低碳经济导向的区域土地利用评价与结构优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80年代以来,全球变暖问题逐渐受到人们的普遍关注,实施碳减排、发展低碳经济以应对气候变化成为各国共识。近年来,陆地生态系统碳循环在国内外学术界进行了广泛和深入的研究,并取得了丰富的成果。根据相关研究报道,土地利用仅次于化石燃料燃烧成为大气中二氧化碳增加的重要原因。土地利用不仅是区域生态系统碳排放和碳吸纳的直接原因,而且作为空间载体间接影响区域人为源碳排放水平。但以往研究多从土地覆被变化和土地利用来测算碳排放效应,缺乏基于现行土地利用分类体系统筹自然源和人为源碳排放的整合研究;虽然低碳经济为土地可持续利用提供了新的发展思路,但是从低碳经济角度去综合评价和分析区域土地利用水平的相关研究很少;而且以低碳经济为导向优化区域土地利用结构,从而实现区域土地低碳和高效利用的研究更有待于探索。
     因此,本文根据国内外土地利用碳排放的相关研究,整合估算了区域不同土地利用类型自然源和人为源碳排放,分析了1996-2010年武汉市土地利用碳排放和碳汇量,及其排放强度和区域差异,并分析其与经济发展的脱钩弹性,从土地利用效率、土地利用结构、经济增长和人口规模对其进行影响因素分解研究。在此基础上,尝试性构建了低碳经济导向的区域土地利用评价指标体系,采用Fuzzy-ANP方法对武汉市历年土地利用低碳水平进行了综合评价,并对评价结果进行贡献率、协调度、障碍度、有效性和驱动力分析。进而整合土地碳排放、土地经济效益和生态效益目标函数,设置高、中、低三种碳排放情景,采用多目标线性规划法提出了武汉市土地利用结构优化方案。最后分析了土地利用碳减排和效益提升潜力,并提出了相应的土地利用策略和政策建议。研究的主要内容如下:
     (1)基于低碳经济与土地利用关系、土地利用碳减排现实需求提出了研究议题,并对国内外相关研究动态进行了综述。从土地利用碳减排相关概念、土地碳减排核算、土地利用评价相关研究、土地利用结构优化、土地利用碳减排对策等方面进行了系统归纳,并对国内外研究进展进行了评述,指出目前按照低碳经济要求所进行的区域土地利用研究和实践亟需系统理论的指导。
     (2)按照现行理论和实践的需求,界定了低碳经济、土地利用碳排放、土地利用评价和土地利用结构优化的内涵,并梳理了可持续发展理论、生态经济学理论、系统科学理论和择优分配理论,为本文的研究奠定理论基础。并据此提出了低碳经济导向的区域土地利用系统分析,包括土地利用领域引入低碳经济理念的必要性、低碳经济对土地利用的导向作用、低碳经济导向的土地利用内涵和系统特点。
     (3)按照不同土地利用类型综合测算了武汉市土地利用碳排放和碳汇量,进而得出武汉市土地利用净碳排放量。整体来看,武汉市土地利用碳排放呈逐年增加态势,从1996年的1906.45万吨增加到2010年的3269.86万吨,年均增长率为3.93%。地均碳排放强度和人均碳排放强度逐年增加,单位GDP碳排放强度逐年下降,而且武汉城市圈各城市土地利用碳排放时空差异较为明显。从土地利用碳排放与经济发展的脱钩弹性分析来看,主要以弱脱钩和强脱钩为主,但也出现了扩张连接和扩张负脱钩情况,目前来说武汉市土地利用碳排放的增速低于经济发展的增长速度。根据LMDI模型对武汉市土地利用碳排放的影响因素分解发现,1997-2010年与基期年相比,土地利用结构因素和土地利用效率因素一定程度上抑制了武汉市土地利用的碳排放,累计贡献率分别为1.50%和16.68%的碳减排,而经济发展因素和人口规模因素对土地利用碳排放具有较强的推动作用,累计贡献率分别为73.29%和21.53%的碳增量。
     (4)根据低碳经济发展对土地利用的要求,遵循综合性、指导性、区域性、科学性和可行性原则,构建了土地投入水平、土地利用程度、土地产出效益、土地低碳水平和土地可持续性5个准则层,24个指标因子层的区域土地利用评价指标体系,采用Fuzzy-ANP方法构建评价模型进行测算。得出武汉市土地利用综合水平总体呈上升态势,但是发展水平仍然不高,具有较大改进潜力。从影响武汉市土地利用水平的内部指标贡献率和障碍因素来分析,土地投入水平、土地利用强度和土地产出效益贡献较大,而土地低碳水平和土地可持续性障碍度较大,另外从因子障碍度来看,目前地均碳排放、人均耕地和地均环保投资对城市土地利用水平障碍度较大。通过对武汉市历年土地投入产出的经济有效性分析,发现多数年份土地利用投入产出经济有效,但个别年份出现了建设用地和从业人员冗余与财政收入不足的情况。将影响区域土地利用水平的因素,按照经济发展、人口增加和社会进步进行组合测算驱动力,发现经济发展是城市土地利用水平提高的最关键因素,而社会进步是城市土地利用水平的重要控制因素。
     (5)通过对武汉市2010年土地利用规划的碳排放总量估算,发现与2010年现状土地利用相比具有一定碳减排效果,但减排效果不够明显。因而以低碳经济为目标,整合区域土地利用碳排放、土地利用经济效益和土地利用生态效益目标函数,按照规划要求、经济发展、粮食安全和生态保护要求建立约束条件,并设置高、中、低三种土地利用碳排放情景,运用LINGO软件进行模型求解,根据方案对比和分析,选择中碳排放型规划方案为满意解。按照满意解调整土地利用结构,碳排放总量将比原规划目标减少118.45万吨,经济效益减少341.31亿元,生态效益增加2.86亿元,基本满足2020年武汉市经济发展、粮食保护和生态安全的需求。
     (6)按照武汉市土地利用类型分类,分耕地、林地、园地、其它农用地、建设用地、未利用地等,分析其利用潜力、碳减排效应、经济效益、生态效益和利用对策。其中土地利用结构优化的潜力最大,而建设用地规模控制、植树造林和其它利用和管理方式的碳减排也应引起重视。从土地碳减排、碳增汇和效益提升分别提出子土地低碳利用对策。土地利用碳减排包括农用地和建设用地碳减排、结构优化和碳排放征税;土地利用碳增汇包括林地和湿地碳增汇、转变用地方式和碳增汇补偿;土地利用效益提升可以从集约节约用地、完善土地利用市场、推进土地整治和加强生态保护入手。
     (7)结论和讨论,对全文进行了归纳和总结,并指出了现有研究的不足和对未来相关研究的展望。
Since the1980s, people gradually pay attention to the issue of global warming, so implementation the reduction of carbon emission and development of low-carbon economy to tackle climate change become a national consensus. According to relative research reports, land use is the second important reason for the increase of CO2in the atmosphere which only lower than the combustion of fossil fuels. In recent years, the carbon cycle in terrestrial ecosystem has carry out extensive and intensive research at home and abroad, and achieved fruitful results. However, land use is not only the direct cause for carbon emission and carbon absorb of regional ecosystem, but also as a space carrier influence the carbon emission levels of regional anthropogenic sources. But previous studies almost measure the effect of carbon emissions from land cover change and land-use, seldom integrate research the co-ordination of natural and anthropogenic sources of carbon emissions based on existing land use classification system. Although the low-carbon economy provide new development ideas for sustainable land use, the comprehensive evaluation and analysis of the level of low-carbon economy-oriented regional land use is little. Moreover, the research about the structure optimization of low-carbon economy-oriented land use to achieve the low-carbon and efficient regional land use need explored.
     Therefore, according to the related research about carbon emissions of land use at home and abroad, it integrated estimate the carbon emissions of natural and anthropogenic sources base on different land use types, and calculate the carbon emissions and carbon sinks as well as its emissions intensity and regional differences of land use in Wuhan City from1996-2010. Then analyze the decoupling elasticity between carbon emissions of land use and economic development, and decomposite the influencing factors which including land use efficiency, land use structure, economic growth and population size. On this basis, it try to build evaluation index system of low-carbon economy-oriented regional land use, Fuzzy-ANP method was used to evaluate the level of low-carbon land use in Wuhan City, and it also analysis the contribution rate, coordination degree, barriers, effectiveness and driving force of the evaluation results. Thus it integrated of land carbon emissions, the economic benefits and ecological benefits objective function of regional land use, and set high, medium and low carbon emission scenarios, the multi-objective linear programming method was proposed to optimizate land use structure of Wuhan City. Finally, it analysis the carbon emission reduction of land use and efficiency improvement potential, and put forward corresponding land use strategy and policy recommendations. The main contents are as follows:
     (1) Based on the relationship between low-carbon economy and land use, and the practical needs of carbon reduction of land-use, it proposed research issues, and reviewed the related study dynamic at home and abroad, which including the concept of carbon emissions of land use, the calculate of land carbon emission, land evaluation, land use structure optimization, carbon emission reduction measures of land use, and the research advances have been reviewed, it pointed out that regional land use study and practice, wich in accordance with the requirements of the low-carbon economy, need systems theory.
     (2) According to the needs of current theory and practice, it defines the low-carbon economy, carbon emissions of land use, land-use evaluation and optimization of land use structure. And analyze the theory of sustainable development, ecological economics, system science and merit-based allocation, that can make theoretical basis for this study. Finally, it puts forward systems analysis of low-carbon economy-oriented regional land use, which including the need for land use study introduce the concept of low-carbon economy, the guiding role of the low-carbon economy for land use, and the connotation and system features of low-carbon economy-oriented land use.
     (3) It comprehensively calculated the carbon emissions and carbon sinks of land use in accordance with the different land use types in Wuhan City, and then got the net carbon emissions of land use in Wuhan City. Overall, the carbon emissions of land use increased year by year in Wuhan City, From19,064,500tons in1996to32,698,600tons in2010; the average annual growth rate is3.93%. The intensity of carbon emissions and carbon emissions per capita increased year by year, but the carbon emissions per GDP decreased year by year, furthermore, the spatial and temporal differences of carbon emissions of land use in Wuhan megalopolis are obvious. From the perspective of the decoupling elastic analysis of carbon emissions of land use and economic development, it mainly appeared weak decoupling and strong decoupling, but there have been expansion access and expansion negative decoupling, now the growth rate of land use carbon emissions is lower than economic development in Wuhan City. According to the decomposition of impact factors of land use carbon emissions in Wuhan City and LMDI model, compared with the base year, the structural factors and efficiency factors of land use to some extent inhibited carbon emissions from land use in Wuhan City, The cumulative contribution rate of carbon emission reduction are1.50%and16.68%, respectively. While economic factors and demographic factors have a strong role in promoting land use carbon emissions, the cumulative contribution rate of the carbon increment were73.29%and21.53%, respectively.
     (4) According to the development requirements of low-carbon economy to land use, followed the general principles of guidance, regional, scientific and feasible, it build5criteria layer which including the level of land use input, land use intensity, land use output, land use efficiency, low carbon and sustainability of land use, the evaluation index system of regional land use contain24indicators factor layer, and using Fuzzy-ANP method to construct evaluation model and estimate. The paper obtained that comprehensive level of Land use in Wuhan City has an upward trend, but the level of development is still not high, has a large potential for improvement. Analyzed the contribution rate and the obstacles factors from the impact of the internal indicators of the land use level in Wuhan City, the level of land use input, land use intensity and land output efficiency have larger contribution, the low carbon level and sustainability of land use have larger obstacle. In addition to view the obstacles degree of factor, carbon emissions per area land, arable land per capita, environmental protection investment per area land have greater degree obstacles. From analysing the effectiveness of economic input-output of land use in Wuhan City, economic input-output of land use is effective in most years, but in very few years, it showed redundant of construction land and labor input and evenue shortage. Then divided the factors that affect the regional land use level into economic development, population growth and social progress, combine above factors to estimate driving force, we can found that economic development is the most critical factor to improve the urban land use level, while social progress is an important controlling factor for the urban land use level.
     (5) Through estimating the total carbon emissions of land use based on land-use planning in Wuhan City in2010, it has certain carbon emission reduction effect, compared with the current land use in2010, but the reduction effect is not obvious. Thus take low-carbon economy as target, integrate carbon emissions of regional land use, economic and eco-efficiency of land use objective function, according to the plans, economic development, food security and ecological protection requirements to establish constraints, set high, medium, and low carbon emission scenarios of land-use, and use LINGO software to solve it, at last select the carbon emissions plan for a satisfactory solution. The land-use structure adjusted based on the satisfactory result, compared with original plan, the total carbon emissions decrease1.18million tons, economic benefits decrease34.131billion Yuan, and ecological benefits increase286million Yuan, it basically meet the needs of the economic development, food and ecological protection of Wuhan City in2020.
     (6) The land use potential, carbon reduction effect, economic benefits, ecological benefits and corresponding countermeasures of land use, which contains arable land, forestland, orchard land, other agricultural land, construction land and unused land, that in accordance with the type classification of land use in Wuhan City, have been analyzed. The structure optimization of land use has greatest potential; the carbon emission reduction should also pay attention to the scale control of construction land, afforestation and management methods. Then the low-carbon land use measures have been put forward from perspective of carbon emission reduction, adding carbon sinks and improving efficiency of land use. Carbon emissions reduction of land use including agricultural and construction land use strategies, structural optimization and carbon emissions tax. Adding carbon sinks of land use including forestland and wetland use strategies, changes land use pattrerns and compensation of adding carbon sinks. The efficiency improvement of land use including intensive land use, improving the land use market, promoting land remediation and strengthening ecological protection.
     (7) It is conclusion and prospect. It summarizes the whole paper, points out the inadequacies of the existing research and prospects the future research directions.
引文
[1]陈红,马国勇.农村面源污染治理的政府选择[J].求是学刊,2007,(3):56-62.
    [2]揣小伟,黄贤金,郑泽庆.基于陆地生态系统碳储量的江苏省土地利用结构优化[A].中国农业工程学会2011年学术年会论文集,2011.
    [3]崔林丽,史军,唐娉等.中国陆地净初级生产力的季节变化研究[J].地理科学进展,2005,24(3):8-17.
    [4]戴诰芬.都市土地使用与二氧化碳浓度影响之关联研究[D].台湾:成功大学,2010.
    [5]董祚继.低碳概念下的国土规划[J].城市发展研究,2010,(7):1-5.
    [6]杜官印.建设用地对碳排放的影响关系研究[J].中国土地科学,2010,(5):32-36.
    [7]段晓男,王效科,途非等.中国湿地生态系统固碳现状和潜力[J].生态学报,2008,28(2):463-469.
    [8]方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973.
    [9]方精云,郭兆迪,朴世龙,陈安平.1981-2000年中国陆地植被碳汇的估算[J].中国科学D辑:地球科学,2007,37(6):804-812.
    [10]方精云,刘国华,徐篙龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508.
    [11]方精云,刘国华,徐篙龄.中国陆地生态系统碳循环及其全球意义[C].北京:中国环境科学出版社,1996.129-139.
    [12]方精云,朴世龙,赵淑清.2001.CO2失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学报,25(5):594-602.
    [13]方精云,朴世龙,赵淑清The carbon sink:the role of the middle and high latitudes terrestrial ecosystems in the northern hemisphere [J].植物生态学报,2001,25:594-602.
    [14]丰雷,魏丽,蒋妍.论土地要素对中国经济增长的贡献,中国土地科学[J].2008,22(12):4-10.
    [15]冯险峰,刘高焕,陈述彭等.陆地生态系统净第-性生产力过程模型研究综述[J].自然资源学报,2004,19(3):369-378.
    [16]冯宗炜,陈楚莹,张家武等.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,02.
    [17]葛全胜,戴君虎.过去三百年中国士地利用变化与陆地碳收支[M].科学出版社,2008.
    [18]国家发展和改革委员会能源研究所编著.减缓气候变化—IPCC第三次评估报告的主要结论和中国的对策[J].气象出版社,2004年.
    [19]国务院办公厅,人口发展“十一五”和2020年规划[EB/OL].国办发(2006)107号,http://www.gov.cn/gongbao/content/2007/content 526981.htm.
    [20]韩士杰,董云社,蔡祖聪,宋长春.中国陆地生态系统碳循环的生物地球化学过程[M].科学出版社,2008.
    [21]韩召迎,孟亚利,刘丽平等.基于区域土地利用变化的能源碳足迹改进算法及其应用[J].农业工程学报,2012,(5):190-195.
    [22]何勇,董文杰,季劲均等.基于AVIM的中国陆地生态系统净初级生产力模拟[J].地球科学进展,2005,20(3):345-349.
    [23]胡初枝,黄贤金,钟太洋等.江苏省碳排放及影响因素区域差异比较研究[A].中国地理学会2007年学术年会,2007-1].
    [24]胡初枝,黄贤金,钟太洋等.中国碳排放特征及其动态演进分析[J].中国人口·资源与环境2008,18(3),38-41.
    [25]胡会峰,王志恒,刘国华.中国主要灌丛植被碳储量[J].植物生态学报,2006,30(4):539-544.
    [26]胡金明.中国泥炭资源蕴藏的空间格局分析[J].安徽师范大学学报(自然科学版),2000,23(2).
    [27]黄爱民,赵荣钦,等.我国农田系统碳增汇/减排影响因素与技术的初步探讨[J].许昌学院学报,2003,22(5):39-42.
    [28]黄贤金,高珊,赵荣钦等.江苏省发展低碳经济的总体思路与策略[J].群众,2011,4:26-27.
    [29]黄耀,孙文娟.近20年来中国大陆农田表土有机碳含量的变化趋势[J].科学通报,2006,51(7):750-763.
    [30]姜克隽.中国2050年的能源需求与CO2排放情景[J].气候变化研究进展,2008,5.
    [31]姜群鸥,邓祥征,战金艳等.黄淮海平原耕地转移对植被碳储量的影响[J].地理研究,2008,27(4);839-846.
    [32]解宪丽,孙波,周慧珍等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004,41(5):687-699.
    [33]金峰,杨浩,蔡祖聪,等.土壤有机碳密度及其储量的统计研究[J].土壤学报,2001,38(4):522-528.
    [34]金峰,杨浩,赵其国.土壤有机碳储量及影响因素研究进展[J].土壤,2000,(2):11-17.
    [35]金三林.国内能源效率偏低,二氧化碳排放量增长较快[EB/OL].中国经济,2010-07-06.http://www.cnstock.com/index/gdbb/201007/650655.htm.
    [36]赖力,黄贤金.中国土地利用的碳排放效应研究[M].南京:南京大学出版社,2011.
    [37]赖力.中国土地利用的碳排放效应研究[D].南京:南京大学,2010.
    [38]蓝家程,傅瓦利,袁波等.重庆市不同土地利用碳排放及碳足迹分析[J].水土保持学报,2012,(2):146-155.
    [39]黎孔清,陈银蓉.低碳理念下的南京市土地集约利用评价[J].中国土地科学,2013,(1):67-73.
    [40]黎孔清,陈银蓉,陈家荣.基于ANP的城市土地低碳集约利用评价模型研究[J].经济地理,2013,(2):156-161.
    [41]黎孔清,陈银蓉.低碳经济导向的城市土地利用评价研究——以南京市为例[J].中国房地产研究(季刊),2011,46(3):121-133.
    [42]黎孔清,陈银蓉.新加坡城市土地集约利用及其启示[J].铜业工程,2010,(4):81-87.
    [43]黎孔清,陈银蓉.一座垂直的天空城市—香港的城市土地多元集约利用[J].中国土地,2009,(12):43-46.
    [44]黎孔清,陈银蓉.怎么有效控制城市蔓延—美国新城市主义的理念与实践[J].中国土地,2009,(6):51-53.
    [45]黎孔清,陈银蓉.武汉市城市土地集约利用政策效果分析与改进研究[J].国土资源科技管理,2010,(1):114-121.
    [46]黎孔清,陈银蓉.低碳经济导向的城市土地利用研究——以武汉市为例[A].第三届全国土地资源管理博士论坛论文集,2011.
    [47]李波.我国农地资源利用的碳排放及减排政策研究[D].武汉:华中农业大学,2011.
    [48]李克让,王绍强.中国植被和土壤碳储量[J].中国科学D辑,2003,33(1),73-80.
    [49]李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].武汉:气象出版社,2002.
    [50]李璞.低碳情景下建设用地结构优化研究——以江苏省为例[D].南京:南京大学,2009.
    [51]李颖,黄贤金,甄峰.江苏省区域不同土地利用方式的碳排放效应分析[J].农业工程学报,2008,24(Supp.2):102-107.
    [52]李颖,黄贤金,甄峰.江苏省区域不同土地利用方式的碳排放效应分析[J].农业工程学报,2008,24(S2):102-107.
    [53]李颖.中国碳排放效率及土地利用调控研究[D].南京:南京大学,2011.
    [54]廖俊豪,李俊霖.都市化过程中碳吸存及排放之生命周期评估:以林口特定区为例[J].台湾第十四届国土规划论坛.2010.
    [55]刘海猛,石培基,王录仓等.低碳目标导向的兰州市土地利用结构优化研究[J].中国土地科学,2012,(6):55-61.
    [56]刘英,赵荣钦,焦土兴.河南省土地利用碳源/汇及其变化分析[J].水土保持研究,2010,(10):154-162.
    [57]卢娜.土地利用变化碳排放效应研究[D].南京:南京农业大学,2011.
    [58]梅建屏,徐健,金晓斌等.基于不同出行方式的城市微观主体碳排放研究[J].资源开发与市场,2009,25(1):49-52.
    [59]石广玉,丁汇,张鹏等.中国森林C02释放与吸收的评估[A].气象出版社,1996.85-94
    [60]史军,刘纪远,高志强等.造林对陆地碳汇的研究进展[J].地理科学进展,2004,23(2):58-67.
    [61]苏雅丽,张艳芳.陕西省土地利用变化的碳排放效益研究[J].水土保持研究,2011,(2):152-154.
    [62]汤洁,毛子龙,韩维峥,等.土地利用/覆被变化对土地生态系统有机碳库的影响-以吉林省通榆县为例[J].生态环境2008,17(5):2008-2013.
    [63]陶波,李克让,邵雪梅,等.中国陆地净初级生产力时空特征模拟[J].地理学报,200,58(3):372-380.
    [64]汪友结.城市土地低碳利用的外部现状描述、内部静态测度及动态协调控制[D].浙江:浙江大学,2011.
    [65]王佳丽,黄贤金,郑泽庆.区域规划土地利用结构的相对碳效率评价[J].农业工程学报,2010,26(7):302-306.
    [66]王礼茂.几种主要碳增汇/减排途径的对比分析[J].第四纪研究,2004,24(2):191-197.
    [67]王明星,张仁健,郑循华.温室气体的源与汇[J].气候与环境研究,2000,5(1):75-79.
    [68]王绍强,刘纪远.土壤碳蓄积量变化的影响因素研究现状[J].地球科学进展,2002,17(4):528-534.
    [69]王绍强,周成虎,李克让.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533-544.
    [70]王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨[J].地理科学进展,1999,18(3):238-244.
    [71]王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,18(4):349-355.
    [72]王效科,冯宗炜,欧阳志云.中国森林生态系统的植被碳储量及其密度.[J]应用生态学报,2001,12(1):13-16.
    [73]王义祥,翁伯琦,黄毅斌.土地利用和覆被变化对土壤碳库和碳循环的影响[J].亚热带农业研究,2005,1(3):44-51.
    [74]魏楚,沈满洪.结构调整能否改善能源效率:基于中国省级数据的研究[J].世界经济,200811:77-85.
    [75]吴家兵,张玉书,关德新.林生态系统CO:通量研究方法与进展[J].北林业大学学报,2003,31(6):4951.
    [76]吴乐知,蔡祖聪.基于长期实验资料对中国农田表土有机碳含量变化的估算[J].生态环境,2007,16(6):1768-1774.
    [77]武俊奎.城市规模与空间结构对碳排放的影响[J].城市发展研究,2012(3):89-112.
    [78]徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002,39(1):89-96.
    [79]许信旺,潘根兴.中国水稻土碳循环研究进展[J].生态环境2005,14(6):961-96.
    [80]许燕萍,陈晖,卢向荣;刘炜;土地利用方式对土壤有机碳储量的影响[J].安徽农学通报,2008-17-037.
    [81]杨峰,李建龙,钱育蓉,邓蕾.CO2浓度增加对草地生态系统及碳平衡的影响[J].中国草地学报,2008,30(6):99-105.
    [82]杨景成,韩兴国,黄建辉.土地利用变化对陆地生态系统碳贮量的影响[J].应用生态学报,2003,14(8):1385-1390.
    [83]叶浩,濮励杰.苏州市土地利用变化对生态系统固碳能力影响研究[J].中国土地科学,2010,24(3):60-64.
    [84]游和远,吴次芳,沈萍.土地利用结构与能源消耗碳排放的关联测度及其特征解释[J].中国土地科学,2010,(11):4-9.
    [85]于东升,史学正,孙维侠,等.基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报,2005,16(12):2279-2283.
    [86]张德英,张丽霞.碳源排碳量估算办法研究进展[J].内蒙古林业科技,2005(1):20-23.
    [87]张国盛,黄高宝,Y IN Chan农田土壤有机碳固定潜力研究进展[J].生态学报,2005,25(2)351-357.
    [88]张俊,孙玉军.森林生态系统碳循环研究方法概述[J].林业资源管理,2007,2(1):102-104.
    [89]张文菊,童成立,吴金水等.典型湿地生态系统碳循环模拟与预测[J].环境科学,2007,28(9):1905-1911.
    [90]张旭辉,李典友,潘根兴,等.我国湿地士壤资源保护与气候变化问题[J].气候变化研究进展,2008,4(4):202-208.
    [91]赵荣钦,黄贤金.城市系统碳循环:特征、机理与理论框架[J].生态学报,2012.
    [92]赵荣钦,黄贤金.基于能源消费的江苏省土地利用碳排放与碳足迹[J].地理研究,2010,(9):1640-1649.
    [93]赵荣钦,刘英,郝仕龙等.低碳土地利用模式研究[J].水土保持研究,2010,17(5):190-194.
    [94]郑聚锋.长期不同施肥条件下南方典型水稻土有机碳矿化与CO2、CH4产生研究[D].南京:南京农业大学,2007.
    [95]周涛,史培军,王绍强.气候变化及人类活动对中国土壤有机碳储量的影响[J].地理学报,2003,58(5):727-734.
    [96]Andreas M A, Alfons W, Ken J, et al. Cost Efficient Rotation and Tillage Options to Sequester Carbon and Mitigate GHG Emissions from Agriculture in Eastern Canada Agriculture[J]. Ecosystems&Environment,2006,117(2-3):119-127.
    [97]Arthur M. Sullivan. Land- use Controls and Zoning [J]. Urban economics,1990.
    [98]Asao A. The Space time Structure and Land Price in Japanese Metropolitan Areas[J]. The Annals of Regional Science,2004(38):655-674.
    [99]Baldocchi D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past, present and future[J]. Global Change Biology,2003,9:479-492.
    [100]Bazzaz F A. The resp inse of natural ecosystems to the rising global C02 levels [J].Annu Rev Ecol Svsl,1990,21:167-196.
    [101]Belward, Loveland. IGBP/HDP. Land Use and Land Cover Change Science/Research Plan, IGBP Rep.1995(35) and HDP Rep.1995(7).
    [102]Bousquet P, Peylin P,Ciais P, et al.2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980[J].Science,290:1342-1346.
    [103]Bowden R, Davidson E, Savage K, et al. Chronic Nitrogen Additions Reduce Total Soil Respiration and Microbial Respiration in Temperate Forest Soils at the Havard Forest [J]. Forest Ecology and Management,2004,1996(1):43-56.
    [104]Brown S L, Schroeder P E. Spatial patterns of above ground production and mortality of woody biomass for eastern U.S. forests [J]. Ecol Appl,1999,9:968-980.
    [105]Browns, Lugo A E. Biomass of tropical forests:A new estimate based on forest volumes [J] Science,1984,223:1290-1293.
    [106]Burrough PA. Principles of geographical information systems for land resources assessment [M]. Clarendon Press,1986.
    [107]Burton E. Measuring urban compactness in UK towns and cities [J]. Environment and Planning B:Planning and Design,2002,29(2):219-250.
    [108]Cai Z C, Qin S W. Dynamics of Crop Yields and Soil Organic Carbon in A Long-Term Fertilization Experiment in the Huang-Huai-Hai Plain of china[J]. Geoderma,2006,136(3-4):708-715.
    [109]Campbell C A, Zentner R P, Liang B-C, et al. Organic C Accumulation in Soil Over 30 Years in Semiarid Southwestern Saskatchewan-Effect of Crop Rotations and Fertilizers [J]. Canadian Journal of Soil Science,2000,80:179-192.
    [110]Cao M K, Tao B, Li K R, et al. Interannual Variation in Terrestrial Ecosystem Carbon Fluxes in China from 1981 to 1998. [J] Acta Botan Sin,2003,45:552-560.
    [111]Chapin FS III, Maston PA, Mooney HA. Principles of Terrestrial Ecosystem Ecology [M]. New York:pringer-verlag Berlin Heidelberg.2002.
    [112]Chudacoff, Howard P, Smith JE. The Evolution of American Urban Society [M]. Upper Saddle River:Prentice-Hall,Inc.2000:223.
    [113]Cox P M, BettsRA, Jones C D. Acceleration of global warming due to carbon cycle feedbacks in a coupled climate model [J]. N ature,2000,408:184-187.
    [114]Crooks A, Castle C, Batty M. Key challenges in agent-based modeling for geo-spatial simulation [J]. Computers, Environment and Urban Systems,2008,32(6):417-430.
    [115]Crutzen P J. Geology of Man kind [J].NATURE,2002,415(3):23.
    [116]Dai A, Fung I Y. Can climate variability contribute to the "missing" C02 sink? [J]. Glob Biogeochem Cycles,1993,7:599-609.
    [117]Davidson E A, Ackermann I L. Changes in soil carbon inventories following cultivation of previously untitled soils [J].Biogeochemistry,1993,20:161-193.
    [118]Delcourt HR, Harris WF.1980. Carbon budget of the southeastern U. S. Biota:Analysis of historical change in trend from source to sink. [J] Science,210:321-323.
    [119]Dennis D B, Kell B W. Modeling C02and water vapor exchange of a temperate broadleaved forest across hourly t decadal time scales [J]. Ecological Modeling,2001,142:155-184.
    [120]Detwiler R P, Hall C A 1988. Tropical forest and the global cycles. [J] Science,239:42-47
    [121]Detwiler R P. Land Use Change and the Global Carbon Cycle:the Role of Tropical Soils [J]. Biogeochemistry,1986,2(1):67-93.
    [122]Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems [J].Science,1994,263:185-190.
    [123]Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K.2006 IPCC Guidelines for National Greenhouse Gas Inventories. Japan:IGES,2006.
    [124]Eino Lappalainen (ed.).Global Peat Resources [M].Finland:International Peat Society of Finland, 1996.
    [125]Esparza JC, Perello JC, Calvo MA. Establishing sustainable strategies in urban underground engineering [J].Science and Engineering Ethics,2004 (10):523-530.
    [126]F Wu, C J Webster. Simulation of land development through the integration of cellular automata and multicriteria evaluation [J]. Environment and Planning B,1998,25(1):103-126.
    [127]Fan S, Gloor M, Pacala S, Sarmiento J, Takahashi T, Tans P. A large terrestrial carbon sinks in North America implied by atmospheric and oceanic carbon dioxide data and models [J]. Science, 1998,282:442-445.
    [128]Fan S, Gloor M, Pacala S, Sarmiento J,Takahashi Tans P. A large terrestrial carbon sinks in North America implied by atmospheric and oceanic carbon dioxide data and models [J]. Science,1998, 282:442-445.
    [129]Fan S, Gloor M,Mahlman J,et al.1998. A large terrestrial carbon sink in north America implied by atmospheric and oceanic carbon dioxide data and models[J]. Science,282,442-446.
    [130]Fang J, Chen A, Peng C, et al.2001.Changes in forest biomass carbon storage in China between 1949 and 1998 [J]. Science,292:2320-2322.
    [131]Fang J Y.Forest biomass carbon pool of the middle and high latitudes in North Hemisphere is probably much smaller than present estimates. [J] Acta Phyto ecol Sin,2000,24:635-638.
    [132]Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science,2001,292:2320-2322.
    [133]Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998 [J]. Science,2001,292:2320-2322.
    [134]Fang J Y, Wang G G, Liu G H, Xu S L. Forest biomass of China:an estimation based on the biomass volume relationship[J]. Ecol Appl,1998,8:1084-1091.
    [135]Fang J Y, Wang Z M.Forest biomass estimation for regional and global levels, with special reference toChina's forest biomass [J]. Ecol Res,2001,12.
    [136]Farquhar G D, Roderick M L. Pinatubo, Diffuse Light and the carbon cycle [J]. Science, 2003.299:1997-1998.
    [137]Fearnside P M. Forests and global warming mitigation in Brazil:opportunities in Brazilian forest sector for responses to global warming under the "development mechanism" [J]. Biomass and Bioenerny,1999,16:171-189.
    [138]Frank A B, Liebig M A, Hanson J D. Soil carbon dioxide fluxes in northern semiarid grasslands [J]. Soil Biology and Biochemistry,2002,34:1235-1241.
    [139]Gabriel SA, Faria JA, Moglen GE. A multi-objective optimization approach to smart growth inland development [J].Socio-Economic Planning Sciences,2006,40(3):212-248.
    [140]Ganesan S, Lau S S Y. Urban challenges in Hong Kong:Future directions for design [J].Urban Design International,2000,5(1):3-12.
    [141]Geoghegan J. The value of open spaces in residential land use [J]. Land Use Policy, 2002(19):91-98.
    [142]Glaab, Charles N, Brown AT. A History of Urban America [M].New York:Macmillan Publishing Co, Inc,1983:291.
    [143]Glseser Edward L, Kahn Edward Matthew E. The greenness of Cities:Carbon Dioxide Emissions and Urban Development. [EB/OL].2008. http://www. Nber.org/papers/w14238-2008.
    [144]Gordon P, Richardson HW. Are Compact Cities a Desirable Planning Goal Journal of the American Planning Association [J].1997,63(l):95-106.
    [145]Gorissen A. Elevated CO2 evokes quantitative and qualitative changes in carbon dynamics in a plant/soil system:mechanisms and implications [J]. Plant and soil,1996,187:289-298.
    [146]Gregorich E G,Rochette McGuire S, et al.1998.Soluble organic carbon and carbon dioxide fluxes in maize fields receiving spring applied manure[J].Environ.Qual,27:209-214.
    [147]Gregorio A O, LIM., Jansen. Land covers classification system:classification concepts and user manual, FAO,2000.
    [148]Gu L H., Baldocchi DD., Wofsy SC., et al.2003. Response of a deciduous forest to the Mount Pinatubo eruption:enhanced photosynthesis [J].Science,299:2035-2038.
    [149]Hanzl M. Information technology as a tool for public participation in urban planning:A review of experiments and potentials [J].Design Studies,2007,28(3):289-307.
    [150]Havlin JL, Kissel DE, Claassen LD, et al.1990. Crop rotation and tillage effects on soil organic carbon and nitrogen. Soil Sci Soc a m J,54:448-452
    [151]Holden E. Ecological foot prints and sustainable urban form [J].Journal of Housing and the Built Environment,2004,19(1):91-109.
    [152]Holland EA, Brown S, Potter Cn S, Lkooster S A, et al. North American carbon sink [J]. Science, 1999,283:1815a.
    [153]Houghton J T, Jenkins G J, Ephraums J J. Climate change:the IPCC scientific assessment [M]. NewYork:Cambridge Univ Press,1990.283-310
    [154]Houghton R A, Hackler J L.1999. Emissions of carbon from forestry and land use change in tropical Asia. Global Change iol,5:481-492
    [155]Houghton R A, Haeckler J L, Lawrence K T. The US carbon budget:contributions from land-use change [J]. Science,1999,285:574-578.
    [156]Houghton R A.1996. Terrestrial sources and sinks of carbon inferred from terrestrial data [J]. Tellus,48B:419-432.
    [157]Houghton R A.2002. Magnitude, distribution and causes of terrestrial carbon sinks and some implications for policy [J]. Climate Policy,2:71-88.
    [158]Houghton R A. Changes in the storage of terrestrial carbon since 1950 [A]. LAL R. Soils and Globe Change[C]. London:CRC Press,1995.45-65.
    [159]Houghton R A. Land use change and the carbon cycle [J]. Global Change Biology,1995, 1:275-287.
    [160]Houghton R A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000[J].2003, Tell us B,55 (2):378-390.
    [161]Houghton R A. The annual net flux of carbon to the atmosphere from changes in land use 1850-1990[J].Tellus,1999,51 B,298-313.
    [162]Houghton R A. Tropical deforestation and atmospheric carbon dioxide [J]. Climate Change, 1991,19:99-118
    [163]Houghton, Carbon flux to the atmosphere form land sue change:1850-1990, the woods hole research centre.
    [164]Houghton, R.A.2008. Carbon Flux to the Atmosphere from Land-Use Changes:1850-2005. In TRENDS:A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge,Tenn., U.S.A.
    [165]Howley P. Attitudes towards compact city living:Towards a greater understanding of residential behaviors [J].Land Use Policy,2009,26(3):792-798.
    [166]Huntington T G. Evidence for intensification of the global water cycle:Review and synthesis. J Hydrol,2006,319:83-95.
    [167]Intergovernmental Panel on Climate Change (IPCC), IPCC/DECD/IEA, Paris, France.
    [168]IPCC (1997). Revised 1996 IPCC Guidelines for National Greenhouse Inventories. Houghton J.T., Meira Filho L.G., Lim B., Treanton K., Mamaty I., Bonduki Y, Griggs D.J. Callander B.A. (Eds).
    [169]IPCC (2003). Good Practice Guidance for Land Use, Land-Use Change and Forestry. Penman J.133.
    [170]IPCC Fourth Assessment Report[R].2007.
    [171]IPCC, [EB/OL]. http://www.ipcc.ch/ipccreports/assessments-reports.htm.
    [172]Isard W. Methods of Regional Analysis:An Introduction to Regional Science [M]. New York: Wiley and Technology,1960.
    [173]Jane J. The Death and Life of Great American Cities [M].Originally New York:Published in Hardcover by Random House, Inc,1961.
    [174]Jener L M, Carlos C C, Jerry M M, et al. Soil Carbon Stocks of the Brazilian Amazon Basin [J]. Soil Science Society of America Journal,1995,59:244-247.
    [175]Jenks M, Burton E, Williams K. Debating Urban Compaction [M]. London:E&F Spon,1996.
    [176]Jim CY. Green-space preservation and allocation for sustainable greening of compact cities [J].Cities,2004,21(4):311-320.
    [177]Jo Leinen. Introducing a European Carbon Tax:The Missing Piece in Europe's Climate Strategy [J]. Social Europe Journal.2010(6).
    [178]Jones S K, Rees R M, Skiba U M, et al. Greenhouse Gas Emissions from A Managed Grassland [J]. Global and Planetary Change,2005,47(2-4):201-211.
    [179]JoshiK K, Kono T. Optimization of floor area ratio regulation in a growing city [J].Regional Science and Urban Economics,2009,39(4):502-511.
    [180]King A W, Post W M, Wullschleger S D. The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2 [J]. Climatic Change,1997,35:199-227,
    [181]Kono T, Kaneko T. Necessity of minimum floor area ratio regulation:A second-best policy [J].The Annals of Regional Science,2008(8):1-17.
    [182]Lambin EF. Modeling deforestation processes:a review. TREES Series B. Research Report Office of Official [M]. Luxembourg:Publications of the European Community,1994.
    [183]Lau SSY, Giridharan R, Ganesan S. Multiple and intensive land use:Case studies in Hong Kong [J].Habitat International,2005,29(3):527-546.
    [184]Lau SSY, Giridharan R, Ganesan S. Policies for implementing multiple intensive and land use in Hong Kong [J]. Journal of Housing and the Built Environment,2003(18):365-378.
    [185]Lau SSY. Sustainable city:A case of multiple and intensive land use in Hong Kong [EB/OL].http://www.irbdirekt.de/daten/iconda/CIB9629.pdf,2009-10-14.
    [186]Le Q B, Park S J, Vlek P L G, et al. Land-Use Dynamic Simulator (LUDAS):A multi-agent system model for simulating spatio-temporal dynamics of coupled human-landscape system. I. Structure and theoretical specification [J].Ecological Informatics,2008,3(2):135-153.
    [187]Levy PE, Friend AD, White A, Cannel MGR. The influence of land use change on global-scale flues of carbon from terrestrial ecosystems [J]. Climatic Change,2004,67,185-209.
    [188]Lewis GM, Brabec E. Regional land pattern assessment:Development of are source efficiency measurement method [J]. Landscape and Urban Planning,2005,72(4):281-296.
    [189]Lin S W, Ben T M. Impact of government and industrial agglomeration on industrial land prices: A Taiwanese case study [J].Habitat International,2009,33(4):412-418.
    [190]Loretta T, Anna N, Gianni G, et al. Can Mineral and Organic Fertilization Help Sequestrate Carbon Dioxide in Cropland [J]. European Journal of Agronomy 2008,29(1):13-20.
    [191]Ni J, Carbon storage in terrestrial ecosystems of China:Estimates at different spatial resolutions and their responses to climatic change [J]. Climate change,2001,49(3):339-358.
    [192]Pan G X, Li L, Wu L, et al. storage and sequestration potential of topsoil organic carbon in China's [J]. Paddy soils. Glob Change Biol,2003,10:79-92.
    [193]Polglase, Philip J, Australian Greenhouse Office. Change in Soil Carbon Following Afforestation or Reforestation:Review of Experimental Evidence and Development of A Conceptual Framework[R]. National Carbon Accounting System Technical Report, NO.20. Canberra,2000.
    [194]Said S, Dickey D.Testing for unit roots in autoregressive-moving average models of unknown order [J].Biometrika,1984(71):599-607.
    [195]Scott NA, Tate KR, Bobertson JF, Giltrap DJ, Smith CT. Soil carbon storage in plantation forests and pastures:land-use change implication [J]. Tellus,1999,51:326-335.
    [196]Slee B.Social indicators of multifunctional rural land use:The case of forestry in the UK[J].Agriculture Ecosystems & Environment,2007,120(1):31-40.
    [197]Slotboom C, Giannella V. Public participation and urban sustainability[C] Conference on Conflict and Consensus in Sustainable Urban Management:A Focus on Tourism,1995(6):14-17.
    [198]Smith N, Dennis W. The restructuring of geographical scale:coalescence and fragmentation of the northern core region [J].Economic Geography,1987(63):160-182.
    [199]Song Y, Gerrit J K. Measuring the Effects of Mixed Land Uses on Housing Values [J].Journal of Regional Science and Urban Economics,2004(34):663-680.
    [200]Sonne W. Dwelling in the metropolis:Reformed urban blocks 1890-1940 as a model for the sustainable compact city [J].Progress in Planning,2009,72(2):53-149.
    [201]Stark R. A hidden treasure map:highest and best use analysis [J]. ASA Valuation, 1988(33):24-29.
    [202]Stewart K. Designing good urban governance indicators:The importance of citizen participation and its evaluation in greater Vancouver [J].Cities,2006,23(3):196-204.
    [203]Su Y Z, Zhao H L.lnfluence of garazing and exclosure on catbon sequestration in degraded sandy grassland, Inner Mongolia, north China [J]. New Zeal. J.Agric. Res.,2003(46):321-328.
    [204]Tate KR, Scott NA, Giltrap Ross D J et al. Plant Effects on Soil Carbon Storage and Turnover in A Montanan Beech Forest and Adjacent Tussock Grassland in New Zealand [J]. Australian Journal of Soil Research,2000,38(5):685-698.
    [205]Wang Y, Amundson R, Trumbore S. The Impact of Land Use Change on C Turnover in Soils [J]. Global Biogeochemical Cycles,1999,13(1):47-57.
    [206]Witt C, Cassman K G, Oik D C, et al. Crop Rotation and Residue Management Effects on Carbon Sequestration, Nitrogen Cycling and Productivity of Irrigated Rice Systems [J]. Plant and Soil,2000,225(1-2):263-278.
    [207]Wu H B, Guo Z T. Peng C H. Distribution and storage of soil organic carbon in China [J]. Global Biogeochemical Cycles,2003,17:1048-1058.
    [208]Yang P P J, Lay O B. Applying ecosystem concepts to the planning of industrial areas:A case study of Singapore's Jurong island [J].Journal of Cleaner Production,2004,12(8-10):1011-1023.
    [209]Yu Xiaozhou, Hu Shougeng, Li Jiangfeng. Spatial difference of industrial land intensive use of Wuhan metropolitan area [J]. Environmental Science and Information Application Technology (ESIAT),2010(7):219-222.
    [210]Zhao R Q, Huang X J, Zhong T Y, et al. Carbon footprint of different industrial spaces based on energy consumption in China [J]. Journal of Geographical Sciences,2011,21(2):285-300.
    [211]Zhu Jieming. Industrial Property and Structural Change of Manufacturing:A Relative-Cost Analysis [J]. Review of Urban&Regional Development Studies,2000(12):2-16.
    [212]Zhu Jieming. The impact of industrial land use policy on industrial change [J].Land Use Policy, 2000,17(1):21-28.
    [213]Zielinska A L, Church R, Jankowski P. Progress in Spatial Data Handling:Development Density-based Optimization Modeling of Sustainable Land Use Patterns [M].Springer-Verlag Berlin Heidelberg,2006.
    [214]Zomer R J, Trabucco A, Bossio D A, et al. Climate change mitigation:A spatial analysis of global land suitability for clean development mechanism a forestation and reforestation. Agriculture, Ecosystems & Environment,2008,126 (1/2):81-97.