. Computers & Structures,1993,49(5):885-896.
    36. Zhao C B, Steven G P, Xie Y M. Effect of initial nondesign domain on optimal topologies of structures during natural frequency optimization[J]. Computers & Structures,1997,62(1):119-131.
    37. Chu D N, Xie Y M, Steven G P. An evolutionary structural optimization method for sizing problems with discrete design variables[J]. Computers & Structures,1998,68:419-431.
    38. Das R, Jones R, Xie Y M. Design of structures for optimal static strength using ESO[J]. Engineering Failure Analysis,2005,12(1):61-80.
    39.张薇,薛嘉庆.最优化方法[M].沈阳:东北大学出版社,2004.
    40.何坚勇.运筹学基础[M].北京:清华大学出版社,2008.
    41.黄红选,韩继业.数学规划[M].北京:清华大学出版社,2006.
    42.梁尚明,殷国富.现代机械优化设计方法[M].北京:化学工业出版社,2005.
    43.邢文训.现代优化计算方法(第2版)[M].北京:清华大学出版社,2006.
    44.罗中华.最优化方法及其在机械行业中的应用[M].北京:电子工业出版社,2008.
    45.王振国,陈小前,罗文彩,等.飞行器多学科设计优化理论与应用研究[M].北京:国防工业出版社,2006.
    46. Holland J H. Adaptation in natural and artificial systems[M]. Cambridge:MIT Press,1975.
    47. De Jong K A. An analysis of the behavior of a class of genetic adaptive systems[D]. Michigan: University of Michigan,1975.
    48. Dimopoulos C, Zalzala A M S. Recent developments in evolutionary computation for manufacturing optimization:problems, solutions, and comparisons[J]. IEEE Transactions on Evolutionary Computation,2000,4(2):93-113.
    49.周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2004.
    50.刘勇,康立山,陈毓屏.非数值并行算法(第2册)遗传算法[M].北京:科学出版社,1995.
    51.王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安交通大学出版社,2002.
    52. Coello C A C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:a survey of the state of the art[J]. Computer Methods in Applied Mechanics and Engineering,2002,191(11/12):1245-1287.
    53. Takahama T, Sakai S. Constrained optimization by the ε constrained differential evolution with gradient-based mutation and feasible elites[C]//IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada,2006:1-8.
    54. Montes E M, Coello C A C. A simple multimembered evolution strategy to solve constrained optimization problems[J]. IEEE Transactions on Evolutionary Computation,2005,9(1):1-17.
    55. Chen A, Chootinan P. Constraint handling in genetic algorithms using a gradient-based repair method[J]. Computers & Operations Research,2006,33(8):2263-2281.
    56. Coello C A C, Montes E M. Constraint handling in genetic algorithms through the use of dominance-based tournament selection[J]. Advanced Engineering Informatics,2002,16(3):193-203.
    57. Barbosa H J C, Lemonge A C C. A new adaptive penalty scheme for genetic algorithms [J]. Information Sciences,2003,156(3/4):215-251.
    58. Zhang J L, Zhang X S. Sequential penalty algorithm for nonlinear constrained optimization[J]. Journal of Optimization Theory and Applications,2003,118(3):635-655.
    59. Narayanan S, Azarm S. On improving multiobjective genetic algorithms for design optimization[J]. Structural Optimization,1999,18(2/3):146-155.
    60. Kamal C S, Adeli H. Fuzzy genetic algorithm for optimization of steel structuresfJ]. Journal of Structural Engineering,2000,126(5):596-604.
    61. Antonio C A C. A multilevel genetic algorithm for optimization of geometrically nonlinear stiffened composite structures[J]. Structural and Multidisciplinary Optimization,2002,24(5):372-386.
    62. Deep K, Dipti. A self-organizing migrating genetic algorithm for constrained optimization[J]. Applied Mathematics and Computation,2008,198(1):237-250.
    63.王国夫,王鸸,孙尧,等.混合GA与SA求解非线性约束优化[J].哈尔滨工程大学学报,2002,23(6):73-76.
    64. Chen Ming, Lu Qiang. Hybrid model based on genetic algorithm and ant colony algorithm[J]. Journal of Information and Computational Science,2005,2(4):647-653.
    65. Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous space[R]. Technical report, International Computer Science Institute, March 1995, Berkley, TR-95-012,1995:1-15.
    66. Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization,1997,11(4):341-359.
    67. Bersini H, Dorigo M, Langerman S, et al. Results of the first international contest on evolutionary optimisation (1st ICEO)[C]//IEEE International Conference on Evolutionary Computation, Nagoya, Japan,1996:611-615.
    68. Price K. Differential evolution vs. the functions of the 2nd ICEO[C]//IEEE International Conference on Evolutionary Computation, Indianapolis, IN,1997:153-157.
    69. Salman A, Engelbrecht A P, Omran M G H. Empirical analysis of self-adaptive differential evolution[J]. European Journal of Operational Research,2007,183(2):785-804.
    70. Sun J, Zhang Q, Tsang E P K. DE/EDA:a new evolutionary algorithm for global optimization[J]. Information Sciences,2005,169(3/4):249-262.
    71. Becerra R L, Coello C A C. Cultured differential evolution for constrained optimization [J]. Computation Methods in Applied Mechanics and Engineering,2006,195(33-36):4303-4322.
    72. Huang F, Wang L, He Q. An effective co-evolutionary differential evolution for constrained optimization[J]. Applied Mathematics and Computation,2007,186(1):340-356.
    73. Cai H R, Chung C Y, Wong K P. Application of differential evolution algorithm for transient stability constrained optimal power flow[J]. IEEE Transactions on Power Systems,2008,23, (2):719-728.
    74. Abou El Ela A A, Abido M A, Spea S R. Optimal power flow using differential evolution algorithm[J]. Electrical Engineering,2009,91(2):69-78.
    75. Maulik U, Saha I. Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery[J]. Pattern Recognition,2009,42(9):2135-2149.
    76.康立山,谢云,尤矢勇,等.非数值并行算法(第一册)模拟退火算法[M].北京:科学出版社,1994.
    77.邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,1999.
    78. Das H, Cummings P T, Le Van M D. Scheduling of serial multiproduct batch processes via simulated annealing[J]. Computers and Chemical Engineering,1990,14(12):1351-1362.
    79. Ogbu F A, Smith D K. Application of the simulated annealing algorithm to the solution of the n/m/Cmax flowshop problem[J]. Computers and Operations Research,1990,17(3):243-253.
    80. Balling R J. Optimal steel frame design by simulated annealing[J]. Journal of structural engineering, 1991,117(6):1780-1795.
    81. Bennage W A, Dhingra A K. Single and multiobjective structural optimization in discrete-continuous variables using simulated annealing[J]. International Journal for Numerical Methods in Engineering, 1995,38(16):2753-2773.
    82. Durbin F, Haussy J, Berthiau G, et al. Circuit performance optimization and model fitting based on simulated annealing[J]. International Journal of Electronics,1992,73(6):1267-1271.
    83. Tan H L, Gelfand S B, Delp E J. A cost minimization approach to edge detection using simulated annealing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(1):3-18.
    84.赵振宇,徐用懋.模糊理论和神经网络的基础与应用[M].北京:清华大学出版社,1996.
    85.孙虎儿.基于神经网络的优化设计及应用[M].北京:国防工业出版社,2009.
    86. Psaltis D, Farhat N. Optical information processing based on an associative-memory model of neural nets with thresholding and feedback[J]. Optics Letters,1985,10(2):98-100.
    87. Lippmann R P. Introduction to computing with neural nets[J]. IEEE ASSP Magazine,1987,4(2):4-22.
    88. Widrow B, Winter R. Neural nets for adaptive filtering and adaptive pattern recognition[J]. Computer, 1988,21(3):25-39.
    89. Yuh J. A neural net controller for underwater robotic vehicles[J]. IEEE Journal of Oceanic Engineering, 1990,15(3):161-166.
    90. Adeli H, Park H S. Optimization of space structures by neural dynamics[J]. Neural Networks,1995, 8(5):769-781.
    91. Park H S, Adeli H. Neural dynamics model for structural optimization-application to plastic design of structures[J]. Computers and Structures,1995,57(3):391-399.
    92. Lee C Y, Su S F, Lee Z J. Incorporation of genetic algorithms and Hopfield neural networks with ant colony optimization[J]. Engineering Intelligent Systems,2006,14(4):187-194.
    93. Nowroozi S, Ranjbar M, Hashemipour H, et al. Development of a neural fuzzy system for advanced prediction of dew point pressure in gas condensate reservoirs[J]. Fuel Processing Technology,2009, 90(3):452-457.
    94.李十勇,陈永强,李研.蚁群算法及其应用[M].哈尔滨:哈尔滨工业大学出版社,2004.
    95. Gambardella L M, Dorigo M. Ant-Q:a reinforcement learning approach to the traveling salesman problem[C]//The 20th International Conference on Machine Learning, Tahoe City, CA, USA,1995: 252-260.
    96. Costa D, Hertz A. Ants can color graphs[J]. Journal of the operational research society,1997,48(3): 295-305.
    97. Middendorf M, Reischle F, Schmeck H. Multi colony ant algorithms[J]. Journal of Heuristics,2002, 8(3):305-320.
    98. Stutzle T, Hoos H. MAX-MIN ant system and local search for the traveling salesman problem[C]// IEEE International conference on evolutionary computation and evolutionary programming conference, Indianapolis, IN, USA,1997:309-314.
    99. Bullnheimer B, Hartl R F, Strauss C. A new rank-based version of the ant system:A computational study[J]. Central European for Operations Research and Economics,1999,7(1):25-38.
    100. Casillas J, Cordon O, de Viana I F, et al. Learning cooperative linguistic fuzzy rules using the best-worst ant system algorithm[J]. International Journal of Intelligent Systems,2005,20(4):433-452.
    101. Shelokar P S, Jayaraman V K, Kulkarni B D. Ant algorithm for single and multiobjective reliability optimization problems[J]. Quality and Reliability Engineering International,2002,18(6):497-514.
    102. Meziane R, Massim Y, Zeblah A, et al. Reliability optimization using ant colony algorithm under performance and cost constraints[J]. Electric Power Systems Research,2005,76(1-3):1-8.
    103. Rajendran C, Ziegler H. Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs[J]. European Journal of Operational Research,2004,155(2): 426-438.
    104. Udomsakdigool A, Kachitvichyanukul V. Multiple colony ant algorithm for job-shop scheduling problem[J]. International Journal of Production Research,2008,46(15):4155-4175.
    105. Afshar M H. A new transition rule for ant colony optimization algorithms:application to pipe network optimization problems[J]. Engineering Optimization,2005,37(5):525-540.
    106. Afshar M H. Penalty adapting ant algorithm:Application to pipe network optimization[J]. Engineering Optimization.2008,40(10):969-987.
    107. Luh G C, Lin C Y. Optimal design of truss structures using ant algorithm[J]. Structural and Multidisciplinary Optimization,2008,36(4):365-379.
    108. Luh G C, Lin C Y. Structural topology optimization using ant colony optimization algorithm[J]. Applied Soft Computing Journal,2009,9(4):1343-1353.
    109. Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]//The 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan,1995:39-43.
    110. Kennedy J, Eberhart R. Particle swarm optimization[C]//IEEE International Conference on Neural Networks, Perth, Australia,1995:1942-1948.
    111. Parsopoulos K E, Vrahatis M N. On the computation of all global minimizers through particle swarm optimization[J]. IEEE transactions on evolutionary computation,2004,8(3):211-224.
    112. Abido M A. Optimal design of power-system stabilizers using particle swarm optimization[J]. IEEE Transactions on Energy Conversion,2002,17(3):406-413.
    113. He Q, Wang L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems[J]. Engineering Applications of Artificial Intelligence,2007,20(1):89-99.
    114. Wang J H, Yin Z Y. A ranking selection-based particle swarm optimizer for engineering design optimization problems[J]. Structural and Multidisciplinary Optimization,2008,37(2):131-147.
    115. Barthelemy J F M, Haftka R T. Approximation concepts for optimum structural design a review[J]. Structural Optimization,1993,5(3):129-144.
    116. Myers R N, Montgomery D C. Response surface methodology:process and product optimization using designed experiments[M]. New York:John Wiley & Sons,1995.
    117.席光,王志恒,王尚锦.叶轮机械气动优化设计中的近似模型方法及其应用[J].西安交通大学学报,2007,41(2):125-135,184.
    118. van Keulen F, Vervenne K. Gradient-enhanced response surface building[J]. Structural and Multidisciplinary Optimization,2004,27(5):337-351.
    119. Bucher C, Most T. A comparison of approximate response functions in structural reliability analysis[J]. Probabilistic Engineering Mechanics,2008,23(2/3):154-163.
    120. Troczynski T, Plamondon M. Response surface methodology for optimization of plasma spraying[J]. Journal of Thermal Spray Technology,1992,1(4):293-300.
    121. Breitung K, Faravelli L. Log-likelihood maximization and response surface in reliability assessmentfJ]. Nonlinear Dynamics,1994,5(3):273-285.
    122. Kaufman M, Balabanov V, Giunta A A, et al. Variable-complexity response surface approximations for wing structural weight in HSCT design[J]. Computational Mechanics,1996,18(2):112-126.
    123. Chang S. An algorithm to generate near D-optimal designs for multiple response surface modelsfJ]. HE Transactions,1997,29(12):1073-1081.
    124. Kim S H, Na S W. Response surface method using vector projected sampling points[J]. Structural safety,1997,19(1):3-19.
    125. Oakley D R, Sues R H, Rhodes G S. Performance optimization of multidisciplinary mechanical systems subject to uncertainties[J]. Probabilistic Engineering Mechanics,1998,13(1):15-26.
    126. Akram Y A O, Harry L J. Optimum design of composite plates using response surface method[J]. Composite Structures,1998,43(3):233-242.
    127. Mason B H, Haftka R T, Johnson E R, et al. Variable complexity design of composite fuselage frames by response surface techniques[J]. Thin-Walled Structures,1998,32(4):235-261.
    128. Das P K, Zheng Y. Cumulative formation of response surface and its use in reliability analysis[J]. Probabilistic Engineering Mechanics,2000,15(4):309-315.
    129. Zheng Y, Das P K. Improved response surface method and its application to stiffened plate reliability analysis[J]. Engineering Structures,2000,22(5):544-551.
    130. Shyy W, Papila N, Vaidyanathan R, Tucker K. Global design optimization for aerodynamics and rocket propulsion components[J]. Progress in Aerospace Sciences,2001,37(1):59-118.
    131.Keulen F, Vervenne K. Gradient-enhanced response surface building[J]. Structural and Multidisciplinary Optimization,2004,27(5):337-351.
    132. Park K, Moon S. Optimal design of heat exchangers using the progressive quadratic response surface model[J]. International Journal of Heat and Mass Transfer,2005,48(11):2126-2139.
    133. Yeniay O, Unal R, Lepsch R A. Using dual response surfaces to reduce variability in launch vehicle design[J]. Reliability Engineering and System Safety,2006,91(4):407-412.
    134. Goel T, Vaidyanathan R, Haftka R T, et al. Response surface approximation of Pareto optimal front in multi-objective optimization [J]. Computer Methods in Applied Mechanics and Engineering,2007, 196(4-6):879-893.
    135. Panayi A, Diaz A, Schock H. On the optimization of piston skirt profiles using a pseudo-adaptive response surface method[J]. Structural and Multidisciplinary Optimization,2009,38(3):317-330.
    136. Oudjene M, Ben-Ayed L, Delameziere A, et al. Shape optimization of clinching tools using the response surface methodology with moving least-square approximation[J]. Journal of Materials Processing Technology,2009,209(1):289-296.
    137.熊俊涛,乔志德,韩忠华.响应面方法在跨声速翼型气动优化设计中的应用研究[J].西北工业大学学报,2006,24(2):232-236.
    138.阳志光,陈敏,隋允康.响应面法在圆柱壳体结构优化设计中的应用[J].弹箭与制导学报,2007,27(3):127-130.
    139.吴先宇,罗世彬,陈小前,等.基于响应面模型的二维高超声速进气道优化[J].宇航学报,2007,28(5):1127-1132.
    140.段巍,王璋奇.基于响应面方法的汽轮机叶片概率强度设计及敏感性分析[J].中国电机工程学报,2007,27(5):99-104.
    141.李生勇,张哲,石磊,等.一种在响应面法中选取样本点的新方法[J].计算力学学报,2007,24(6):899-903.
    142. Li Jian, Gu Liangxian. Scramjet inlet multi-objective optimization based on response surface methodology [J]. Transactions of Nanjing University of Aeronautics & Astronautics,2007,24(3): 205-210.
    143.马兆允,徐亚栋.多项式响应面方法在结构近似分析中的应用[J].科技资讯,2006,(33):111-112.
    144.闫明,孙志礼,杨强.基于响应面方法的可靠性灵敏度分析方法[J].机械工科学报,2007,43(10):67-71.
    145.吴雄,王中伟,焦绍球,等.气体二次喷射推力矢量控制的响应面优化设计[J].航空动力学报,2007,22(9):1569-1572.
    146. Matheron G. Principles of geo-statistics[J]. Economic Geology,1963,58:1246-1266.
    147.徐建华.现代地理学中的数学方法(第二版)[M].北京:高等教育出版社,2002.
    148.张崎.基于Kriging方法的结构可靠性分析及优化设计[D].大连:大连理工大学,2005.
    149. van Beers W C M. Kriging metamodeling for simulation[D]. Tilburg, the Netherlands:Tilburg University,2005.
    150. Rendu J M. Disjunctive kriging:comparison of theory with actual results[J]. Mathematical Geology, 1980,12(4):305-320.
    151. Gilbert R O, Simpson J C. Kriging for estimating spatial pattern of contaminants:potential and problems[J]. Environmental Monitoring and Assessment,1985,5(2):113-135.
    152. Welch W J, Mitchell T J, Wynn H P. Design and analysis of computer experiments[J]. Statistics Science,1989,4(4):409-435.
    153. Meunier M A, Trochu F, Charbonnier P. Modeling of thermomechanical fatigue behavior in shape memory alloys using dual kriging[J]. Materials & Design,1996,17(3):133-139.
    154. Simpson T W, Mauery T M, Korte J J, et al. Comparison of response surface and kriging models for multidisciplinary design optimization[C]//The 7th Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MI,1998:381-391.
    155. Guinta A A, Watson L T. A comparison of approximation modeling techniques:polynomial versus interpolating models[C]//The 7th Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MI,1998:392-404.
    156. Costa J P, Pronzato L, Thierry E. A comparison between kriging and radial basis function networks for nonlinear prediction[C]//The IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, Antalaya, Turkey,1999(2):726-730.
    157. Rijpkema J J M, Etman L F P, Schoofs A J G. Use of design sensitivity information in response surface and kriging metamodels[J]. Optimization and Engineering,2001,2(4):469-484.
    158. Sakata S, Ashida F, Zako M. Structural optimization using kriging approximation[J]. Computer methods in applied mechanics and engineering,2003,192(7/8):923-939.
    159. Sakata S, Ashida F, Zako M. An efficient algorithm for kriging approximation and optimization with large scale sampling data[J]. Computer methods in applied mechanics and engineering,2004,193(3-5): 385-404.
    160. Romero V J, Swiler L P, Giunta A A. Construction of response surfaces based on progressive-lattice-sampling experimental designs with application to uncertainty propagation[J]. Structural Safety,2004,26(2):201-219.
    161. Chung H S. Multidisciplinary design optimization of supersonic business jets using approximation model-based genetic algorithms[D]. Ann Arbor, MI:Stanford university,2004.
    162. Brandis A. Using neural networks as an alternative to statistical modeling in kriging interpolation procedures:An investigation[D]. Fort Collins:Colorado State University,2005.
    163. Gano S E, Renaud J E, Martin J D, et al. Update strategies for kriging models used in variable fidelity optimization[J]. Structural and Multidisciplinary Optimization,2006,32(4):287-298.
    164. Kumano T, Jeong S, Obayashi S, et al. Multidisciplinary design optimization of wing shape for a small jet aircraft using kriging model[C]//The 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, United states,2006:11158-11170.
    165. Huang D, Allen T T, Notz W I, et al. Global optimization of stochastic black-box systems via sequential kriging meta-models[J]. Journal of Global Optimization,2006,34(3):441-466.
    166. Forsberg J, Nilsson L. Evaluation of response surface methodologies used in crash worthiness optimization[J]. International Journal of Impact Engineering,2006,32(5):759-777.
    167. Jouhaud J C, Sagaut P, Montagnac M, et al. A surrogate-model based multidisciplinary shape optimization method with application to a 2D subsonic airfoil[J]. Computers and Fluids,2007,36(3): 520-529.
    168. Sakata S, Ashida F, Zako M. On applying Kriging-based approximate optimization to inaccurate data[J]. Computer Methods in Applied Mechanics and Engineering,2007,196(13-16):2055-2069.
    169.杜宇健,萧德云.Kriging算法在温度场计算中的应用分析[J].计算机辅助设计与图形学学报,2004,16(8):1153-1158.
    170.王晓锋,席光,王尚锦.Kriging与响应面方法在气动优化设计中的应用[J].工程热物理学报,2005,26(3):423-425.
    171.刘克农,姚卫星,穆雪峰.基于Kriging代理模型的结构形状优化方法研究[J].计算力学学报,2006,23(3):344-347,362.
    172.窦毅芳,刘飞,张为华.响应面建模方法的比较分析[J].工程设计学报,2007,14(5):359-363.
    173. Jorge R R, Eduardo B C. Surface approximation using growing self-organizing nets and gradient information[J]. Applied Bionics and Biomechanics,2007,4(3):125-136.
    174. Wedge D, Ingram D, McLean D, et al. On global-local artificial neural networks for function approximation[J]. IEEE Transactions on Neural Networks,2006,17(4):942-952.
    175. Chiu C C, Cook D F, Pignatiello Jr J J, et al. Design of a radial basis function neural network with a radius-modification algorithm using response surface methodology[J]. Journal of Intelligent Manufacturing,1997,8(2):117-124.
    176. Kuo R J, Cohen P H. Manufacturing process control through integration of neural networks and fuzzy model[J]. Fuzzy Set and Systems,1998,98(1):15-31.
    177. Batill S M, Stelmack M A, Yu X Q. Multidisciplinary design optimization of an electric-powered unmanned air vehicle[J]. Aircraft Design,1999,2(1):1-18.
    178. Gomes H M, Awruch A M. Comparison of response surface and neural network with other methods for structural reliability analysis[J]. Structural Safety,2004,26(1):49-67.
    179. Nagendra S, Staubach J B, Suydam A J, et al. Optimal rapid multidisciplinary response networks: RAPIDDISK[J]. Structural and Multidisciplinary Optimization,2005,29(3):213-231.
    180. Erzurumlu T, Oktem H. Comparison of response surface model with neural network in determining the surface quality of moulded parts[J]. Materials and Design,2007,28(2):459-465.
    181.邢小楠,徐元铭,李烁,等.神经网络响应面逼近在飞机总体优化设计中的应用[J].机械设计与研究,2004,20(1):68-71.
    182. Xu Yuan-ming, Li Shuo, Rong Xiao-min. Composite structural optimization by genetic algorithm and neural network response surface modeling[J]. Chinese Journal of Aeronautics,2005,18(4):310-316.
    183.李烁,徐元铭,张俊.基于神经网络响应面的复合材料结构优化设计[J].复合材料学报,2005,22(5):134-140.
    184.陈建江,孙建勋,常伯浚,等.基于人工神经网络的多学科优化设计研究[J].计算机集成制造系统,2005,11(10):1351-1356.
    185.蒋向华,杨晓光,王延荣.结构可靠度逐步逼近径向基神经网络响应面法[J].航空动力学报,2008,23(1):26-31.
    186. Tang Yu-Cheng, Zhou Xiong-Hui, Chen Jun. Preform tool shape optimization and redesign based on neural network response surface methodology[J]. Finite Elements in Analysis and Design,2008,44(8): 462-471.
    187. Cheng J, Li Q S, Xiao R. A new artificial neural network-based response surface method for structural reliability analysis[J]. Probabilistic Engineering Mechanics,2008,23(1):51-63.
    188.米凯利维茨(著),周家驹(译).演化程序——遗传算法和数据编码的结合[M].科技出版社,2000.
    189.张文修,梁怡.遗传算法的数学基础[M].西安:西安交通大学出版社,2000.
    190.李敏强,寇纪淞,林丹,等.遗传算法的基本理论与应用[M].北京:科学出版社,2002.
    191. Goldberg D E. Genetic algorithms in search, optimization & machine leaming[M]. MA: Addison-Wesley,1989.
    192. Bramlette M F. Initialization, mutation and selection methods in genetic algorithms for function optimization[C]//Proc Int Conf Genet Algorithms, San Diego, CA, USA,1991:100-107.
    193.陈永兵.遗传算法及其在结构工程优化中的应用研究[D].西安:西北工业大学,2001.
    194.彭斯俊.优化算法在结构设计中的应用[D].武汉:武汉理工大学,2004.
    195.潘正军,康立山,陈毓屏.演化计算(第1版)[M].北京:清华大学出版社,1998.
    196.刘宝碇,赵瑞清,王纲.不确定规划及应用[M].北京:清华大学出版社,2003.
    197.曹俊.遗传算法及其在复合材料层合板设计中应用的研究[D].南京:南京航空航天大学,2003.
    198.周敏.遗传算法的若干改进及应用[D].北京:中国科学院软件研究所,2001.
    199. Muhlenbein H, Voosen D S. Predictive models for the breeder genetic algorithm[J]. Evolutionary Computation,1993,1(1):25-49.
    200. Tsutsui S, Goldberg D E. Simplex crossover and linkage identification:single-stage evolution vs. multi-stage evolution[C]//Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, HI, USA,2002,1:974-979.
    201. Kita H, Ono I, Kobayashi S. Theoretical analysis of the unimodal normal distribution crossover for real-coded genetic algorithms[C]//Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage, AK, USA,1998:529-534.
    202. Raghuwanshi M M, Kakde O G. Survey on multiobjective evolutionary and real coded genetic algorithms[C]//Proceedings of the 8th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Cairns, Australia,2004:150-161.
    203. Deb K, Agrawal S, Pratap A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-II[C]//The 6th International Conference on Parallel Problem Solving from Nature PPSN VI, Paris, France,2000:849-858.
    204. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
    205. Rath A K, Dehuri S. Non-dominated sorting genetic algorithms for heterogeneous embedded system design[C]//International Conference on Intelligent Sensing and Information Processing, Chennai, India,2004:46-50.
    206. Deb K, Agrawal R B. Simulated binary crossover for continuous search space[J]. Complex Systems, 1995,9(2):115-148.
    207. Beyer H G, Deb K. On self-adaptive features in real-parameter evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation,2001,5(3):250-270.
    208. Runarsson T P, Yao X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation,2000,4(3):284-294.
    209. Koziel S, Michalewicz Z. Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization[J]. IEEE Transactions on Evolutionary Computation,1999,7(1):19-44.
    210. Huang Zhangjun, Ma Mingxu, Wang Chengen. An archived differential evolution algorithm for constrained global optimization[C]//International Conference on Smart Manufacturing Application, Gyeonggi-do, Korea,2008:255-260.
    211.Hamida S B, Schoenauer M. ASCUEA:new results using adaptive segregational constraint handling[C]//The 2002 IEEE Congress on Evolutionary Computation, Honolulu, HI, USA,2002,1: 884-889.
    212. Deb K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering,2000,186(2-4):311-338.
    213. Coello C A C. Use of a self-adaptive penalty approach for engineering optimization problems[J]. Computers in Industry,2000,41(2):113-127.
    214. Corne D, Dorigo M, Glover F. New Ideas in Optimization[M]. London:McGraw-Hill,1999.
    215. Lampinen J, Zelinka I. On stagnation of the differential evolution algorithm[C]//The 6th International Mendel Conference on Soft Computing, Brno, Czech Republic,2002:76-83.
    216. Zaharie D. Control of population diversity and adaptation in differential evolution algorithms[C]//The 9th International Mendel Conference on Soft Computing, Brno, Czech Republic,2003:41-46.
    217. Gamperle R, Muller S D, Koumoutsakos P. A Parameter Study for Differential Evolution[C]//The 8th International Mendel Conference on Soft Computing, Brno, Czech Rep,2002:293-298.
    218. Joines J, Houck C. On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs[C]//The First IEEE Conference on Evolutionary Computation, Orlando, FL, USA,1994:579-584.
    219. Wang Yong-Jun, Zhang Jiang-She, Zhang Gai-Ying. A dynamic clustering based differential evolution algorithm for global optimization[J]. European Journal of Operation Research,2007,183(1):56-73.
    220. Knnedy J, Eberhart R C, Shi Y. Swarm intelligence[M]. San Francisco:Morgan Kaufmann Publisher, 2001.
    221. Liu Bo, Wang Ling, Jin Yi-Hui, et al. Improved particle swarm optimization combined with chaos[J]. Chaos, Solitons & Fractals,2005,25(5):1261-1271.
    222.黄章俊,王成恩,马明旭.一种求解约束优化问题的改进差分进化算法[J].东北大学学报(自然科学版),2009,30(7):936-939.
    223. Forrester A I J, Keane A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences,2009,45(1-3):50-79.
    224.张崎,李兴斯.基于Kriging模型的结构可靠性分析[J].计算力学学报,2006,23(2):175-179.
    225.谢延敏,于沪平,陈军,等.基于Kriging模型的可靠度计算[J].上海交通大学学报,2007,41(2):177-180,193.
    226. Simpson T W, Mauery T M, Korte J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal,2001,39(12):2233-2241.
    227. Chung H S, Alonso J J. Using gradients to construct cokriging approximation models for high-dimensional design optimization problems[C]//The 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV,2002:1-15.
    228. Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization,1998,13(4):455-492.
    229. Jeong S, Murayama M, Yamamoto K. Efficient optimum design method using kriging modelfJ]. Journal of Aircraft,2005,42(2):413-420.
    230. Davis E, lerapetritou M. A kriging based method for the solution of mixed-integer nonlinear programs containing black-box functions[J]. Journal of Global Optimization,2009,43(2/3):191-205.
    231.颜辉武,祝国瑞.地下水的体视化研究[M].武汉:武汉大学出版社,2004.
    232.高允彦.正交及回归试验设计方法[M].北京:冶金工业出版社,1988.
    233.方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    234.茆诗松,周纪芗,陈颖.试验设计[M].北京:中国统计出版社,2004.
    235. Kleijnen J P C, Sargent R G. A methodology for the fitting and validation of metamodels in simulation[J]. European Journal of Operational Research,2000,120(1):14-29.
    236. Sasena M J. Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations[D]. Michigan:University of Michigan,2002.
    237. Meguid S A, Kanth P S, Czekanski A. Finite element analysis of fir-tree region in turbine discs[J]. Finite Elements in Analysis and Design,2000,35(4):305-317.
    238. Farshi B, Jahed H, Mehrabian A. Optimum design of inhomogeneous non-uniform rotating discs[J]. Computers and Structures,2004,82(9/10):773-779.
    239. Witek L. Failure analysis of turbine disc of an aero engine[J]. Engineering Failure Analysis,2006, 13(1):9-17.
    240. Kleijnen J P C. Response surface methodology for constrained simulation optimization:An overview[J]. Simulation Modelling Practice and Theory,2008,16(1):50-64.
    241. Sakata S I, Ashida F, Zako M. Approximate structural optimization using kriging method and digital modeling technique considering noise in sampling data[J]. Computers and Structures,2008,86(13/14): 1477-1485.
    242.《航空发动机设计手册》总编委会编,黄庆南分册主编.航空发动机设计手册(第10册)涡轮[M].北京:航空工业出版社,2001.
    243.《航空发动机设计手册》总编委会编,陈大光分册主编.航空发动机设计手册(第1册)通用基础[M].北京:航空工业出版社,2000.
    244.《航空发动机设计手册》总编委会编,尹泽勇分册主编.航空发动机设计手册(第18册)叶片轮盘及主轴强度分析[M].北京:航空工业出版社,2001.
    245. Cook R D, Malkus D S, Plesha M E, et al(著);关正西,强洪夫(译).有限元分析的概念与应用(第4版)[M].西安:西安交通大学出版社,2007.
    246. Zhang L W, Pei J B, Zhang Q Z, et al. The coupled FEM analysis of the transient temperature field during inertia friction welding of GH4169 alloy[J]. Acta Metallurgica Sinica,2007,20(4):301-306.