玉米ae/wx和sh1突变体胚乳基因表达谱的变化和淀粉生物合成的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米(Zea mays L. ssp. Mays)是食品和饲料的主要来源之一,其淀粉产量和品质决定了它在人类生产和生活中的地位。为深入了解玉米淀粉合成的分子调控机理,本研究首先以B73、ae/wx和sh1授粉后15天的胚乳为材料,利用18K Affymetrix玉米基因组芯片平台,研究了突变体材料中基因表达谱的变化,发现了淀粉合成受阻后糖的积累对其它物质代谢和基因表达调控的影响;在此基础上,对可能参与淀粉合成的基因以多个自交系为材料,分析它们在叶片和胚乳发育过程中的表达模式,研究了不同成员对胚乳淀粉合成的贡献。同时,为满足工业上对高直链淀粉的需求,利用RNAi策略敲除ZmSBEⅡb或ZmSBEⅠ&ZmSBEⅡb。主要结果如下:
     1.胚乳基因表达谱分析
     以B73、sh1、ae/wx授粉后15天的胚乳为材料进行寡聚核苷酸表达谱芯片分析。与B73相比,sh1突变体中2706个探针对发生显著变化,ae/wx突变体中1966个探针对发生显著变化(FDR<0.1%;q value<0.01)(玉米探针总量17,622个,检测13,495个基因)。为减少玉米自交系背景差异对基因表达的影响,分析了B73和Mo17授粉后13天和19天的胚乳中基因表达的差异,分别找到差异基因609个和889个(FDR<5%),认为是由遗传背景差异造成的,从ae/wx vs.B73中扣除了351个,从sh1 vs.B73中扣除390个,分别剩下1429(命名为Dae/wx)和1557(命名为Dsh1)个差异表达基因进行后续的分析,其中共同变化的835个。qRT-PCR结果表明,90.6%(29/32)的差异基因是可靠的。
     2.差异基因的GO分析
     Dae/wx中按p-value(<0.1)由小到大依次为脂类转运(6/12,指该芯片中参与脂类转运的12个成员中6个成员表达变化,下同)、丙酮酸脱羧酶(4/6)、糖类运输(4/7)和细胞壁结构成分(3/6),说明对碳水化合物代谢和脂类转运影响显著;Dsh1中按p-value(<0.1)由小到大依次为糖类运输(6/7)、高尔基体(4/5)、蔗糖合成酶(4/6)、半胱氨酸蛋白酶抑制剂(5/9)、脂类运输(5/12)、细胞壁成分(6/18)和丙酮酸脱羧酶(3/6),说明除碳水化合物代谢和脂类转运影响显著外,半胱氨酸蛋白酶抑制剂的表达降低反应了胁迫和细胞发育的变化,说明该突变体中可能有更多基因表达变化和细胞学改变。
     3.差异基因的功能注释和分类
     约72%的差异基因得到注释并按照代谢途径和功能分为14类,碳水化合物和能量代谢、基因的转录和转录后修饰、蛋白质合成、蛋白调控和分子伴侣、胁迫/防御/衰老及物质转运是受影响很大的代谢和调控过程,占共同变化基因的46.5%,占ae/wx单独变化基因的53.7%,占sh1单独变化基因的47.1%。进一步分析发现,与淀粉生物合成相关的基因变化不多,而与糖中间代谢和能量相关的基因变化较多;TPS表达的降低反应了淀粉合成基因sh2翻译后AGPase活性下调。启动子分析发现,参与糖代谢的多数基因的启动子中有糖响应元件。Pul和TPS可能是直接受高糖抑制表达的基因,而且SREATMSD (TTATCC)、TATCCAOSAMY (TATCCA)和TATCCAY MOTIFOSRAMY3D (TATCCAY) 3个糖抑制元件可能是下调基因表达的糖抑制位点。两个突变体中基因表达的不同变化反应了淀粉积累和细胞结构的差异。突变体中糖的积累,可能形成了糖信号和胁迫信号,改变了信号转导,引起激素响应和细胞组成蛋白的变化,改变了细胞周期。另外,还发现母性遗传基因和种子成熟相关基因的变化。
     4.碳水化合物代谢基因和细胞周期基因随胚乳发育的变化
     以B73、ae/wx、sh1授粉后7天种子、15天和25天胚乳为材料,分析18个糖代谢差异基因和9个细胞周期调节相关的差异基因的表达模式,研究发现sh1突变体中Pul、SBEⅡa、UGPase、SUS3和SSⅡa基因表达模式发生改变,ae/wx突变体中Sh2-1、SUS3和SSⅡa基因表达模式发生改变,揭示了突变体对这些基因的巨大影响,反映了它们可能存在相互作用。糖转运、信号调节相关基因只改变胚乳发育过程中的表达量而不改变表达模式,可能是随着糖的积累、细胞的发育等过程表达水平发生了改变。细胞周期调节基因表达水平发生了较明显改变,但是它们的表达模式没有明显变化,表明虽然突变体中可能促进了细胞分裂但并未打乱细胞周期,只是延长了细胞分裂时间,延缓了胚乳细胞发育进程。徒手切片显示突变体7天胚乳没有明显的分层,ae/wx突变体细胞核明显变大而细胞大小差异不明显,sh1突变体细胞核明显变小,细胞数目增加,说明突变体胚乳细胞结构明显改变。
     5.淀粉生物合成基因的不同贡献
     以Q319、C7-2、q404、ZN-A和S8自交系的幼叶、成熟叶、成熟子房、授粉后1d、5d、10d的种子和15d、20d、25d的胚乳为材料,研究了参与淀粉合成的44个基因的表达模式,研究发现ZmGBSSⅠ、ZmSSⅢ、ZmSBEⅡb、ZmBT2-2、ZmSh2-2、ZmSh2-3、ZmBT1在胚乳发育中后期特异性表达,ZmSUS1、ZmSus1L、ZmSUS3、ZmSSⅠ、ZmSSⅡa、ZmSBEⅠ、ZmISO1、ZmPul的表达在淀粉合成期显著上调,ZmUGP3和ZmSUT2在所有组织中高水平表达,说明这些基因可能主要负责胚乳淀粉的生物合成。尽管ZmBT2-1和ZmSh2-1随着胚乳发育表达下调,但是一直有较高水平。亚细胞定位发现,ZmSUS1、ZmSUS1L、ZmBT2-1、ZmSH2-1、ZmBT1、ZmSS、ZmSBE、ZmISO1、ZmISO2、ZmPUL、ZmGPT和ZmPPT定位于质体,ZmSUS2、ZmSUS3、ZmUGPase、ZmBT2-2、ZmSH2-2、ZmSH2-3、ZmPGI和ZmPPM定位于细胞质中,而ZmSUT定位于细胞质膜。这些结果为胚乳淀粉生物合成研究提供了新资料。
     6. RNAi技术创造高直链淀粉玉米
     为培育高直链淀粉玉米材料,根据淀粉合成相关基因的表达模式及已发表资料,利用RNAi技术使转基因玉米SBEⅡb和SBEⅠ&SBEⅡb转录后沉默,以创造高直链淀粉玉米新品系。克隆了玉米Sh2基因,在第495位和496位两个酪氨酸中插入酪氨酸和丝氨酸各一个(Sh2YS),降低Pi的负调节作用,以提高ADP葡萄糖焦磷酸化酶的活性,最终提高淀粉的合成效率。采用基因枪和农杆菌浸染法已经获得相应的转基因植株。
Maize (Zea mays L. ssp. Mays) provides us food and feed for many years due to its starch content and quality. To study the molecular mechanisms of starch biosynthesis in maize, we employed 18K Affymetrix? maize Genomic Genechip? to reveal the differences of gene expression profiling of the 15 days endosperm after pollination (DAP) in ae/wx and sh1 mutants compared to B73. We found the relationship among starch metabolism, metabolisms of other components and gene expressing profiling due to the accumulation of sugar. Then, genes expression patterns of starch biosynthesis in leaves and developing endosperms of 5 maize inbreds were studied for the contribution of different genes to starch biosynthesis in endosperm. In addition, RNA interference was employed to knock down ZmSBEⅡb or ZmSBEⅠ&ZmSBEⅡb for the requirement of high-amylose starch in industry. The main results were as follows:
     1. DNA microarray
     The 15 DAP endosperms of B73、sh1、ae/wx were employed to investigate the differenc of their gene expression profiling. Compared to B73, total 2706 and 1966 probe sets were different significantly (FDR<0.1%; q value<0.01) in sh1 and aw/wx mutants (total 17,622 probe sets detecting 13,495 genes in chip). To reduce the effect of gene expression in different genetic backgrounds, differentially expressed genes were analyzed in endosperm of B73 and Mo17 at 13 DAP and 19 DAP, from which 609 and 889 differentially expressed genes were identified (FDR<5%) as the ones caused by different backgrounds. After deducting 351 probe sets from ae/wx vs.B73 and 390 probe sets from sh1 vs.B73, there were 1429 (named Dae/wx) and 1557 (named Dsh1) probe sets surplus for further analysis, among which 835 probe sets kept the same tendency in both mutants. 90.6% (29/32) differentially expressed genes were confirmed by qRT-PCR.
     2. GO analysis of differentially expressed genes
     According to p-value, lipid transport (6/12, which means 6 differentially expressed genes of 12 members on chip, and the same as follows), pyruvate decarboxylase activity (4/6), sugar:hydrogen symporter activity (4/7) and structural constituent of cell wall (3/6) were revealed in Dae/wx, suggesting that carbohydrate metabolism and lipid transportation were affected significanty. Whereas, sugar:hydrogen symporter activity (6/7), Golgi apparatus (4/5), sucrose synthase activity (4/6), cysteine protease inhibitor activity (5/9), lipid transport (5/12), cell wall (6/18) and pyruvate decarboxylase activity (3/6) were displayed in Dsh1, suggesting that except for carbohydrate metabolism and lipid transportation, down-regulated expression of cysteine protease inhibitor suggests changes in stress responses and in cell biology.
     3. The functional annotation and classification of differentially expressed genes
     About 72% differentially expressed genes were annotated and classified into 14 classes, among which carbohydrate and energy metabolism, transcription and posttranscriptional processing, protein synthesis, posttranslational processing, stress/defence/senescence and transportation were affected significantly. All together, the genes in these processes accounted for 46.5% of the same tendent differences, 53.7% of the genes changed only in Dae/wx (Oae/wx) and 47.1% of the genes changed only in Dsh1 (Osh1). Further analysis suggests that there were a few genes in starch biosynthesis but more genes in sugar and energy metabolism expressed differentially. The down-regulation of trehalose-phosphate synthase (TPS) suggests the down-regulated activity of AGPase after posttranslational redox activation between Sh2 subunits. The analysis of promoters of sugar metabolism genes indicates several sugar response elements in most promoters. Pul and TPS may be repressed directly by high-level of sugar in which SREATMSD (TTATCC), TATCCAOSAMY (TATCCA) and TATCCAY MOTIFOSRAMY3D (TATCCAY) in their promoters should be the sugar repressive elements due to their down-regulated expressions.
     The differentially expressed genes reflect the difference of the starch accumulation and cell structure in two mutants. Due to the accumulation of sugar, signal transductions, especially sugar signal and stress signal, were changed significantly, which might alter the expression of hormone-related genes, cell organizational proteins genes, and cell cycle-related genes finally. In addition, there were maternally expressed genes (MEG) and seed maturation proteins up-regulated and embryo-specific proteins down-regulated.
     4. Expression patterns of genes differentially expressed in starch metabolism and cell cycle during endosperm development
     7 DAP kernals, 15 DAP endosperms and 25 DAP endosperms of B73, ae/wx and sh1 were used to study the expression patterns of 18 differentially expressed genes in sugar metabolism and 9 differentially expressed genes in cell cycle. We found that the expression patterns of Pul, SBEⅡa, UGPase, SUS3, SSⅡa in sh1 and Sh2-1, SUS3, SSⅡa in ae/wx were altered, revealing that these genes may interact with each other. In contrast, only the expression level of genes in sugar transport and signal were altered, suggesting that these genes are regulated indirectly by sugar level, cell development. Similarly, although the expression levels of the genes in cell cycle were changed significantly, the expreeion patterns were not changed distinctly, suggesting that the cell cycle in endosperm cells is not disturbed the cell division. As a result, endosperm cell development is delayed. Compared to B73, layered structure was not found in 7 DAP endosperm of ae/wx and sh1 mutants, and bigger nucleoli in ae/wx mutants and smaller nucleoli and more cell number in sh1 mutants were found, suggesting the significant alternation of the cytoarchitecture in the endosperms of ae/wx and sh1 mutants.
     5. Different contribution of the genes to starch biosynthesis
     Leaves and developing endosperms of Q319, C7-2, q404, ZN-A and S8 were used to study the expression patterns of 44 genes participating in starch synthesis. We found that ZmGBSSⅠ、ZmSSⅢ、ZmSBEⅡb、ZmBT2-2、ZmSh2-2、ZmSh2-3、ZmBT1 were expressed exclusively in the metaphase and anaphase of developing endosperm, and the expression patterns of ZmSUS1、ZmSus1L、ZmSUS3、ZmSSⅠ、ZmSSⅡa、ZmSBEⅠ、ZmISO1、ZmPul were consistent with the process of starch synthesis in the endosperm, while ZmUGP3 and ZmSUT2 were highly-expressed in all samples, suggesting that these genes perhaps devoted to starch synthesis in endosperm. Although their expression patterns were down-regulated during the endosperm development, ZmBT2-1 and ZmSh2-1 were still expressed. ZmSUS1、 ZmSUS1L、ZmBT2-1、ZmSH2-1、ZmBT1、ZmSSs、ZmSBEs、ZmISO1、ZmISO2、ZmPUL、ZmGPTs and ZmPPTs were localized to plastids, ZmSUS2、ZmSUS3、ZmUGPs、ZmBT2-2、ZmSH2-2、ZmSH2-3、ZmPGI和ZmPPMs were localized to cytoplasm. Whereas, ZmSUTs were localized on cytoplasm membrane. These data provides more evidence about the different contribution of the genes to starch biosynthesis.
     6. High-amylose maize inbreds engineered by RNA interference (RNAi)
     To meet the requirement of high-amylose starch in industry, based on the expression profiles of starch biosynthesis-related genes and published data, SBEⅡb and SBEⅠ&SBEⅡb were selected to knock down in maize by RNA interference approach, to create new high-amylose maize inbreds. Sh2 was cloned and modified by insertion of a tyrosine and a Serine between 495 and 496 amino acids, to enhance the activity of AGPase and to increase the starch biosynthesis. Transgenic plants were recovered via biolistic and Agrobacterium-mediated transformations.
引文
荆志伟,王忠。基因芯片数据分析方法研究进展。生物技术通讯2007,18: 144-148
    王镜岩,朱圣庚,徐长法。生物化学(第三版),2002高等教育出版社
    张彦琦,李辉智。基因芯片表达数据分析方法研究进展。重庆医学2005,34:1889-1892
    Akihiro T., Mizuno K., and Fujimura T. Gene expression of ADPGlc pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol. 2005, 46: 937-946
    Arenas-Huertero F., Arroyo-Becerra A., Zhou L., Sheen J., and León P. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Gene Dev. 2000, 14: 2085-2096
    Armstrong C.L. and Green C.E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 1985, 164: 207-214
    Armstrong C.L., Green C.E., and Phillips R.L. Development and availability of germplasm with high Type II culture formation response. Maize Genet. Coop. News Lett. 1991, 65: 92-93
    Armstrong C.L., Parker G.B., Pershing J.C., Brown S.M., Sanders P.R., Duncan D.R., Stone T., Dean D.A., Deboer D.L., Hart J., Howe A.R., Morrish F.M., Pajeau M.E., Petersen W.L., Reich B.J., Rodriguez R., Santino C.G., Sato S.J., Schuler W., Sims S.R., Stehling S., Tarochione L.J., and Fromm M.E. Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci. 1995, 35: 550-557
    Armstrong C.L., Romero-Severson J., and Hodges T.K. Improved tissue culture response of an elite maize inbred through backcross breeding, and identification of chromosomal regions important for regeneration by RFLP analysis. Theor. Appl. Genet. 1992, 84: 755-762
    Bae J.M., Giroux M., and Hannah L.C. Cloning and molecular characterization of the brittle-2 gene of maize. Maydica 1990, 35: 317-322
    Ball S., Guan H., James M., Myers A., Keeling A., Mouille G., Buleon A., Colonna P., andPriess J. From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 1996, 86: 349-352
    Ball S.G. and Morell M.K. From bacterial glycogen to starch: Understanding the biogenesis of the plant starch granule. Ann. Rev. Plant Biol. 2003, 54: 207-233 Ballas N. and Citovsky V. Nuclear localization signal binding protein from Arabidopsis
    mediates nuclear import of Agrobacterium VirD2 protein. Proc. Natl. Acad. Sci. USA 1997, 94: 10723-10728
    Bannai H, Tamada Y, Maruyama O, Nakai K, and Miyano S. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 2002, 18: 298-305
    Barker L., Kühn C., Weise A., Schulz A., Gebhardt C., Hirner B., Hellmann H., Schulze W., Ward J. M., and Frommer W. B. SUT2, a putative sucrose sensor in sieve elements. Plant Cell 2000, 12: 1153-1164
    Barski A., Cuddapah S., Cui K., Roh T., Schones D., Wang Z., Wei G., Chepelev I., and Zhao K. High-resolution profiling of histone methylations in the human genome. Cell 2007, 129: 823-837
    Beatty M.K., Rahman A., Cao H.,WoodmanW., Lee M., Myers A.M., and James M.G. Purification and molecular genetic characterization of ZMPU1, a pullulanase-type starch-debranching enzyme from maize. Plant Physiol. 1999, 119: 255-266
    Beckles D.M., Smith A.M., and ap Rees T. A cytosolic ADPGlc pyrophosphorylase is a feature of graminaceous endosperms, but not of other starch-storing organs. Plant Physiol. 2001, 125: 818-827
    Benevolenskaya E.V. Histone H3K4 demethylases are essential in development and differentiation. Biochem. Cell Biol. 2007, 85: 435-443
    Bevan M.W., Flavell R.B., and Chilton M.D. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 1983, 304: 184-187
    Bhave M.R., Lawrence S., Barton C., and Hannah L.C . Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell 1990, 2: 581-588
    Bieniawska Z., Paul Barratt D.H., Garlick A.P., Thole V., Kruger N.J., Martin C., Zrenner R., and Smith A.M. Analysis of the sucrose synthase gene family in Arabidopsis. Plant J. 2007, 49: 810-828
    Blauth S.L., Yao Y., Klucinec J.D., Shannon J.C., Thompson D.B., and Guiltinan M.J. Identification of mutator insertional mutants of the starch-branching enzyme 2a in corn. Plant Physiol. 2001, 125: 1396-1405
    Blennow A., Engelsen S.B., Nielsen T.H., Baunsgaard L., and Mikkelsen R. Starch phosphorylation: a new front line in starch research. Trends Plant Sci. 2002, 7: 445-450
    Boyer C.D. and Hannah L.C. Kernel Mutants of Corn, in: A.R. Hallauer (Ed.), Specialty Corns, CRC Press, Inc., Boca Raton, 2001, pp. 1-31
    Braun H.J. Ceramic material. In: Hempstead C.A., Worthington W.E. Jr (eds) Encyclopedia of 20th century technology. Taylor & Francis/Routledge, Kentucky, 2004, pp 134-136
    Brettschneider R.,Becker D., and Loerz H. Efficient transformation of scutellar tissue of immature maize embryos. Theor. Appl. Genet. 1997, 94: 737-748
    Brown M.P., Grundy W.N., Lin D., Cristianini N., Sugnet C.W., Furey T.S., Ares M.Jr., and Haussler D. Knowledge based analysis of microarray gene expression data by using support, vector machines. Proc. Natl. Acad. Sci. USA 2000, 97: 262-267
    Burger B.T., Cross J., Shaw J.R., Caren J., Greene T.W., Okita T.W., and Hannah L.C. Relative turnover numbers of maize endosperm and potato tuber ADPGlc pyrophosphorylases in the absence and presence of 3-PGA. Planta 2003, 217: 449-456
    Burton R.A., Johnson P.E., Beckles D.M., Fincher G.B., Jenner H.L., Naldrett M.J., and Denyer K. Characterization of the genes encoding the cytosolic and plastidial forms of ADPGlc pyrophosphorylase in wheat endosperm. Plant Physiol. 2002, 130: 1464-1475
    Cao H., Sullivan T.D., Boyer C.D., and Shannon J.C. Bt1, a structural gene for the major 39-44 kD amyloplast membrane polypeptides. Physiol. Plant 1995, 95: 176-186
    Cao J., Wang Y.C., Klein T.M., Sanford J., and Wu R. Transformation of rice and maize using the biolistic process. In: Lamb CJ, Beachy RN (eds) Plant gene transfer. (UCLA Symp Mol Cell Biol, vol 129) Wiley–Liss, New York, 1990, pp. 21-33
    Carvalho C.H.S., Bohorova N., Bordallo P.N., Abreu L.L., Valicente F.H., Bressan W., and Paiva E. Type II callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep. 1997, 17: 73-76
    Charon C., Johansson C., Kondorosi E., Kondorosi A., and Crespi M. enod40 induces dedifferentiation and division of root cortical cells in legumes. Proc. Natl. Acad. Sci. USA1997, 94: 8901-8906
    Chilton M.D., Drummond M.H., Merio D.J., Sciaky D., Montoya A.L., Gordon M.P., and Nester E.W. Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 1977, 11: 263-271
    Chiou T.J. and Bush D.R. Sucrose is a signal molecule in assimilate partitioning. Proc. Natl. Acad. Sci. USA 1998, 95: 4784-4788
    Chung H.J., Sehnke P.C., and Ferl R.J. The 14-3-3 proteins: cellular regulators of plant metabolism. Trends Plant Sci. 1999, 4: 367-371
    Clancy M. and Hannah L.C. Splicing of the maize Sh1 first intron is essential for enhancement of gene expression, and a T-rich motif increases expression without affecting splicing. Plant Physiol. 2002, 130(2): 918-929
    Clough S.J. and Bent A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16: 735-743
    Cobb B.G. and Hannah L.C. Shrunken-1 encoded sucrose synthase is not required for sucrose synthesis in the maize endosperm. Plant Physiol. 1988, 88(4): 1219-1221
    Coe E. and Sarkar K. Preparation of nucleic acids and a genetic transformation attempt in maize. Crop Sci. 1966, 6: 432-435
    Colleoni C., Myers A.M., and James M.G. One- and two-dimensional native PAGE activity gel analyses of maize endosperm proteins reveal functional interactions between specific starch metabolizing enzymes. J. Appl. GlycoScience 2003, 50: 207-212
    Commuri P. and Keeling P.L. Chain-length specificities of maize starch synthase I enzyme: studies of glucan affinity and catalytic properties. Plant J. 2001, 25: 475-486
    Corbesier L., Lejeune P., and Bernier G. The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta 1998, 206: 131-137
    Coruzzi G.M. and Zhou L. Carbon and nitrogen sensing and signaling in plants: emerging‘matrix effects’. Curr. Opin. Plant Biol. 2001, 4: 247-253
    Cossegal M., Chambrier P., Mbelo S., Balzergue S., Martin-Magniette M.L., Moing A., Deborde C., Guyon V., Perez P., and Rogowsky P. Transcriptional and metabolic adjustments in AGPase deficient bt2 maize kernels. Plant Physiol. 2008, 146: 1553-1570
    Crevillén P., Ballicora M.A., Mérida A., Preiss J., and Romero J. The different large subunit isoforms of Arabidopsis thaliana ADPGlc pyrophosphorylase conferdistinct kinetic and regulatory properties to the heterotetrameric enzyme. J. Biol. Chem. 2003, 278: 28508-28515
    Cross J.M., Clancy M., Shaw .JR., Greene T.W., Schmidt R.R., Okita T.W., and Hannah L.C. Both subunits of ADPGlc pyrophosphorylase are regulatory. Plant Physiol. 2004, 135: 137-140
    Cui X., Fan B., Scholz J., and Chen Z. Roles of arabidopsis cyclin-dependent kinase C complexes in cauliflower mosaic virus infection, plant growth, and development. Plant Cell 2007, 19: 1388-1402
    D’Halluin K., Bonne E., Bossut M., De Beuckeleer M., and Leemans J. Transgenic maize plants by tissue electroporation. Plant Cell 1992, 4: 1495-1505
    Datta R., Chamusco K.C., and Choury P.S. Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiol. 2002, 130: 1645-1656
    Denyer K., Dunlap F., Thorbjornsen T., Keeling P., and Smith A.M. The major form of ADPGlc pyrophosphorylase in maize endosperm is extra-plastidal. Plant Physiol. 1996, 112: 779-785
    Dewald D. B., Sadka A., and Mullet J. E. Sucrose modulation of soybean Vsp gene expression is inhibited by auxin. Plant Physiol. 1994, 104: 439-444
    Dewitte W. and Murray J.A.H. The plant cell cycle. Annu. Rev. Plant Biol. 2003, 54: 235-264
    Dinges J.R., Colleoni C., James M.G., and Myers A.M. Mutational analysis of the pullulanase-type debranching enzyme in maize indicates multiple functions in starch metabolism. Plant Cell 2003, 15: 666-680
    Dinges J.R., Colleoni C., Myers A.M., and James M.G. Molecular structure of three mutations at the maize sugary1 locus and their allele-specific phenotypic effects. Plant Physiol. 2001, 125: 1406-1418
    Doan D.N.P., Rudi H., and Olsen O.A. The allosterically unregulated isoform of ADPglucose pyrophosphorylase from barley endosperm is the most likely source of ADPglucose incorporated into endosperm starch. Plant Physiol. 1999, 121: 965-975
    Duncan K.A., Hardin S.C., and Huber S.C. The three maize sucrose synthase isoforms differ in distribution, localization, and phosphorylation. Plant Cell Physiol. 2006, 47: 959-971
    Duncan D.R.,Williams M.E., Zehr B.E., and Widholm J.M. The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 1985, 165: 322-332
    Dunder E., Dawson J., Suttie J., and Page G. Maize transformation by microprojectile bombardment of immature embryos. In: Potrykus I, Spangenberg G (eds) Gene transfer to plants. Springer, Berlin Heidelberg New York, 1995, pp. 127-138
    Eisen M.B., Spellman P.T., Brown P.O., and Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 1998, 95: 14863-14868
    Emanuelsson O., Nielsen H., Brunak S., and von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000, 300: 1005-1016
    FAOSTAT. FAOSTAT statistical database. Food and Agriculture Organization of the United Nations, 2004, Rome. Available at: apps.fao.org/faostat/form?collection=Production. FAOSTAT. Food and Agriculture Orgnization of the United Nations, 2006, http://www.fao.org/waicent/portal/statistics_zh.asp
    Finkelstein R.R. and Gibson S.I. ABA and sugar interactions regulating development: ‘cross-talk’or‘voices in a crowd’? Curr. Opin. Plant Biol. 2002, 5: 26-32
    Finnie C., Borch J., and Collinge D.B. 14-3-3 proteins: eukaryotic regulatory proteins with many functions. Plant Mol. Biol. 1999, 40: 545-554
    Fraley R.T., Rogers S.G., Horsch R.B., Sanders P.R., Flick J.S., Adams S.P., Bittner M.L., Brand L.A., Fink C.L., Fry J.S., Galluppi G.R., Goldberg S.B., Hoffmann N.L., and Woo S.C. Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 1983, 80: 4803-4807
    Frame B., McMurray J., Fonger T.M., Main M., Torney F., Margie P., Taylor K., and Wang K. Agrobacterium-mediated stable transformation of multiple maize inbred lines using a standard binary vector system. Annu. Maize Genet. Conf. Proc. 2005, Abstr 47: 68
    Frame B.R., Drayton P.R., Bagnall S.V., Lewnau C.J., Bullock W.P., Wilson H.M., Dunwell J.M., Thompson J.A., and Wang K. Production of fertile transgenic maize plants by siliconcarbide whisker-mediated transformation. Plant J. 1994, 6: 941-948
    Frame B.R., Shou H., Chikwamba R.K., Zhang Z., Xiang C., Fonger T.M., Pegg S.E.K., Li B., Nettleton D.S., Pei D., and Wang K. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 2002, 129: 13-22
    Frame B.R., Zhang H., Cocciolone S.M., Sidorenko L.V., Dietrich C.R., Pegg S.E., Zhen S., Schnable P., and Wang K. Production of transgenic maize from bombarded type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell Dev. Biol. Plant 2000, 36: 21-29
    Francis D. The plant cell cycle-15 years on. New Phytologist 2007, 174: 261-278
    Fromm M., Morrish F., Armstrong C., Williams R., Thomas J., and Klein T.M. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 1990, 8: 833-839
    Fromm M.E., Taylor L.P., and Walbot V. Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. USA 1985, 82: 5824-5828
    Fromm M.E., Taylor L.P., and Walbot V. Stable transformation of maize after gene transfer by electroporation. Nature 1986, 319: 791-793
    Fu Y., Ballicora M.A., Leykam J.F., and Preiss J. Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase. J. Biol. Chem. 1998, 273: 25045-25052
    Fuerst R., Soni R., Murray J.A.H., and Lindsey K. Modulation of cyclin transcript levels in cultured cells of Arabidopsis thaliana. Plant Physiol. 1996, 112: 1023-1033
    Fujita N., Yoshida M., Asakura N., Ohdan T., Miyao A., Hirochika H., and Nakamura Y. Functin and characterization of starch synthase I using mutants in rice. Plant Physiol. 2006, 140: 1070-1084
    Gao M., Wanat J., Stinard P.S., James M.G., and Myers A.M. Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell 1998, 10: 399-412
    Gelvin S.B. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol. Biol. 2000, 51: 223-256
    Gelvin S.B. Improving plant genetic engineering by manipulating the host. Trends Biotechnol. 2003, 21: 95-98
    Ghassemian M., Nambara E., Cutler S., Kawaide H., Kamiya Y., and McCourt P. Regulationof abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 2000, 12: 1117-1126
    Gibson S.I., Laby R.J., and Kim D. The sugar-insensitive 1 (sis1) mutant of Arabidopsis is allelic to ctr1. Biochem. Bioph. Res. Co. 2001, 280: 196-203
    Giroux M.J. and Hannah L.C. ADPGlc pyrophosphorylase in shrunken2 and brittle2 mutants of maize. Mol. Gen. Genet. 1994, 243: 400-408
    Giroux M.J., Shaw J., Barry G., Cobb B.G., Greene T., Okita T., and Hannah L.C. A single gene mutation that increases maize seed weight. Proc. Natl. Acad. Sci. USA 1996, 93: 5824-5829
    Glawischnig E., Gierl A., Tomas A., Bacher A., and Eisenreich W. Starch biosynthesis and intermediary metabolism in maize kernels. Quantitative analysis of metabolite flux by nuclear magnetic resonance. Plant Physiol. 2002, 130: 1717-1727
    Goddijn O. and Smeekens S. Sensing trehalose biosynthesis in plants. Plant J. 1998, 14: 143-146
    Gordon-Kamm W.J., Spencer T.M., Mangano M.L., Adams T.R., Daines R.J., Start W.G.O., Brien J.V., Chambers S.A.,Whitney J., Adams R., Willetts N.G., Rice T.B., Mackey C.J., Krueger R.W., Kausch A.P., and Lemaux P.G. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 1990, 2:603-618
    Gould J., Devey M., Hasegawa O., Ulian E.C., Peterson G., and Smith R.H. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 1991, 95: 42634
    Graham I.A., Denby J.K., and Leaver C.J. Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 1994, 6: 761-772
    Green C.E. and Phillips R.L. Plant regeneration from tissue cultures of maize. Crop Sci. 1975, 15: 417-427
    Greene T.W. and Hannah L.C. Assembly of maize endosperm ADPGlc pyrophosphorylase requires motifs located throughout the large and small subunit units. Plant Cell 1998a, 10: 1295-1306
    Greene T.W. and Hannah L.C. Enhanced stability of maize endosperm ADPGlc pyrophosphorylase is gained through mutants that alter subunit interactions. Proc. Natl.Acad. Sci. USA 1998b, 95: 13342-13347
    Grimsley N., Hohn B., Hohn T., and Walden R. Agroinfection an alternative route for viral infection of plants by using the Ti plasmid. Proc. Natl. Acad. Sci. USA 1986, 83: 3282-3286
    Halford N.G. and Hardie D.G. SNFI-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol. Biol. 1998, 37: 735-748
    Halford N.G., Hey S., Jhurreea D., Laurie S., McKibbin R. S., Paul M., and Zhang Y. Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. J. Exp. Bot. 2003, 54: 467-475
    Hanashiro I., Itoh K., Kuratomi Y., Yamazaki M., Igarashi T., Matsugasako J-i., and Takeda Y. Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit-chains of amylopectin in rice. Plant Cell Physiol. 2008, 49: 925-933
    Hannah L.C. Starch synthesis in the maize endosperm. In: Larkins BA, Vasil IK (eds) Advances in Cellular and Molecular Biology of Plants. Cellular and Molecular Biology of Plant Seed Development. Kluwer Academic Publishers, Dordrecht, The Netherlands 1997, 4: 375-405
    Hannah L.C. Starch synthesis in the maize endosperm. Maydica 2005, 50: 497–506
    Hannah L.C. and Nelson O.E. Characterization of ADPGlc pyrophosphorylase from shrunken-2 and brittle-2 mutants of maize. Biochem. Genet. 1976, 14: 547-560
    Hannah L.C., Shaw J.R., Giroux M., Reyss A., Prioul J.L., Bae J.M., and Lee J.Y. Maize genes encoding the small subunit of ADPGlc pyrophosphorylase. Plant Physiol. 2001, 127: 173-183
    Hardie D.G., Carling D., and Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of theeukaryotic cell? Annu. Rev. Biochem. 1998, 67: 821-855
    Hardin S.C., Winter H., and Huber S.C. Phosphorylation of the amino terminus of maize sucrose synthase in relation to membrane association and enzyme activity. Plant Physiol. 2004, 134: 1427-1438
    Healy J.M.S., Menges M., Doonan J.H., and Murray J.A.H. The Arabidopsis D-type cyclins CycD2 and CycD3 both interact in vivo with the PSTAIRE cyclin-dependent kinase Cdc2a but are differentially controlled. J. Biol. Chem. 2001, 276: 7041-7047
    Hennen-Bierwagen T.A., Liu F., Marsh R.S., Kim S., Gan Q., Tetlow I.J., Emes M.J., James M.G., and Myers A.M. Starch biosynthetic enzymes from developing zea mays endosperm associate in multisubunit complexes. Plant Physiol. 2008, 146: 1892-1908
    Herrera-Estrella L., Depicker A., Van Montagu M., and Schell J. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 1983, 303: 209-213
    Hiei Y., Ohta S., Komari T., and Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 1994, 6: 271-282
    Prestridge D.S. SIGNAL SCAN: A computer program that scans DNA sequences for eukaryotic transcriptional elements. CABIOS 1991, 7: 203-206
    Hirose T. and Herao T. A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.). Planta 2004, 220: 9-16
    Hohmann S., Winderickx J., de Winde J.H., Valckx D., Cobbaert P., Luyten K., de Meirsman C., Ramos J., and Thevelein J.M. Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2. Microbiology 1999, 145: 703-714
    Horton P., Park K.J., Obayashi T., and Nakai K. Protein subcellular localization prediction with WoLF PSORT. Proceedings of the Fourth Annual Asia Pacific Bioinformatics Conference APBC06, Taipei, Taiwan, 2006, pp. 39-48
    Huang X. and Wei Z. Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tissue Organ. Cult. 2005, 83: 187-200
    Hunold R., Bronner R., and Hahne G. Early events in microprojectile bombardment: cell viability and particle location. Plant J. 1994, 5: 593-604
    Hwang H.H., and Gelvin S.B. Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 2004, 16: 3148-3167
    Ishida Y., Saito H., Ohta S., Hiei Y., Komari T., and Kumashiro T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotechnol. 1996, 14: 745-750
    Yuji I., Yukoh H., and Toshihiko K. Agrobacterium-mediated transformation of maize. Nat. Protocol 2007, 2: 1614-1621
    James C. Preview: global status of commercialized biotech/GM crops: 2004. International Service for the Acquisition of Agri-Biotech Applications Briefs 32
    James M.G., Denyer K., and Myers A. Starch synthesis in the cereal endosperm. Curr. Opin. Plant Biol. 2003, 6: 215-222
    James M.G., Robertson D.S., and Myers A.M. Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 1995, 7: 417-429
    Jang J.C., León P., Zhou L., and Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell 1997, 9: 5-19
    Jang J.C. and Sheen J. Sugar sensing in higher plants. Trends Plant Sci. 1997, 2: 208-214
    Jang J.C. and Sheen J. Sugar sensing in higher plants. Plant Cell 1994, 6: 1665-1679
    Jefferson L.S. and Kimball S.R. Amino Acid Regulation of Gene Expression. J. Nutr. 2001, 131: 2460S-2466S
    Jefferson L.S. and Kimball S.R. Amino Acids as Regulators of Gene Expression at the Level of mRNA Translation. J. Nutr. 2003, 133: 2046S-2051S
    Jenuwein T., and Allis C.D. Translating the histone code. Science 2001, 293: 1074-1080
    Johnson L.A. Corn, the major cereal of the americas. In: Kulp K, Ponte J (eds) Handbook of cereal science and technology. Dekker, New York, 2000, pp. 31-80
    Kaeppler H.F., Gu W., Somers D.A., Rines H.W., and Cockburn A.F. Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep. 1990, 9: 415-418
    Kaeppler H.F., Somers D.A., Rines H.W., and Cockburn A.F. Silicon carbide fiber-mediated stable transformation of plant cells. Theor. Appl. Genet. 1992, 84: 560-566
    Kammerer B., Fischer K., Hilpert B., Schubert S., Gutensohn M., Weber A., and Flügge U-I. Molecular Characterization of a Carbon Transporter in Plastids from Heterotrophic Tissues: The Glucose 6-Phosphate/Phosphate Antiporter. Plant Cell 1998, 10: 105-117
    Kausch A.P., Adams T.R., Mangano M., Zachwieja S.J., Gordon-Kamm W., Daines R., Willets N.G., Chambers S.A., Adams W.J., and Anderson A. Effects of microprojectile bombardment on embryogenic suspension cell cultures of maize (Zea mays L.) used for genetic transformation. Planta 1995, 196: 501-509
    Ki H. Microarray Data Analysis Methods Comparison: A Review. Biochemistry 2003, 218 Project, hmkey@stanford.edu
    Kim K.N., Fisher D.K., Gao M., and Guiltinan M.J. Molecular cloning and characterization of the Amylose-Extender gene encoding starch branching enzyme IIB in maize. Plant Mol. Biol. 1998, 38: 945-956
    Kimball S.R. and Jefferson L.S. New functions for amino acids: effects on gene transcription and translation. Am. J. Clin. Nutr. 2006, 83: 500S-507S
    Kimball S.R. and Jefferson L.S. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J. Nutr. 2006, 136: 227S-231S
    Klein T.M., Fromm M., Weissinger A., Tomes D., Schaaf S., Sletten M., and Sanford J.C. Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc. Natl. Acad. Sci. USA 1988, 85: 4305-4309
    Klein T.M., Kornstein L., Sanford J.C., and Fromm M.E. Genetic transformation of maize cells by particle bombardment. Plant Physiol. 1989, 91: 440-444
    Klein T.M., Wolf E.D., Wu R., and Sanford J.C. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 1987, 327: 70-73
    Kleinhofs A. and Behki R. Prospects for plant genome modification by nonconventional methods. Annu. Rev. Genet. 1977, 11: 79-101
    Koch K.E. Carbohydrate modulated gene expression in plants. Annu. Rev. Plant Phys. Plant Mol. Biol. 1996, 47: 509-540
    Koch K.E., Ying Z., Wu Y., and Avigne W.T. Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism. J. Exp. Bot. 2000, 51: 417-427
    Koch K.E. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 2004, 7: 235-246
    Kohli A., Leech M., Vain P., LaurieD.A., and Christou P. Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc. Natl. Acad. Sci. USA 1998, 95: 7203-7208
    Kohli A., Twyman R.M., Abranches R., Wegel E., Stoger E., and Christou P. Transgene integration, organization and interaction in plants. Plant Mol. Biol. 2003, 52: 247-258
    Kohonen T. Self Organizing Maps. Springer , Berlin 1995
    Kole C. (Ed.) Genome Mapping and Molecular Breeding in Plants, Volume 1 Cereals and Millets . Springer-Verlag Berlin Heidelberg 2006
    Komari T. and Kubo T. Methods of genetic transformation: Agrobacterium tumefaciens. In: Vasil IK (ed) Molecular improvement of cereal crops. Kluwer Academic, Dordrecht, 1999, pp. 43-82
    Kooperberg C., Fazzio T.G., and Delrow J.J. Improved background correction for spotted cDNA microarray. J. Comput. Bil. 2002, 9: 55-66
    Koziel M.G., Beland G.L., Bowman C., Carozzi N.B., Crenshaw R., Crossland L., Dawson J., Desai N., Hill M., Kadwell S., Launis K., Lewis K., Maddox D., McPherson K., Meghji M.R., Merline E., Rhodes R., Warren G.W., Wright M., and Evola S.V. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 1993, 11: 194–200
    Laby R.J., Kincaid M.S., Kim D., and Gibson S.I. The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J. 2000, 23: 587-596
    Lalonde S., Boles E., Hellmann H., Barker L., Patrick J.W., Frommer W.B., and Ward J. M. The dual function of sugar carriers: transport and sugar sensing. Plant Cell 1999, 11: 707-726
    Laursen C.M., Krzyzek R.A., Flick C.E., Anderson P.C., and Spencer T.M. Production of fertile transgenic maize by electroporation of suspension culture cells. Plant Mol. Biol. 1994, 24: 51-61
    Ledoux L. and Huart R. Integration and replication of DNA of M. lysodeikticus in DNA of germinating barley. Nature 1968, 218: 1256-1259
    Lee M. and Phillips R. Genomic rearrangements in maize induced by tissue culture. Genome 1987, 29: 122-128
    Li W., Masilamany P., Kasha K.J., and Peter P.K. Developmental, tissue culture, and genotypic factors affecting plant regeneration from shoot apical merstems of germinated (Zea mays L.) seedlings. In Vitro Cell Dev. Biol. Plant 2002a, 38: 285-292
    Li W., Masilamany P., Kasha K.J., and Peter P.K. Agrobacterium tumefaciens-mediatedtransformation of corn multi-shoot cultures. In: IAPTC&B (ed) Tenth IAPTC&B congress proceedings. IAPTC&B, Orlando, Abstr 2002b, P-1416
    Livak K.J. and Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25: 402-408
    Lorbiecke R., Steffens M., Tomm J.M., Scholten S., Wiegen P., Kranz E., Wienand U., Sauter M. Phytosulphokine gene regulation during maize (Zea mays L.) reproduction. J. Exp. Bot. 2005, 56: 1805-1819
    Loreti E., Alpi A., and Perata P. Glucose and disaccharide-sensing mechanisms modulate the expression ofα-amylase in barley embryos. Plant Physiol. 2000, 123: 939-948
    Loreti E., Bellis L.D., Alpi A., and Perata P. Why and how do plant cells sense sugars? Ann. Bot. 2001, 88: 803-812
    Lowe B.A., Way M.M., Kumpf J.M., Rout J.R., Johnson R., Warner D., Armstrong C., Spencer T.M., and Chomet P.S. Development of a transformation competent elite maize line by marker assisted breeding. World Congr In Vitro Biol. 2004, 40: P-2030
    Lowe K., Bowen B., Hoerster G., Ross M., Bond D., Pierce D.A., and Gordon K.W. Germline transformation of maize following manipulation of chimeric shoot meristems. Bio/Technology 1995, 13: 677-6782
    Lytovchenko A., Sonnewald U., and Fernie A.R. The complex network of non-cellulosic carbohydrate metabolism. Curr. Opin. Plant Biol. 2007, 10: 227-235
    Ma J., Morrow D.J., Fernandes J., and Walbot V. Comparative profiling of the sense and antisense transcriptome of maize lines. Genome Biology 2006, 7: R22
    Makarevitch I., Svitashev S.K., and Somers D.A. Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant Mol. Biol. 2003, 52: 421-432
    Martin C. and Smith A.M. Starch biosynthesis. Plant Cell 1995, 7: 971-985
    Martin T., Hellmann H., Schmidt R., Willmitzer L., and Frommer W.B. Identification of mutants in metabolically regulated gene expression. Plant J. 1997, 11: 53-62
    Mayerhofer R., Koncz-Kalman Z., Nawrath C., Bakkeren G., Crameri A., Angelis K., Redei G.P., Schell J., Hohn B., and Koncz C. T-DNA integration: a mode of illegitimate recombination in plants. EMBO J. 1991, 10: 697-704
    Mayordomo I. and Sanz P. Hexokinase PII: structural analysis and glucose signaling in the yeast Saccharomyces cerevisiae. Yeast 2001, 18: 923-930
    Mironov V., De. Veylder L., Van. Montagu M., and InzéD. Cyclin-dependent kinases and cell division in higher plants-the nexus. Plant Cell 1999, 11: 509-521
    Moore B.D. and Sheen J. Plant sugar sensing and signaling: a complex reality. Trends Plant Sci. 1999, 4: 250
    Moore B.D., Zhou L., Rolland F., Hall Q., Cheng W.H., Liu Y.X., Hwang I., Jones T., and Sheen J. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 2003, 300: 332-336
    Morell M.K., Blennow A., Kosar-Hashemi B., and Samuel M.S. Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm. Plant Physiol. 1997, 113: 201-208
    Morgan B.J.T. and Ray A.P.G. Non-uniqueness and inversions in cluster analysis. Appl. Stat. 1995, 44: 117
    Múller J., Wiemken A., and Aeschbacher R.A. Trehalose metabolism in sugar sensing and plant development. Plant Sci. 1999, 147: 37-47
    Myers A.M., Morell M.K., James M.G., and Ball S.G. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol. 2000, 122: 989-997
    Mysore K.S., Nam J., and Gelvin S.B. An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc. Natl. Acad. Sci. USA 2000, 97: 948-953
    Nakayama M., Kikuno R., and Ohara O. Protein–protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs. Genome Research 2002, 12: 1773-1784
    Nelson O.E. and Pan D. Starch synthesis in maize endosperms. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1995, 46: 475-496
    Nelson O.E. and Rines H.W. The enzymatic deficiency in the waxy mutant of maize. Biochem. Biophys. Res. Commun. 1962, 9: 297-300
    Nishi A., Nakamura Y., Tanaka N., and Satoh H. Biochemical and genetic effects of amylose-extender mutation in rice endosperm. Plant Physiol. 2001, 127: 459-472 O’Connor-Sanchez A., Cabrera-Ponce J.L., Valdez-Melara M., Tellez-Rodriguez P., Pons-Hernandez J.L., and Herrera-Estrella L. Transgenic maize plants of tropical and subtropical genotypes obtained from calluses containing organogenic and embryogenic-like structures derived from shoot tips. Plant Cell Rep. 2002, 21: 302-312
    Ohdan T., Francisco P.B., Jr, Sawada T., Hirose T., Terao T., Satoh H., and Nakamura Y. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J. Exp. Bot. 2005, 56: 3229-3244
    Ohto M., Onai K., Furukawa Y., Aoki E., Araki T., and Nakamura K. Effects of sugar on vegetative development and floral transition in Arabidopsis thaliana. Plant Physiol. 2001, 127: 252-261
    Olhoft P.M. and Somers D.A. L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep. 2007, 20: 706-711
    Olsen O.A. Endosperm, Plant Cell Monogr (8) DOI 10.1007/7089_2007_116/ Published online. Springer-Verlag Berlin Heidelberg 2007
    Pareddy D. and Petolino J. Maize transformation via helium blasting. Maydica 1997, 42: 143-154
    Paul M. Trehalose-6-phosphate. Curr. Opin. Plant Biol. 2007, 10: 303-309
    Perata P., Matsukura C., Vernieri P., and Yamaguchi J. Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell 1997, 9: 2197-2208
    Perry R.P. Balanced production of ribosomal proteins. Gene 2007, 401: 1-3
    Pescitelli S.M. and Sukhapinda K. Stable transformation via electroporation into maize type II callus and regeneration of fertile transgenic plants. Plant Cell Rep. 1995, 14: 712-716
    Petolino J.F., Hopkins N.L., Kosegi B.D., and Skokut M. Whisker-mediated transformation of embryogenic callus of maize. Plant Cell Rep. 2000, 19: 781-786
    Preiss J., Ball K., Hutney J., Smith-White B., Li L., and Okita T.W. Regulatory mechanisms involved in the biosynthesis of starch. Pur. Appl. Chem. 1991, 63: 535-544
    Preiss J. and Levi C. Starch biosynthesis and degradation. In: Preiss J (ed) The Biochemistry of Plants, vol 3. Academic Press, New York, 1980, pp. 371-423
    Preiss J. and Romeo T. Physiology, biochemistry and genetics of bacterial glycogen synthesis. Adv. Microbiol. Phys. 1989, 30: 183-238
    Prestridge D.S. SIGNAL SCAN: A computer program that scans DNA sequences foreukaryotic transcriptional elements. CABIOS 1991, 7: 203-206
    Prioli L.M. and Sondahl M.R. Plant regeneration and recovery of fertile plants from protoplasts of maize (Zea mays L). Bio/Technology 1989, 7: 589-594
    Purcell P.C., Smith A.M., and Halford N.G. Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucroseinducibility of sucrose synthase transcripts in leaves. Plant J. 1998, 14: 195-202
    Quirino B.F., Reiter W.D., and Amasino R.D. One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence associated. Plant Mol. Biol. 2001, 46: 447-457
    Ral J-P., Colleoni C., Wattebled F., Dauvillee D., Nempont C., Deschamps P., Li Z., Morell M.K., Chibbar R., Purton S., d’Hulst C., and Ball S.G. Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii. Plant Physiol. 2006, 142: 305-317
    Randolph-Anderson B., Boynton J.E., Dawson J., Dunder E., Eskes R., Gillham N.W., Johnson A., Perlman P.S., Suttie J., and Heiser W.C. Sub-micron gold particles are superior to larger particles for efficient Biolistic transformation of organelles and some cell types. Bio-Rad Tech Bull 2015, 1997
    Regina A., Bird A., Topping D., Bowden S., Freeman J., Barsby T., Kosar-Hashemi B., Li Z., Rahman S., and Morell M. High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc. Natl. Acad. Sci. USA 2006, 103: 3546-3551
    Register J.C., Peterson D.J., Bell P.J., Bullock W.P., Evans I.J., Frame B., Greenland A.J., Higgs N.S., Jepson I., Jiao S., Lewnau C.J., Silick J.M., and Wilson H.M. Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol. Biol. 1994, 25: 951-961
    Reimers M. Statistical analysis of microarray data. Addict Biol. 2005, 10: 23-35
    Reiner A., Yekutieli D., and Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 2003, 19: 368-375
    Rhodes C.A., Pierce D.A., Mettler I.J., Mascarenhas D., and Detmer J.J. Genetically transformed maize plants from protoplasts. Science 1988, 240: 204-207
    Riou-Khamlichi C., Menges M., Healy J.M.S., and Murray J.A.H. Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol. Cel. Biol. 2000, 20: 4513-4521
    Ritchie S.W., Liu C.N., Sellmer J.C., Kononowicz H., Hodges T.K., and Gelvin S.B. Agrobacterium tumefaciens-mediated expression of gusA in maize tissues. Transgenic Res. 1993, 2: 252-265
    Rodnina M.V., Beringer M., and Wintermeyer W. "How ribosomes make peptide bonds". Trends Biochem. Sci. 2007, 32: 20-26
    Roldan M., Gomez-Mena C., Ruiz-Garcia L., Salinas J., and Martinez-Zapater J.M. Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant J. 1999, 20: 581-590
    Rolland F., Moore B., and Sheen J. Sugar sensing and signaling in plants. A Special Issue on Signal Transduction. Plant Cell, 2002, 185S -205S
    Rolland F., Winderickx J., and Thevelein J.M. Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem. Sci. 2001, 26: 310-317
    Rook F., Corke F., Card R., Munz G., Smith C., and Bevan M.W. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signaling. Plant J. 2001, 26: 421-433 Rook F., Gerrits N., Kortstee A., van Kampen M., Borrias M., Weisbeek P., and Smeekens S. Sucrose-specific signaling represses the translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J. 1998, 15: 253-263
    Rudi H., Doan D.N., and Olsen O.A. A (his) 6-tagged recombinant barley (Hordeum vulgare L.) endosperm ADP- glucose pyrophosphorylase expressed in the baculovirusinsect cell system is insensitive to allosteric regulation by 3-phosphoglycerate and inorganic phosphate. FEBS Lett. 1997, 419: 124-130
    Russell J.A., Roy M.K., and Sanford J.C. Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol. 1992, 98: 1050-1056
    Sairam R.V., Parani M., Franklin G., Lifeng Z., Smith B., MacDougall J., Wilber C., Sheikhi H., Kashikar N., Meeker K., Al-Abed D., Berry K., Vierling R., and Goldman S.L. Shoot meristem: an ideal explant for Zea mays L. transformation. Genome 2003, 46: 323-329
    Sakulsingharoj C., Choi S-B., Hwang S-K., Edwards G.E., Bork J., Meyer C.R., Preiss J., and Okita T.W. Engineering starch biosynthesis for increasing rice seed weight: the role of the cytoplasmic ADPGlc pyrophosphorylase. Plant Sci. 2004, 167: 1323-1333
    Satoh H., Nishi A., Yamashita K., Takemoto Y., Tanaka Y., Hosaka Y., Sakurai A., Fujita N., and Nakamura Y. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol. 2003, 133: 1111-1121
    Schena M., Shalon D., and Davis R.W. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270: 467-470
    Schindler I., Renz A., Schmid F.X., and Beck E. Activation of spinach pullulanase by reduction results in a decrease in the number of isomeric forms. Biochimica et Biophsica Acta 2001, 1548: 175-186
    Schlappi M. and Hohn B. Competence of immature maize embryos for Agrobacterium-mediated gene transfer. Plant Cell 1992, 4: 7-16
    Sehnke P.C., Chung H.J., Wu K., and Ferl R.J. Regulation of starch accumulation by granule associated plant 14-3-3 proteins. Proc. Natl. Acad. Sci. USA 2001, 98: 765-770
    Sehnke P.C. and Ferl R.J. 14-3-3 protein: effectors of enzyme function. Annual Plant Reviews 2002, 7: 53-76
    Shannon J.C., Pien F.M., Cao H., and Liu K.C. Brittle-1, an adenylate translocator, facilitates transfer of extraplastidial synthesized ADPGlc into amyloplasts of maize endosperms. Plant Physiol. 1998, 117: 1235-1252
    Shannon J.C., Pien F.M., and Liu K.C. Nucleotides and nucleotide sugars in developing maize endosperms: synthesis of ADPGlc in brittle-1. Plant Physiol. 1996, 110: 835-843
    Sheen J. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol. 2001, 127: 1466-1475
    Sheen J., Zhou L., and Jang J.C. Sugar as a signaling molecules. Curr. Opin. Plant Biol. 1999, 2: 410-418
    Shen W.H., Escudero J., Schlapi M., Ramos C., Hohn B., and Koukolikoviá-Nicola Z. T-DNA transfer to maize cells: histochemical investigation ofβ-glucuronidase activity in maize tissues. Proc. Natl. Acad. Sci. USA 1993, 90: 1488-1492
    Shillito R.D., Carswell G.K., Johnson C.M., DiMaio J.J., and Harms C.T. Regeneration offertile plants from protoplasts of elite inbred maize. Bio/Technology 1989, 7: 581-587
    Shou H., Frame B., Whitham S., and Wang K. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol. Breed 2004, 13: 201-208
    Shulze W., Weise A., Frommer W.B., and Ward J.M. Function of the cytosolic N-terminus of sucrose transporter AtSUT2 in substrate affinity. FEBS Lett. 2000, 485: 189-194
    Shurvinton C.E., Hodges L., and Ream W. A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 endonuclease are important for tumor formation. Proc. Natl. Acad. Sci. USA 1992, 89: 11837-11841
    Small I., Peeters N., Legeai F., and Lurin C. Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 2004, 4: 1581-1590
    Smeekens S. Sugar regulation of gene expression in plants. Curr. Opin. Plant Biol. 1998, 1: 230-234
    Smeekens S. Sugar-induced signal transduction in plants. Annu. Rev. Plant Phys. Plant Mol. Biol. 2000, 51: 49-81
    Smidansky E.D., Clancy M., Meyer F.D., Lanning S.P., Blake N.K., Talbert L.E., and Giroux M.J. Enhanced ADPGlc pyrophosphorylase activity in wheat endosperm increases seed yield. Proc. Natl. Acad. Sci. USA 2002, 99: 1724-1729
    Smidansky E.D., Martin J.M., Hannah L.C., Fischer A.M., and Giroux M.J. Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADPglucose pyrophosphorylase. Planta 2003, 216: 656-664
    Smith A.M. The biosynthesis of starch granules. Biomacromolecules 2001, 2: 335-341 Smith A.M., Denyer K., and Martin C. The synthesis of the starch granule. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48: 67-87
    Smith E.F. and Townsend C.O. A plant-tumor of bacterial origin. Science 1907, 25: 671-673
    Songstad D.D., Armstrong C.L., Petersen W.L., Hairston B., and Hinchee M.A. Production of transgenic maize plants and progeny by bombardment of Hi-II immature embryos. In Vitro Cell Dev. Biol. 1996, 32: 179-183
    Springer N.M. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8308, 2007
    Strahl B.D. and Allis C.D. The language of covalent histone modifications. Nature 2000, 403:41-45
    Stark D.M., Timmerman K.P., Barry G., Preiss J., and Kishore G.M. Regulation of the amount of starch in plant tissues by ADPGlc pyrophosphorylase. Science 1992, 258: 287-292
    Steve J. Improving starch for food and industrial applications. Curr. Opin. Plant Biol. 2004, 7: 210-218
    Stroun M., Anker P., Charles P., and Ledoux L. A biochemical and cytological study of the penetration of deoxyribonucleic acid in plants. Arch. Int. Physiol. Biochem. 1966, 74: 320-321
    Stroun M., Anker P., Charles P., and Ledoux L. Translocation of DNA of bacterial origin in Lycopersicum esculentum by ultracentrifugation in caesium chloride gradient. Nature 1967b, 215: 975-976
    Stroun M., Anker P., and Ledoux L. DNA replication in Solanum lycopersicumesc after absorption of bacterial DNA. Curr. Mod. Biol. 1967a, 1: 231-234
    Stupar R.M. and Springer N.M. Cis-transcriptional variation in maize inbred lines b73 and mo17 leads to additive expression patterns in the F1 hybrid. Genetics 2006, 173: 2199-2210
    Stupar R.M., Hermanson P.J., and Springer N.M. Nonadditive expression and earent-of-origin effects identified by microarray and allele-specific expression profiling of maize endosperm. Plant Physiol. 2007, 145: 411-425
    Subbaiah C.C., Palaniappan A., Duncan K., Rhoads .DM., Huber S.C., and Sachs M.M. Mitochondrial localization and putative signaling function of sucrose synthase in maize. J. Biol. Chem. 2006, 281: 15625-15635
    Sullivan T.D., Strelow L.I., Illingworth C.A., Phillips R.L., and Nelson O.E. J. The maize brittle-1 locus: molecular characterization based on DNA clones isolated using the dSpm-tagged brittle-1-mutable allele. Plant Cell 1991, 3: 1337-1348
    Sun C., Hoglund A-S., Olsson H., Mangelsen E. and Jansson C. Antisense oligodeoxynucleotide inhibition as a potent strategy in plant biology: identification of SUSIBA2 as a transcriptional activator in plant sugar signaling. Plant J. 2005, 44: 128-138
    Sun C., Palmqvist S., Olsson H., Borén M., Ahlandsberg S., and Jansson C. A Novel WRKY Transcription Factor, SUSIBA2, Participates in Sugar Signaling in Barley by Binding to theSugar-Responsive Elements of the iso1 Promoter. Plant Cell 2003, 15: 2076-2092
    Swanson-Wagner R.A., Jia Y., DeCook R., Borsuk L.A., Nettleton D., and Schnable P.S. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci USA 2006, 103 : 6805-6810
    Tavazoie S., Hughes J.D., Campbell M.J., Cho R.J., and Church G.M. Systemaic determination of genetic network architecture. Nat. Genetics 1999, 22:281-285
    Tetlow I.J., Morell M.K., and Emes M.J. Recent developments in understanding the regulation of starch metabolism in higher plants. J. Exp. Bot. 2004, 55: 2131-2145
    Tetlow I.J.,Wait R., Lu Z., Akkasaeng R., Bowsher C.G., Esposito S., Kosar-Hashemi B., Morell M.K., and Emes M.J. Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell 2004, 16: 694-708
    Thorbjornsen T., Villand P., Denyer K., Olsen O., and Smith A.M. Distinct isoforms of ADPglucose pyrophosphorylase occur inside and outside the amyloplast in barley endosperm. Plant J. 1996b, 10: 243-250
    Thorbjornsen T., Villand P., Leszek A., Kleczkowski L., and Olsen O.A. A single gene encodes two different transcripts for the ADPGlc pyrophos-phorylase small subunit from barley (Hordeum vulgare). Biochem. J. 1996a, 313: 149-154
    Tiessen A., Hendriks J.H.M., Stitt M., Branscheid A., Gibon Y., Farre E.M., and Geigenberger P. Starch synthesis in potato tuber is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase. Plant Cell 2002, 14: 2191-2213
    Tiessen A., Prescha K., Branscheid A., Palacios N., McKibbin R., Halford N.G., and Geigenberger P. Evidence that SNF1-related kinase and hexokinase are involved in separate sugar-signalling pathways modulating post-translational redox activation of ADPglucose pyrophosphorylase in potato tubers. Plant J. 2003, 35: 490-500
    Torney F., Frame B., and Wang K. Biotechnology in Agriculture and Forestry, Vol. 59 Transgenic Crops IV (ed. by E.C. Pua and M.R. Davey). Springer-Verlag Berlin Heidelberg 2007
    Triman K.L. Mutational analysis of the ribosome. Adv. Genet. 2007, 58: 89-119
    Tzfira T., Vaidya M., and Citovsky V. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity.EMBO J. 2001, 20: 3596-3607
    Vain P., McMullen M.D., and Finer J.J. Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 1993b, 12: 84-88
    van de Sande K., Pawlowski K., Czaja I., Wieneke U., Schell J., Schmidt J., Walden R., Matvienko M., Wellink J., van Kammen A., Franssen H., and Bisseling T. Modification of phytohormone response by a peptide encoded by ENOD40 of legumes and a nonlegume. Science 1996, 273: 370-373
    Vasil I.K., Hildebrandt A.C., and Riker A.J. Endive plantlets from freely suspended cells and cell groups grown in vitro. Science 1964, 146: 76-77
    Vasil V. and Hildebrandt A.C. Differentiation of tobacco plants from single, isolated cells in microcultures. Science 1965, 150: 889-892
    Walters D.A., Vetsch C.S., Potts D.E., and Lundquist R.C. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol. Biol. 1992, 18: 189-200
    Wan Y., Widholm J.M., and Lemaux P.G. Type I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.). Planta 1995, 196: 7-14
    Wang K., Frame B., and Marcell L. Genetic transformation of maize. In: Jaiwal PK, Singh R (eds) Plant genetic engineering. Sci. Tech. Houston, 2003, pp. 175-217
    Wang Y.J., White P., Pollak L., and Jane J. Characterization of starch structures of 17 maize endosperm mutant genotypes with oh43 inbred line background. Cereal Chem. 1993, 70: 171-179
    Woese C.R., Olsen G.J., Ibba M., and S?ll D. Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process. Microbiol. Mol. Biol. Rev. 2000, 64: 202-236
    Wu C., Colleoni C., Myers A.M., and James M.G. Enzymatic properties and regulation of ZMPU1, the maize pullulanase-type starch debranching enzyme. Arch. Biochem. Biophys. 2002, 406: 21-32
    Xiao W., Sheen J., and Jang J.C. The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol. Biol. 2000, 44: 451-461
    Yamakawa H., Hirose T., Kuroda M., and Yamaguchi T. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. PlantPhysiol. 2007, 144: 258-277
    Yang H., Matsubayashi Y., Nakamura K., and Sakagami Y. Oryza sativa PSK gene encodes a precursor of phytosulfokine-α, a sulfated peptide growth factor found in plants. Proc. Natl. Acad. Sci. USA 1999, 96: 13560-13565
    Yao Y., Thompson D., and Guiltinan M. Maize starch-branching enzymeisoforms and amylopectin structure. In the absence of starch-branching enzyme IIb, the further absence of starch-branching enzyme Ia leads to increased branching. Plant Physiol. 2004, 136: 3515-3523
    Yeung K.Y., Haynor D.R., and Ruzzo W.L. Validating clustering for gene expression data. Bioinformatics 2001, 17: 309-317
    Yoshida S., Ito M., Nishida I., and Watanabe A. Identification of a novel gene HYS1/CPR5 that has a repressive role in the induction of leaf senescence and pathogen-defense responses in Arabidopsis thaliana. Plant J. 2002, 29: 427-437
    Yusupova G., Jenner L., Rees B., Moras D., and Yusupov M. Structural basis for messenger RNA movement on the ribosome. Nature 2006, 444: 391-394
    Zhang W., Subbarao S., Addae P., Shen A., Armstrong C., Peschke V., and Gibertson L. Cre/loxmediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor. Appl. Genet. 2003, 107: 1157-1168
    Zhang X., Colleoni C., Ratushna V., Sirghie-Colleoni M., James M.G., and Myers A.M. Molecular characterization demonstrates that the Zea mays gene sugary2 codes for starch synthase isoform SSIIa. Plant Mol. Biol. 2004, 54: 865-879
    Zhang S., Williams-Carrier R., and Lemaux P.G. Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings. Plant Cell Rep. 2002, 21: 263-270
    Zhao Z.Y., Gu W., Cai T., Tagliani L.A., Hondred D., Bond D., Krell S., Rudert M.L., Bruce W.B., and Pierce D.A. Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet. Coop. News Lett. 1998, 72:34-37
    Zheng Q. and Wang X.J. GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res. 2008, 1-6 doi:10.1093/nar/gkn276
    Zhiponova M.K., Pettkó-Szandtner A., Stelkovics E., Neer Z., Bottka S., Krenács T., Dudits D., Fehér A., and Szilák L. Mitosis-specific promoter of the alfalfa cyclin-dependent kinase gene (Medsa;CDKB2;1) is activated by wounding and ethylene in a non-cell division-dependent manner. Plant Physiol. 2006, 140: 693-703
    Zhong H., Srinivasan C., and Sticklen M.B. In-vitro morphogenesis of corn (Zea mays L.). Planta 1992, 187: 483-489
    Zhong H., Sun B.,Warkentin D., Zhang S., Wu R., Wu T., and Sticklen M.B. The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol. 1996, 110: 1097-1107
    Zhou L., Jang J. C., Jones T.L., and Sheen J. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc. Natl. Acad. Sci. USA 1998, 95: 10294-10299
    Zhu Y., Nam J., Humara J.M., Mysore K.S., Lee L.Y., Cao H., Valentine L., Li J., Kaiser A.D., Kopecky A.L., Hwang H.H., Bhattacharjee S., Rao P.K., Tzfira T., Rajagopal J., Yi H., Veena Yadav B.S., Crane Y.M., Lin K., Larcher Y., Gelvin M.J.K., Knue M., Ramos-Oliva C., Zhao X., Davis S.J., Kim S.I., Ranjith- Kumar C.T., Choi Y.J., Hallan V.K., Chattopadhyay S., Sui X., Ziemienowicz A., Matthysse A.G., Citovsky V., Hohn B., and Gelvin S.B. Identification of Arabidopsis rat mutants. Plant Physiol. 2003, 132: 494-505